Difference between revisions of "Aufgaben:Exercise 2.5: Ternary Signal Transmission"
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Digital_Signal_Transmission/Redundancy-Free_Coding |
}} | }} | ||
− | [[File:P_ID1327__Dig_A_2_5.png|right|frame| | + | [[File:P_ID1327__Dig_A_2_5.png|right|frame|Probability density function of a noisy ternary signal]] |
− | + | A ternary transmission system $(M = 3)$ with the possible amplitude values $-s_0$, $0$ and $+s_0$ is considered. | |
− | * | + | *During transmission, additive Gaussian noise with rms value $\sigma_d$ is added to the signal. |
− | * | + | *The recovery of the three-level digital signal at the receiver is done with the help of two decision thresholds at $E_{–}$ and $E_{+}$. |
− | * | + | *First, the occurrence probabilities of the three input symbols are assumed to be equally probable: |
:$$p_{\rm -} = {\rm Pr}(-s_0) = {1}/{ 3}, \hspace{0.15cm} p_{\rm 0} = {\rm Pr}(0) = {1}/{ 3}, | :$$p_{\rm -} = {\rm Pr}(-s_0) = {1}/{ 3}, \hspace{0.15cm} p_{\rm 0} = {\rm Pr}(0) = {1}/{ 3}, | ||
\hspace{0.15cm} p_{\rm +} = {\rm Pr}(+s_0) ={1}/{ 3}\hspace{0.05cm}.$$ | \hspace{0.15cm} p_{\rm +} = {\rm Pr}(+s_0) ={1}/{ 3}\hspace{0.05cm}.$$ | ||
− | * | + | *For the time being, the decision thresholds are centered at $E_{–} = \, –s_0/2$ and $E_{+} = +s_0/2$. |
− | + | From subtask '''(3)''' on, the symbol probabilities are $p_{–} = p_+ = 1/4$ and $p_0 = 1/2$, as shown in the diagram. For this constellation, the symbol error probability $p_{\rm S}$ is to be minimized by varying the decision thresholds $E_{–}$ and $E_+$. | |
Line 22: | Line 22: | ||
− | '' | + | ''Notes:'' |
− | * | + | * The exercise refers to the chapter [[Digital_Signal_Transmission/Redundancy-Free_Coding|Redundancy-Free Coding]]. |
− | * | + | * For the symbol error probability $p_{\rm S}$ of a $M$–level message transmission system with equally probable input symbols and threshold values exactly in the middle between two adjacent amplitude levels holds: |
:$$p_{\rm S} = | :$$p_{\rm S} = | ||
\frac{ 2 \cdot (M-1)}{M} \cdot {\rm Q} \left( {\frac{s_0}{(M-1) \cdot \sigma_d}}\right) | \frac{ 2 \cdot (M-1)}{M} \cdot {\rm Q} \left( {\frac{s_0}{(M-1) \cdot \sigma_d}}\right) | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * | + | * You can numerically determine the error probability values according to the ${\rm Q}$ or ${\rm erfc}$ function using the [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|Complementary Gaussian Error Functions]] interaction module. |
− | * | + | * To check the results, use the calculation module [[Applets:Fehlerwahrscheinlichkeit|Symbol error probability of digital communications systems]]. |
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {What symbol error probability results with the (normalized) noise rms value $\sigma_d/s_0 = 0.25$ for equally probable symbols? |
|type="{}"} | |type="{}"} | ||
$p_0 = 1/3, \ \sigma_d = 0.25 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ ${ 3 3% } $\ \%$ | $p_0 = 1/3, \ \sigma_d = 0.25 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ ${ 3 3% } $\ \%$ | ||
