Difference between revisions of "Aufgaben:Exercise 4.12Z: 4-QAM Systems again"

From LNTwww
m
 
(9 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1724__Mod_Z_4_11.png|right|frame|Phase diagrams for 4–QAM, ideal and with degradations]
+
[[File:P_ID1724__Mod_Z_4_11.png|right|frame|Phase diagrams for 4–QAM, ideal and with degradations]]
  
Graph  $\rm (A)$  shows the phase diagram of the 4-QAM after the matched filter, where an optimal realization form was chosen in the case of AWGN noise under the constraint of "peak limiting":
+
Graph  $\rm (A)$  shows the phase diagram of the 4-QAM after the matched filter,  where an optimal realization form was chosen in the case of AWGN noise under the constraint of  "peak limiting":
* rectangular fundamental transmision pulse of symbol duration  $T$,
+
* rectangular basic transmision pulse of symbol duration  $T$,
 
* rectangular impulse response of the matched filter of the same width  $T$.
 
* rectangular impulse response of the matched filter of the same width  $T$.
  
  
All phase diagrams presented here - both  $\rm (A)$  and   $\rm (B)$  and  $\rm (C)$  - refer to the detection time points only. Thus, the transitions between the individual discrete-time points are not plotted in this phase diagram.
+
All phase diagrams presented here –  $\rm (A)$  and   $\rm (B)$  and  $\rm (C)$  – refer to the detection time points only.  Thus,  the transitions between the individual discrete-time points are not plotted in this phase diagram.
  
*An AWGN channel with  $10 · \lg E_{\rm B}/N_0 = 9 \ \rm dB$  is present.
+
*An AWGN channel with   $10 · \lg E_{\rm B}/N_0 = 9 \ \rm dB$   is present.
*Accordingly, for the bit error probability of the first system considered  $\rm (A)$ :
+
*Accordingly,  for the bit error probability of the first system considered  $\rm (A)$ :
 
:$$p_{\rm B} = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right )\hspace{0.05cm}.$$
 
:$$p_{\rm B} = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right )\hspace{0.05cm}.$$
  
Phase diagrams  $\rm (B)$  and  $\rm (C)$   belong to two systems where the 4-QAM was not optimally realized. AWGN noise with  $10 · \lg E_{\rm B}/N_0 = 9 \ \rm dB$  is also assumed in each of these.
+
The phase diagrams  $\rm (B)$  and  $\rm (C)$   belong to two systems where the 4-QAM was not optimally realized.  AWGN noise with  $10 · \lg E_{\rm B}/N_0 = 9 \ \rm dB$  is also assumed in each of these.
  
  
  
  
 
+
Hints:  
 
+
*This exercise belongs to the chapter  [[Modulation_Methods/Quadrature_Amplitude_Modulation|"Quadrature Amplitude Modulation"]].
 
+
*Reference is also made to the page  [[Digital_Signal_Transmission/Linear_Digital_Modulation_-_Coherent_Demodulation#Phase_offset_between_transmitter_and_receiver|"Phase offset between transmitter and receiver"]] in the book  "Digital Signal Transmission".
 
+
*Causes and Effects of intersymbol interference are explained in the  [[Digital_Signal_Transmission/Causes_and_Effects_of_Intersymbol_Interference|section with the same name]]  of the book  "Digital Signal Transmission".
 
+
*The crosses in the graphs mark possible points in the phase diagrams if no AWGN noise were present.
''Hints:''
+
*The point clouds due to the AWGN noise all have the same diameter.  The red cloud appears slightly smaller than the others only because  "red"  is harder to see on a black background.
*This exercise belongs to the chapter  [[Modulation_Methods/Quadrature_Amplitude_Modulation|Quadrature Amplitude Modulation]].
+
*As a sufficiently good approximation for the complementary Gaussian error integral,  you can use:
*Particular reference is made to the page  [[Digital_Signal_Transmission/Linear_Digital_Modulation_-_Coherent_Demodulation#Phase_offset_between_transmitter_and_receiver|Phase offset between transmitter and receiver]] in the book "Digital Signal Transmission".
 
*Causes and Effects of impulse interference are explained in the  [[Digital_Signal_Transmission/Causes_and_Effects_of_Intersymbol_Interference|section with the same name]]  of the book "Digital Signal Transmission".
 
