Difference between revisions of "Aufgaben:Exercise 4.11Z: Error Probability with QAM"
From LNTwww
m (Guenter verschob die Seite 4.10Z QAM–Fehlerwahrscheinlichkeit nach 4.11Z Fehlerwahrscheinlichkeit bei QAM) |
|||
(19 intermediate revisions by 4 users not shown) | |||
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File:P_ID1721__Mod_Z_4_10.png|right|]] | + | [[File:P_ID1721__Mod_Z_4_10.png|right|frame|Table with two different "Gaussian error functions"]] |
− | + | We now make the following assumptions: | |
− | + | * binary bipolar amplitude coefficients $a_ν ∈ \{±1\}$, | |
− | + | * rectangular basic transmission pulse with amplitude s0 and bit duration $T_{\rm B}$, | |
− | + | * AWGN noise with noise power density N0, | |
− | + | * a receiver according to the matched-filter principle, | |
− | + | * the best possible demodulation and detection. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | The bit error probability of binary phase modulation (BPSK) under these conditions can be calculated using the following equations: | |
− | + | :$$ p_{\rm B, \hspace{0.05cm}BPSK} = {\rm Q}\left ({s_0}/{\sigma_d } \right ), \hspace{0.2cm} E_{\rm B} = {1}/{2} \cdot s_0^2 \cdot T_{\rm B} ,\hspace{0.2cm} \sigma_d^2 = {N_0}/{T_{\rm B} }$$ | |
− | + | :$$\Rightarrow \hspace{0.3cm} p_{\rm B, \hspace{0.05cm}BPSK} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ).$$ | |
− | === | + | |
+ | *The corresponding equations of \rm 4–QAM are: | ||
+ | :$$ p_{\rm B, \hspace{0.05cm}4-QAM} = {\rm Q}\left ( {g_0}/{\sigma_d } \right ), \hspace{0.2cm}g_{0} = {s_0}/{\sqrt{2}}, \hspace{0.2cm}E_{\rm B} = {1}/{2} \cdot s_0^2 \cdot T_{\rm B} ,\hspace{0.2cm} \sigma_d^2 = {N_0}/({2 \cdot T_{\rm B} }).$$ | ||
+ | |||
+ | *Here it is taken into account that – in order to achieve the same transmission energy per bit as with BPSK – one must reduce the amplitude g_0 of the rectangular pulses in the two sub-branches of 4-QAM by a factor of \sqrt{2} . | ||
+ | *The envelope is then equal to s_0 for both systems. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | Hints: | ||
+ | *This exercise belongs to the chapter [[Modulation_Methods/Quadrature_Amplitude_Modulation|"Quadrature Amplitude Modulation"]]. | ||
+ | *Reference is also made to the page [[Modulation_Methods/Linear_Digital_Modulation#Error_probabilities_-_a_brief_overview|"Error probabilities – a brief overview"]] in the previous chapter. | ||
+ | * Always assume the following numerical values: s_0 = 2\,{\rm V}, \hspace{0.05cm} N_0 = 0.25 \cdot 10^{-6}\,{\rm V^2/Hz}\hspace{0.05cm}. | ||
+ | *The bit duration is $T_{\rm B} = 1 \ \rm µ s$ (question 1) and $T_{\rm B} = 2 \ \rm µ s$ (from question 2 onwards). | ||
+ | *In the table, the two common Gaussian error functions {\rm Q}(x) and 1/2 \cdot {\rm erfc}(x) are given. | ||
+ | *Energies are to be given in \rm V^2s; thus, they refer to the reference resistance R = 1 \ \rm \Omega. | ||
+ | |||
+ | |||
+ | |||
+ | ===Questions=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {What error probability p_\text{B, BPSK} results for '''BPSK''' when $T_{\rm B} = 1 \ \rm µ s$? |
|type="{}"} | |type="{}"} | ||
− | $BPSK | + | $p_\text{B, BPSK} \ = \ { 0.317 3% } \ \rm 10^{-4}$ |
− | { | + | {What error probability p_\text{B, BPSK} results for '''BPSK''' when $T_{\rm B} = 2 \ \rm µ s$? |
|type="{}"} | |type="{}"} | ||
− | $BPSK | + | $p_\text{B, BPSK} \ = \ { 0.771 3% } \ \rm 10^{-8}$ |
− | { | + | {What error probability $p_\text{B, 4-QAM} is obtained for '''4-QAM''' when E_{\rm B} = 4 · 10^{–6} \ \rm V^2s$? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $p_\text{B, 4-QAM} \ = \ { 0.771 3% } \ \rm 10^{-8}$ |
− | { | + | {Which statements apply if we consider only one branch \rm (I or \rm Q) of the 4–QAM? |
|type="[]"} | |type="[]"} | ||