− | { | + | {How does the symbol error probability change with $\sigma_d/s_0 = 0.5$? |
|type="{}"} | |type="{}"} | ||
$p_0 = 1/3, \ \sigma_d = 0.5 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ ${ 21.2 3% } $\ \%$ | $p_0 = 1/3, \ \sigma_d = 0.5 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ ${ 21.2 3% } $\ \%$ | ||
− | { | + | {What value results with $p_{–} = p_+ = 0.25$ and $p_0 = 0.5$? |
|type="{}"} | |type="{}"} | ||
$p_0 = 1/2, \ \sigma_d = 0.5 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ ${ 23.8 3% } $\ \%$ | $p_0 = 1/2, \ \sigma_d = 0.5 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ ${ 23.8 3% } $\ \%$ | ||
− | { | + | {Determine the optimal thresholds $E_+$ and $E_{–} = \, –E_+$ for $p_0 = 1/2$. |
|type="{}"} | |type="{}"} | ||
$p_0 = 1/2, \ \sigma_d = 0.5 \text{:} \hspace{0.4cm} E_{\rm +, \ opt} \ = \ ${ 0.673 3% } | $p_0 = 1/2, \ \sigma_d = 0.5 \text{:} \hspace{0.4cm} E_{\rm +, \ opt} \ = \ ${ 0.673 3% } | ||
− | { | + | {What is the probability of error for optimal thresholds? |
|type="{}"} | |type="{}"} | ||
− | ${\rm | + | ${\rm optimal \ thresholds} \text{:} \hspace{0.4cm} p_{\rm S} \ = \ ${ 21.7 3% } $\ \%$ |
− | { | + | {What are the optimal thresholds for $p_0 = 0.2$ and $ p_{–} = p_+ = 0.4$? |
|type="{}"} | |type="{}"} | ||
$p_0 = 0.2, \ \sigma_d = 0.5 \text{:} \hspace{0.4cm} E_{\rm +, \ opt} \ = \ ${ 0.327 3% } | $p_0 = 0.2, \ \sigma_d = 0.5 \text{:} \hspace{0.4cm} E_{\rm +, \ opt} \ = \ ${ 0.327 3% } | ||
− | { | + | {What is the symbol error probability now? Interpretation. |
|type="{}"} | |type="{}"} | ||
− | ${\rm | + | ${\rm optimal \ thresholds} \text{:} \hspace{0.4cm} p_{\rm S} \ = \ ${ 17.4 3% } $\ \%$ |
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' According to the given equation, with $M = 3$ and $\sigma_d/s_0 = 0.25$: |
:$$p_{\rm S} = | :$$p_{\rm S} = | ||
\frac{ 2 \cdot (M-1)}{M} \cdot {\rm Q} \left( {\frac{s_0}{(M-1) \cdot | \frac{ 2 \cdot (M-1)}{M} \cdot {\rm Q} \left( {\frac{s_0}{(M-1) \cdot | ||
Line 74: | Line 74: | ||
− | '''(2)''' | + | '''(2)''' When the noise rms value is doubled, the error probability also increases significantly: |
:$$p_{\rm S} = {4}/{ 3}\cdot {\rm Q}(1)= {4}/{ 3}\cdot 0.1587 \hspace{0.15cm}\underline {\approx 21.2 \,\%} | :$$p_{\rm S} = {4}/{ 3}\cdot {\rm Q}(1)= {4}/{ 3}\cdot 0.1587 \hspace{0.15cm}\underline {\approx 21.2 \,\%} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | '''(3)''' | + | '''(3)''' The two outer symbols are each distorted with probability $p = {\rm Q}(s_0/(2 \cdot \sigma_d)) = 0.1587$. |
− | * | + | *The distortion probability of the symbol $0$ is twice as large (it is limited by two thresholds). |
− | * | + | * Considering the individual symbol probabilities, we obtain: |
:$$p_{\rm S} = {1}/{ 4}\cdot p + {1}/{ 2}\cdot 2p +{1}/{ 4}\cdot p = 1.5 \cdot p = 1.5 \cdot 0.1587 | :$$p_{\rm S} = {1}/{ 4}\cdot p + {1}/{ 2}\cdot 2p +{1}/{ 4}\cdot p = 1.5 \cdot p = 1.5 \cdot 0.1587 | ||
\hspace{0.15cm}\underline {\approx | \hspace{0.15cm}\underline {\approx | ||
Line 88: | Line 88: | ||