*Die Kreuze in den Grafiken markieren mögliche Punkte in den Phasendiagrammen, wenn kein AWGN–Rauschen vorhanden wäre.
 
*Die Punktwolken aufgrund des AWGN–Rauschens haben alle gleichen Durchmesser. Die rote Wolke erscheint nur deshalb etwas kleiner als die anderen, da "Rot" auf "Schwarz" schlechter zu erkennen ist.
 
 
*Als eine hinreichend gute Näherung für das komplementäre Gaußsche Fehlerintegral können Sie verwenden:
 
 
:$${\rm erfc}(x) \approx \frac{1}{\sqrt{\pi}\cdot x} \cdot {\rm e}^{-x^2}.$$
 
:$${\rm erfc}(x) \approx \frac{1}{\sqrt{\pi}\cdot x} \cdot {\rm e}^{-x^2}.$$
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie mit der angegebenen Näherung die Bitfehlerwahrscheinlichkeit von System &nbsp;$\rm (A)$.
+
{Using the given approximation,&nbsp; calculate the bit error probability of system &nbsp;$\rm (A)$.
 
|type="{}"}
 
|type="{}"}
$p_{\rm B} \ = \ $ { 3.5 3% } $\ \cdot 10^{-5}$  
+
System &nbsp;$\rm (A):\ \ p_{\rm B} \ = \ $ { 3.5 3% } $\ \cdot 10^{-5}$  
  
  
  
{Welche Eigenschaften weist das System &nbsp;$\rm (B)$&nbsp; auf?
+
{What are the properties of system &nbsp;$\rm (B)$&nbsp;?
 
|type="[]"}
 
|type="[]"}
+ Es besteht ein Phasenversatz zwischen Sender und Empfänger.
+
+ There is a phase offset between transmitter and receiver.
- Das Empfangsfilter führt zu Impulsinterferenzen.
+
- The receiver filter results in intersymbol interference.
- Es ergibt sich keine Degradation gegenüber System &nbsp;$\rm (A)$.
+
- There is no degradation compared to system &nbsp;$\rm (A)$.
  
{ Welche Eigenschaften weist das System &nbsp;$\rm (C)$&nbsp; auf?
+
{ What are the properties of system &nbsp;$\rm (C)$&nbsp;?
 
|type="[]"}
 
|type="[]"}
- Es besteht ein Phasenversatz zwischen Sender und Empfänger.
+
- There is a phase offset between transmitter and receiver.
+ Das Empfangsfilter führt zu Impulsinterferenzen.
+
+ The receiver filter results in intersymbol interference.
- Es ergibt sich keine Degradation gegenüber System &nbsp;$\rm (A)$.
+
- There is no degradation compared to system &nbsp;$\rm (A)$.
  
{ Welche Aussagen sind bezüglich den Fehlerwahrscheinlichkeiten richtig?
+
{ Which statements about the error probabilities are correct ?
 
|type="[]"}
 
|type="[]"}
- Alle drei Systeme weisen die gleiche Bitfehlerwahrscheinlichkeit.
+
- All three systems have the same bit error probability.
+ Die Fehlerwahrscheinlichkeit von System &nbsp;$\rm (A)$&nbsp; ist am kleinsten.
+
+ The error probability of system &nbsp;$\rm (A)$&nbsp; is the smallest.  
+ Das System &nbsp;$\rm (B)$&nbsp; besitzt eine größere Bitfehlerwahrscheinlichkeit als das System &nbsp;$\rm (C)$.
+
+ System &nbsp;$\rm (B)$&nbsp; has a larger bit error probability than system&nbsp; $\rm (C)$.
  