− | + | + | + The same result is obtained as for the entire 4-QAM. |
− | - | + | - The distance of the noisless samples from the threshold E=0 is the same $(s_0)$ as in BPSK. |
− | - | + | - The same result is obtained for the noise power as in BPSK. |
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1 | + | '''(1)''' With the values given, for "Binary Phase Shift Keying" (BPSK), one gets: |
− | $$E_{\rm B} = | + | :$$E_{\rm B} = {1}/{2} \cdot s_0^2 \cdot T_{\rm B} = \frac{1}{2}\cdot (2\,{\rm V})^2 \cdot 1\,{\rm µ s} = 2 \cdot 10^{-6}\,{\rm V^2s} |
− | + | \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {E_{\rm B}}/{N_0} = \frac {2 \cdot 10^{-6}\,{\rm V^2s}}{0.25 \cdot 10^{-6}\,{\rm V^2/Hz}} = 8$$ | |
− | $$ \Rightarrow \hspace{0.3cm} p_{ | + | :$$ \Rightarrow \hspace{0.3cm} p_\text{B, BPSK} = {\rm Q}\left ( \sqrt{16} \right ) = {\rm Q}\left ( 4 \right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{8}\right )\hspace{0.05cm}.$$ |
− | + | *Based on the given x–values in the table, it is convenient to use the first equation in this subtask: | |
− | $$p_{\rm B} = {\rm Q}\left ( 4 \right ) \hspace{0.15cm}\underline {= 0. | + | :$$p_\text{B, BPSK} = {\rm Q}\left ( 4 \right ) \hspace{0.15cm}\underline {= 0.317 \cdot 10^{-4} }\hspace{0.05cm}.$$ |
+ | |||
+ | |||
+ | |||
+ | '''(2)''' With twice the bit duration, the energy is also twice as large: $E_{\rm B} = 4 · 10^{–6} \ \rm V^2s ⇒ E_{\rm B}/N_0 = 16$. | ||
+ | *It follows that: | ||
+ | :$$p_\text{B, BPSK} = {\rm Q}\left ( \sqrt{32} \right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{16}\right ) ={1}/{2}\cdot {\rm erfc}\left ( 4\right ) \hspace{0.15cm}\underline {= 0.771 \cdot 10^{-8}}\hspace{0.05cm}.$$ | ||
+ | *For pragmatic reasons, the last column of the table was used here. | ||
+ | |||
+ | |||
− | |||
− | |||
− | |||
− | '''3 | + | '''(3)''' Substituting the equations given for the 4-QAM into each other, we get the same result as for the BPSK: |
− | $$p_{\rm B, \hspace{0.05cm}4-QAM} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = | + | :$$p_{\rm B, \hspace{0.05cm}4-QAM} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) \equiv p_\text{B, BPSK}.$$ |
− | + | *Also, since the energy per bit has not changed from subtask '''(2)''', the same error probability will arise: | |
− | p_{\rm B} = {\rm Q}\left ( \sqrt{32} \right ) = {1}/{2}\cdot {\rm erfc}\left ( 4\right ) \hspace{0.15cm}\underline {= 0.771 \cdot 10^{-8}}\hspace{0.05cm}. | + | :$$p_{\rm B, \hspace{0.05cm}4-QAM}= {\rm Q}\left ( \sqrt{32} \right ) = {1}/{2}\cdot {\rm erfc}\left ( 4\right ) \hspace{0.15cm}\underline {= 0.771 \cdot 10^{-8}}\hspace{0.05cm}.$$ |
− | |||
− | |||
+ | '''(4)''' Only <u>Answer 1</u> is correct: | ||
+ | *Of course the error probability is the same in the two branches. Why would it not be? | ||
+ | *This would no longer be true with a phase offset between the transmitter and receiver though. | ||
+ | *However, the distance of the useful samples from the threshold is g_0 here and thus smaller than the envelope s_0 of the entire 4-QAM by a factor of \sqrt{2} . | ||
+ | *However, if the inphase branch (or the quadrature branch) is considered as a stand-alone BPSK, the noise power is also half that of BPSK because of the lower symbol rate. Therefore, the error probability remains the same. | ||
{{ML-Fuß}} | {{ML-Fuß}} | ||
Line 70: | Line 93: | ||
− | [[Category: | + | [[Category:Modulation Methods: Exercises|^4.3 Quadrature Amplitude Modulation^]] |
Latest revision as of 08:43, 18 April 2022
We now make the following assumptions:
- binary bipolar amplitude coefficients a_ν ∈ \{±1\},
- rectangular basic transmission pulse with amplitude s_0 and bit duration T_{\rm B},
- AWGN noise with noise power density N_0,
- a receiver according to the matched-filter principle,
- the best possible demodulation and detection.