− | '''(4)''' | + | '''(4)''' Since the symbol $0$ occurs more frequently and can also be biased in both directions, the thresholds should be shifted outward. |
− | * | + | *The optimal decision threshold $E_{\rm +, \ opt}$ is obtained from the intersection of the two Gaussian functions shown in the graph. It must hold: |
− | [[File:P_ID1328__Dig_A_2_5e.png|right|frame| | + | [[File:P_ID1328__Dig_A_2_5e.png|right|frame|Optimal thresholds for '''(4)''']] |
:$$\frac{ 1/2}{ \sqrt{2\pi} \cdot \sigma_d} \cdot {\rm exp} \left[ - \frac{ E_{\rm +}^2}{2 \cdot \sigma_d^2}\right] | :$$\frac{ 1/2}{ \sqrt{2\pi} \cdot \sigma_d} \cdot {\rm exp} \left[ - \frac{ E_{\rm +}^2}{2 \cdot \sigma_d^2}\right] | ||
Line 104: | Line 104: | ||
− | '''(5)''' | + | '''(5)''' Using the approximate result from '''(4)''', we obtain: |
:$$p_{\rm S} \ = \ | :$$p_{\rm S} \ = \ | ||
{ 1}/{4} \cdot {\rm Q} \left( {\frac{s_0/3}{ | { 1}/{4} \cdot {\rm Q} \left( {\frac{s_0/3}{ | ||
Line 116: | Line 116: | ||
− | [[File:P_ID1329__Dig_A_2_5g.png|right|frame| | + | [[File:P_ID1329__Dig_A_2_5g.png|right|frame|Optimal thresholds for '''(6)''']] |
− | '''(6)''' | + | '''(6)''' After a similar calculation as in point '''(4)''' we get |
*$E_+ = 1 \, –0.0673 \ \underline{= 0.327} \approx 1/3$. | *$E_+ = 1 \, –0.0673 \ \underline{= 0.327} \approx 1/3$. | ||
− | * | + | *$E_{–} = \, –E_+$ is still valid. |
− | '''(7)''' | + | '''(7)''' Similar to the sample solution for subtask '''(5)''', one now obtains: |
:$$p_{\rm S} \ = \ 0.4 \cdot {\rm Q} \left( 4/3 \right)+ 2 \cdot 0.2 \cdot{\rm Q} \left( 2/3 | :$$p_{\rm S} \ = \ 0.4 \cdot {\rm Q} \left( 4/3 \right)+ 2 \cdot 0.2 \cdot{\rm Q} \left( 2/3 | ||
\right)+0.4 \cdot {\rm Q} \left( 4/3 \right)$$ | \right)+0.4 \cdot {\rm Q} \left( 4/3 \right)$$ | ||
Line 131: | Line 131: | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | + | Discussion of the result: | |
− | * | + | *Accordingly, there is a smaller symbol error probability ($17.4 \ \%$ versus $21.2 \ \%$) than with equal probability amplitude coefficients. |
− | * | + | *However, redundancy-free coding is no longer present, even if the amplitude coefficients are statistically independent of each other. |
− | * | + | *While for equally probable ternary symbols the entropy is $H = {\rm log}_2(3) = 1.585 \ {\rm bit/ternary \ symbol}$ beträgt ⇒ equivalent bit rate (the information flow) $R_{\rm B} = H/T$, with probabilities $p_0 = 0.2$ and $p_{–} = p_+ = 0.4$: |
:$$H \ = \ 0.2 \cdot {\rm log_2} (5) + 2 \cdot 0.4 \cdot {\rm log_2} (2.5)= 0.2 \cdot 2.322 + 0.8 \cdot 1.322 \hspace{0.15cm}\underline {\approx 1.522\,\, {\rm | :$$H \ = \ 0.2 \cdot {\rm log_2} (5) + 2 \cdot 0.4 \cdot {\rm log_2} (2.5)= 0.2 \cdot 2.322 + 0.8 \cdot 1.322 \hspace{0.15cm}\underline {\approx 1.522\,\, {\rm | ||
− | bit/ | + | bit/ternary \ symbol}} |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * | + | *Thus, the equivalent bit rate is $4 \ \%$ smaller than the maximum possible for $M = 3$. |
{{ML-Fuß}} | {{ML-Fuß}} | ||
Revision as of 15:00, 19 April 2022
A ternary transmission system $(M = 3)$ with the possible amplitude values $-s_0$, $0$ and $+s_0$ is considered.