  
Line 69: Line 63:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  Aus der Angabe&nbsp; $10 · \lg E_{\rm B}/N_0 = 9 \ \rm dB$&nbsp; folgt &nbsp; ${E_{\rm B}}/{N_0} = 10^{0.9}\approx 7.95 \hspace{0.05cm}.$&nbsp;  
+
'''(1)'''&nbsp;  From &nbsp; $10 · \lg E_{\rm B}/N_0 = 9 \ \rm dB$ &nbsp; &rArr;  &nbsp; ${E_{\rm B}}/{N_0} = 10^{0.9}\approx 7.95 \hspace{0.05cm}$&nbsp; follows:$&nbsp;  
*Mit der angegebenen Näherung gilt weiter:
+
*With the given approximation,&nbsp; it further holds:
 
:$$p_{\rm B}  =  {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) \approx \frac{1}{2 \cdot\sqrt{\pi \cdot{E_{\rm B}}/{N_0}} } \cdot {\rm e}^{-{E_{\rm B}}/{N_0}}  =  {1}/{2 \cdot\sqrt{7.95 \cdot \pi }} \cdot {\rm e}^{-7.95}\approx \hspace{0.15cm}\underline {3.5 \cdot 10^{-5}\hspace{0.05cm}}.$$
 
:$$p_{\rm B}  =  {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) \approx \frac{1}{2 \cdot\sqrt{\pi \cdot{E_{\rm B}}/{N_0}} } \cdot {\rm e}^{-{E_{\rm B}}/{N_0}}  =  {1}/{2 \cdot\sqrt{7.95 \cdot \pi }} \cdot {\rm e}^{-7.95}\approx \hspace{0.15cm}\underline {3.5 \cdot 10^{-5}\hspace{0.05cm}}.$$
*Der exakte Wert&nbsp; $p_{\rm B}\hspace{0.15cm}\underline { = 3.3 · 10^{–5}}$&nbsp; ist nur geringfügig kleiner.
+
*The exact value&nbsp; $p_{\rm B}\hspace{0.15cm}\underline { = 3.3 · 10^{–5}}$&nbsp; is only slightly smaller.
 +
 
 +
 
  
 +
'''(2)'''&nbsp;  <u>Answer 1</u>&nbsp; is correct:
 +
*Due to a phase shift of &nbsp; $Δϕ_{\rm T} = 30^\circ$,&nbsp; the phase diagram was rotated,&nbsp; resulting in degradation.
 +
*The two components &nbsp; $\rm I$&nbsp; and&nbsp; $\rm Q$&nbsp; influence each other,&nbsp; but there is no intersymbol interference as in system &nbsp;$\rm (C)$.&nbsp;
 +
*A&nbsp; "Nyquist system"&nbsp; never leads to intersymbol interference.
  
  
'''(2)'''&nbsp;  Richtig ist der <u>Lösungsvorschlag 1</u>:
 
*Aufgrund eines Phasenversatzes um&nbsp; $Δϕ_{\rm T} = 30^\circ$&nbsp; wurde das Phasendiagramm gedreht, was zu einer Degradation führt.
 
*Die beiden Komponenten&nbsp; $\rm I$&nbsp; und&nbsp; $\rm Q$&nbsp; beeinflussen sich zwar gegenseitig, es gibt aber keine Impulsinterferenzen wie bei  System &nbsp;$\rm (C)$.
 
*Ein "Nyquistsystem" führt niemals zu Impulsinterferenzen.
 
  
  
 +
'''(3)'''&nbsp;  <u>Answer 2</u>&nbsp; is correct:
 +
*In particular,&nbsp; the nine crosses in each quadrant of the phase diagram &nbsp;$\rm (C)$,&nbsp; which mark the noise-free case,&nbsp; show the influence of intersymbol interference.
 +
*Instead of the optimal receiver filter for a rectangular basic transmission pulse&nbsp; $g_s(t)$ &nbsp; &rArr; &nbsp; rectangular impulse response &nbsp; $h_{\rm E}(t)$&nbsp;, a &nbsp; [[Signal_Representation/Special_Cases_of_Pulses#Gaussian_pulse|Gaussian low-pass filter]]&nbsp; with (normalized) cutoff frequency &nbsp; $f_{\rm G} · T = 0.6$&nbsp; was used here.
 +
*This causes intersymbol interference.&nbsp;  Even without noise,&nbsp; there are nine crosses in each quadrant indicating one leader and one follower per component.
  
'''(3)'''&nbsp;  Richtig ist der <u>Lösungsvorschlag 2</u>:
 
*Insbesondere an den jeweils neun Kreuzen in jedem Quadranten des  Phasendiagramms &nbsp;$\rm (C)$, die den rauschfreien Fall markieren, erkennt man den Einfluss von Impulsinterferenzen.
 