The bit error probability of binary phase modulation \rm (BPSK) under these conditions can be calculated using the following equations:
- p_{\rm B, \hspace{0.05cm}BPSK} = {\rm Q}\left ({s_0}/{\sigma_d } \right ), \hspace{0.2cm} E_{\rm B} = {1}/{2} \cdot s_0^2 \cdot T_{\rm B} ,\hspace{0.2cm} \sigma_d^2 = {N_0}/{T_{\rm B} }
- \Rightarrow \hspace{0.3cm} p_{\rm B, \hspace{0.05cm}BPSK} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ).
- The corresponding equations of \rm 4–QAM are:
- p_{\rm B, \hspace{0.05cm}4-QAM} = {\rm Q}\left ( {g_0}/{\sigma_d } \right ), \hspace{0.2cm}g_{0} = {s_0}/{\sqrt{2}}, \hspace{0.2cm}E_{\rm B} = {1}/{2} \cdot s_0^2 \cdot T_{\rm B} ,\hspace{0.2cm} \sigma_d^2 = {N_0}/({2 \cdot T_{\rm B} }).
- Here it is taken into account that – in order to achieve the same transmission energy per bit as with BPSK – one must reduce the amplitude g_0 of the rectangular pulses in the two sub-branches of 4-QAM by a factor of \sqrt{2} .
- The envelope is then equal to s_0 for both systems.
Hints:
- This exercise belongs to the chapter "Quadrature Amplitude Modulation".
- Reference is also made to the page "Error probabilities – a brief overview" in the previous chapter.
- Always assume the following numerical values: s_0 = 2\,{\rm V}, \hspace{0.05cm} N_0 = 0.25 \cdot 10^{-6}\,{\rm V^2/Hz}\hspace{0.05cm}.
- The bit duration is T_{\rm B} = 1 \ \rm µ s (question 1) and T_{\rm B} = 2 \ \rm µ s (from question 2 onwards).
- In the table, the two common Gaussian error functions {\rm Q}(x) and 1/2 \cdot {\rm erfc}(x) are given.
- Energies are to be given in \rm V^2s; thus, they refer to the reference resistance R = 1 \ \rm \Omega.
Questions
Solution
(1) With the values given, for "Binary Phase Shift Keying" (BPSK), one gets:
- E_{\rm B} = {1}/{2} \cdot s_0^2 \cdot T_{\rm B} = \frac{1}{2}\cdot (2\,{\rm V})^2 \cdot 1\,{\rm µ s} = 2 \cdot 10^{-6}\,{\rm V^2s} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {E_{\rm B}}/{N_0} = \frac {2 \cdot 10^{-6}\,{\rm V^2s}}{0.25 \cdot 10^{-6}\,{\rm V^2/Hz}} = 8
- \Rightarrow \hspace{0.3cm} p_\text{B, BPSK} = {\rm Q}\left ( \sqrt{16} \right ) = {\rm Q}\left ( 4 \right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{8}\right )\hspace{0.05cm}.
- Based on the given x–values in the table, it is convenient to use the first equation in this subtask:
- p_\text{B, BPSK} = {\rm Q}\left ( 4 \right ) \hspace{0.15cm}\underline {= 0.317 \cdot 10^{-4} }\hspace{0.05cm}.
(2) With twice the bit duration, the energy is also twice as large: E_{\rm B} = 4 · 10^{–6} \ \rm V^2s ⇒ E_{\rm B}/N_0 = 16.
- It follows that:
- p_\text{B, BPSK} = {\rm Q}\left ( \sqrt{32} \right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{16}\right ) ={1}/{2}\cdot {\rm erfc}\left ( 4\right ) \hspace{0.15cm}\underline {= 0.771 \cdot 10^{-8}}\hspace{0.05cm}.
- For pragmatic reasons, the last column of the table was used here.
(3) Substituting the equations given for the 4-QAM into each other, we get the same result as for the BPSK:
- p_{\rm B, \hspace{0.05cm}4-QAM} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) \equiv p_\text{B, BPSK}.
- Also, since the energy per bit has not changed from subtask (2), the same error probability will arise:
- p_{\rm B, \hspace{0.05cm}4-QAM}= {\rm Q}\left ( \sqrt{32} \right ) = {1}/{2}\cdot {\rm erfc}\left ( 4\right ) \hspace{0.15cm}\underline {= 0.771 \cdot 10^{-8}}\hspace{0.05cm}.
(4) Only Answer 1 is correct:
- Of course the error probability is the same in the two branches. Why would it not be?
- This would no longer be true with a phase offset between the transmitter and receiver though.
- However, the distance of the useful samples from the threshold is g_0 here and thus smaller than the envelope s_0 of the entire 4-QAM by a factor of \sqrt{2} .
- However, if the inphase branch (or the quadrature branch) is considered as a stand-alone BPSK, the noise power is also half that of BPSK because of the lower symbol rate. Therefore, the error probability remains the same.