- During transmission, additive Gaussian noise with rms value $\sigma_d$ is added to the signal.
- The recovery of the three-level digital signal at the receiver is done with the help of two decision thresholds at $E_{–}$ and $E_{+}$.
- First, the occurrence probabilities of the three input symbols are assumed to be equally probable:
- $$p_{\rm -} = {\rm Pr}(-s_0) = {1}/{ 3}, \hspace{0.15cm} p_{\rm 0} = {\rm Pr}(0) = {1}/{ 3}, \hspace{0.15cm} p_{\rm +} = {\rm Pr}(+s_0) ={1}/{ 3}\hspace{0.05cm}.$$
- For the time being, the decision thresholds are centered at $E_{–} = \, –s_0/2$ and $E_{+} = +s_0/2$.
From subtask (3) on, the symbol probabilities are $p_{–} = p_+ = 1/4$ and $p_0 = 1/2$, as shown in the diagram. For this constellation, the symbol error probability $p_{\rm S}$ is to be minimized by varying the decision thresholds $E_{–}$ and $E_+$.
Notes:
- The exercise refers to the chapter Redundancy-Free Coding.
- For the symbol error probability $p_{\rm S}$ of a $M$–level message transmission system with equally probable input symbols and threshold values exactly in the middle between two adjacent amplitude levels holds:
- $$p_{\rm S} = \frac{ 2 \cdot (M-1)}{M} \cdot {\rm Q} \left( {\frac{s_0}{(M-1) \cdot \sigma_d}}\right) \hspace{0.05cm}.$$
- You can numerically determine the error probability values according to the ${\rm Q}$ or ${\rm erfc}$ function using the Complementary Gaussian Error Functions interaction module.
- To check the results, use the calculation module Symbol error probability of digital communications systems.
Questions
Solution
- $$p_{\rm S} = \frac{ 2 \cdot (M-1)}{M} \cdot {\rm Q} \left( {\frac{s_0}{(M-1) \cdot \sigma_d}}\right)= {4}/{ 3}\cdot {\rm Q}(2) ={4}/{ 3}\cdot 0.0228\hspace{0.15cm}\underline {\approx 3 \,\%} \hspace{0.05cm}.$$
(2) When the noise rms value is doubled, the error probability also increases significantly:
- $$p_{\rm S} = {4}/{ 3}\cdot {\rm Q}(1)= {4}/{ 3}\cdot 0.1587 \hspace{0.15cm}\underline {\approx 21.2 \,\%} \hspace{0.05cm}.$$
(3) The two outer symbols are each distorted with probability $p = {\rm Q}(s_0/(2 \cdot \sigma_d)) = 0.1587$.
- The distortion probability of the symbol $0$ is twice as large (it is limited by two thresholds).
- Considering the individual symbol probabilities, we obtain:
- $$p_{\rm S} = {1}/{ 4}\cdot p + {1}/{ 2}\cdot 2p +{1}/{ 4}\cdot p = 1.5 \cdot p = 1.5 \cdot 0.1587 \hspace{0.15cm}\underline {\approx 23.8 \,\%} \hspace{0.05cm}.$$
(4) Since the symbol $0$ occurs more frequently and can also be biased in both directions, the thresholds should be shifted outward.