*Anstelle des optimalen Empfangsfilters für rechteckförmigem Sendegrundimpuls&nbsp; $g_s(t)$ &nbsp; &rArr; &nbsp;  rechteckförmige Impulsantwort&nbsp; $h_{\rm E}(t)$&nbsp; wurde hier ein&nbsp; [[Signal_Representation/Special_Cases_of_Impulse_Signals#Gau.C3.9Fimpuls|Gaußtiefpass]]&nbsp; mit der (normierten) Grenzfrequenz&nbsp; $f_{\rm G} · T = 0.6$&nbsp; verwendet.
 
*Dieser bewirkt Impulsinterferenzen.&nbsp; Auch ohne Rauschen gibt es in jedem Quadranten neun Kreuze, die auf je einen Vor&ndash; und Nachläufer pro Komponente hinweisen.
 
  
  
  
'''(4)'''&nbsp;  Richtig sind die <u>Lösungsvorschläge 2 und 3</u>:
+
'''(4)'''&nbsp;  <u>Answers 2 and 3</u>&nbsp; are correct:
*Die Systeme &nbsp;$\rm (B)$&nbsp; und &nbsp;$\rm (C)$&nbsp; sind nicht optimal.&nbsp; Daraus ist bereits ersichtlich, dass die Aussage 1 nicht zutrifft.
+
*Systems &nbsp;$\rm (B)$&nbsp; and &nbsp;$\rm (C)$&nbsp; are not optimal.&nbsp; This already shows that statement 1 is not correct.
* Dagegen ist  die Aussage 2 richtig.&nbsp; Jedes 4–QAM–System, das dem Matched–Filter–Prinzip folgt und zusätzlich die erste Nyquistbedingung erfüllt, besitzt die vorne angegebene Fehlerwahrscheinlichkeit
+
* In contrast,&nbsp; Answer 2 is right.&nbsp; Every 4-QAM system,&nbsp; which follows the matched filter principle and additionally fulfills the first Nyquist criterion,&nbsp; has the error probability given above:
 
:$$p_{\rm B} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ).$$
 
:$$p_{\rm B} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ).$$
*Die so genannte „Wurzel–Nyquist–Konfiguration”, die zum Beispiel in der Aufgabe 4.12 behandelt wurde, hat somit die genau gleiche Fehlerwahrscheinlichkeit wie das System &nbsp;$\rm (A)$&nbsp; und zu den Detektionszeitpunkten auch das gleiche Phasendiagramm.&nbsp; Die Übergänge zwischen den einzelnen Punkten sind jedoch unterschiedlich.
+
*Thus,&nbsp; the so-called&nbsp; "root-Nyquist configuration",&nbsp; which was treated for example in Exercise 4.12,&nbsp; has exactly the same error probability as system &nbsp;$\rm (A)$&nbsp; and also the same phase diagram at the detection times.&nbsp; The transitions between the individual points are nevertheless different.
*Auch die dritte Aussage ist zutreffend.&nbsp; Man erkennt bereits aus dem Phasendiagramm von System &nbsp;$\rm (B)$&nbsp; Fehlentscheidungen und zwar immer dann, wenn Punkte farblich nicht zu den Quadranten passen.  
+
*The third statement is also true.&nbsp; One can already recognize incorrect decisions from the phase diagram of system &nbsp;$\rm (B)$,&nbsp; and this will always be the case when the points do not match the quadrants in terms of color.
  
  
Die Fehlerwahrscheinlichkeiten von System &nbsp;$\rm (B)$&nbsp; und System &nbsp;$\rm (C)$&nbsp; werden im Buch „Digitalsignalübertragung” hergeleitet. Die Ergebnisse einer Systemsimulation bestätigen die obigen Aussagen:
+
The error probabilities of system &nbsp;$\rm (B)$&nbsp; and system &nbsp;$\rm (C)$&nbsp; are derived in the book "Digital Signal Transmission". The results of a system simulation confirm the above statements:  
* System &nbsp;$\rm (A)$: &nbsp; &nbsp; $p_{\rm B} ≈ 3.3 · 10^{–5}$ (siehe Teilaufgabe 1),
+
* System &nbsp;$\rm (A)$: &nbsp; &nbsp; $p_{\rm B} ≈ 3.3 · 10^{–5}$ (see Question 1),
 
* System &nbsp;$\rm (B)$: &nbsp; &nbsp; $p_{\rm B} ≈ 3.5 · 10^{–2}$,
 
* System &nbsp;$\rm (B)$: &nbsp; &nbsp; $p_{\rm B} ≈ 3.5 · 10^{–2}$,
 
* System &nbsp;$\rm (C)$: &nbsp; &nbsp; $p_{\rm B} ≈ 2.4 · 10^{–4}$.
 