- The optimal decision threshold $E_{\rm +, \ opt}$ is obtained from the intersection of the two Gaussian functions shown in the graph. It must hold:
- $$\frac{ 1/2}{ \sqrt{2\pi} \cdot \sigma_d} \cdot {\rm exp} \left[ - \frac{ E_{\rm +}^2}{2 \cdot \sigma_d^2}\right] = \frac{ 1/4}{ \sqrt{2\pi} \cdot \sigma_d} \cdot {\rm exp} \left[ - \frac{ (s_0 -E_{\rm +})^2}{2 \cdot \sigma_d^2}\right]$$
- $$\Rightarrow \hspace{0.3cm} {\rm exp} \left[ \frac{ (s_0 -E_{\rm +})^2 - E_{\rm +}^2}{2 \cdot \sigma_d^2}\right]= {1}/{ 2} \Rightarrow \hspace{0.3cm} {\rm exp} \left[ \frac{ 1 -2 \cdot E_{\rm +}/s_0}{2 \cdot \sigma_d^2/s_0^2}\right]= {1}/{ 2}$$
- $$\Rightarrow \hspace{0.3cm}\frac{ E_{\rm +}}{s_0}= \frac{1} { 2}+ \frac{\sigma_d^2} {s_0^2} \cdot {\rm ln}(2)\hspace{0.15cm}\underline {=0.673}\hspace{0.15cm}\approx {2}/ {3} \hspace{0.05cm}.$$
(5) Using the approximate result from (4), we obtain:
- $$p_{\rm S} \ = \ { 1}/{4} \cdot {\rm Q} \left( {\frac{s_0/3}{ \sigma_d}}\right)+ 2 \cdot { 1}/{2} \cdot {\rm Q} \left( {\frac{2s_0/3}{ \sigma_d}}\right) +{ 1}/{4} \cdot {\rm Q} \left( {\frac{s_0/3}{ \sigma_d}}\right)$$
- $$\Rightarrow \hspace{0.3cm}p_{\rm S} \ = \ = { 1}/{2} \cdot {\rm Q} \left( 2/3 \right)+ {\rm Q} \left( 4/3 \right)= { 1}/{2} \cdot 0.251 + 0.092 \hspace{0.15cm}\underline {\approx 21.7 \,\%} \hspace{0.05cm}.$$
(6) After a similar calculation as in point (4) we get
- $E_+ = 1 \, –0.0673 \ \underline{= 0.327} \approx 1/3$.
- $E_{–} = \, –E_+$ is still valid.
(7) Similar to the sample solution for subtask (5), one now obtains:
- $$p_{\rm S} \ = \ 0.4 \cdot {\rm Q} \left( 4/3 \right)+ 2 \cdot 0.2 \cdot{\rm Q} \left( 2/3 \right)+0.4 \cdot {\rm Q} \left( 4/3 \right)$$
- $$\Rightarrow \hspace{0.3cm}p_{\rm S} \ = \ 0.4 \cdot (0.092 + 0.251 + 0.092) \hspace{0.15cm}\underline {\approx 17.4 \,\%} \hspace{0.05cm}.$$
Discussion of the result:
- Accordingly, there is a smaller symbol error probability ($17.4 \ \%$ versus $21.2 \ \%$) than with equal probability amplitude coefficients.
- However, redundancy-free coding is no longer present, even if the amplitude coefficients are statistically independent of each other.
- While for equally probable ternary symbols the entropy is $H = {\rm log}_2(3) = 1.585 \ {\rm bit/ternary \ symbol}$ beträgt ⇒ equivalent bit rate (the information flow) $R_{\rm B} = H/T$, with probabilities $p_0 = 0.2$ and $p_{–} = p_+ = 0.4$:
- $$H \ = \ 0.2 \cdot {\rm log_2} (5) + 2 \cdot 0.4 \cdot {\rm log_2} (2.5)= 0.2 \cdot 2.322 + 0.8 \cdot 1.322 \hspace{0.15cm}\underline {\approx 1.522\,\, {\rm bit/ternary \ symbol}} \hspace{0.05cm}.$$
- Thus, the equivalent bit rate is $4 \ \%$ smaller than the maximum possible for $M = 3$.