* System &nbsp;$\rm (C)$: &nbsp; &nbsp; $p_{\rm B} ≈ 2.4 · 10^{–4}$.

Latest revision as of 15:53, 19 April 2022

Phase diagrams for 4–QAM, ideal and with degradations

Graph  $\rm (A)$  shows the phase diagram of the 4-QAM after the matched filter,  where an optimal realization form was chosen in the case of AWGN noise under the constraint of  "peak limiting":

  • rectangular basic transmision pulse of symbol duration  $T$,
  • rectangular impulse response of the matched filter of the same width  $T$.


All phase diagrams presented here –  $\rm (A)$  and  $\rm (B)$  and  $\rm (C)$  – refer to the detection time points only.  Thus,  the transitions between the individual discrete-time points are not plotted in this phase diagram.

  • An AWGN channel with   $10 · \lg E_{\rm B}/N_0 = 9 \ \rm dB$   is present.
  • Accordingly,  for the bit error probability of the first system considered  $\rm (A)$ :
$$p_{\rm B} = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right )\hspace{0.05cm}.$$

The phase diagrams  $\rm (B)$  and  $\rm (C)$  belong to two systems where the 4-QAM was not optimally realized.  AWGN noise with  $10 · \lg E_{\rm B}/N_0 = 9 \ \rm dB$  is also assumed in each of these.



Hints:

  • This exercise belongs to the chapter  "Quadrature Amplitude Modulation".
  • Reference is also made to the page  "Phase offset between transmitter and receiver" in the book  "Digital Signal Transmission".
  • Causes and Effects of intersymbol interference are explained in the  section with the same name  of the book  "Digital Signal Transmission".
  • The crosses in the graphs mark possible points in the phase diagrams if no AWGN noise were present.
  • The point clouds due to the AWGN noise all have the same diameter.  The red cloud appears slightly smaller than the others only because  "red"  is harder to see on a black background.
  • As a sufficiently good approximation for the complementary Gaussian error integral,  you can use:
$${\rm erfc}(x) \approx \frac{1}{\sqrt{\pi}\cdot x} \cdot {\rm e}^{-x^2}.$$


Questions

1

Using the given approximation,  calculate the bit error probability of system  $\rm (A)$.

System  $\rm (A):\ \ p_{\rm B} \ = \ $

$\ \cdot 10^{-5}$

2

What are the properties of system  $\rm (B)$ ?

There is a phase offset between transmitter and receiver.
The receiver filter results in intersymbol interference.
There is no degradation compared to system  $\rm (A)$.

3

What are the properties of system  $\rm (C)$ ?

There is a phase offset between transmitter and receiver.
The receiver filter results in intersymbol interference.
There is no degradation compared to system  $\rm (A)$.

4

Which statements about the error probabilities are correct ?

All three systems have the same bit error probability.
The error probability of system  $\rm (A)$  is the smallest.
System  $\rm (B)$  has a larger bit error probability than system  $\rm (C)$.


Solution

(1)  From   $10 · \lg E_{\rm B}/N_0 = 9 \ \rm dB$   ⇒   ${E_{\rm B}}/{N_0} = 10^{0.9}\approx 7.95 \hspace{0.05cm}$  follows:$ 

  • With the given approximation,  it further holds:
$$p_{\rm B} = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) \approx \frac{1}{2 \cdot\sqrt{\pi \cdot{E_{\rm B}}/{N_0}} } \cdot {\rm e}^{-{E_{\rm B}}/{N_0}} = {1}/{2 \cdot\sqrt{7.95 \cdot \pi }} \cdot {\rm e}^{-7.95}\approx \hspace{0.15cm}\underline {3.5 \cdot 10^{-5}\hspace{0.05cm}}.$$
  • The exact value  $p_{\rm B}\hspace{0.15cm}\underline { = 3.3 · 10^{–5}}$  is only slightly smaller.


(2)  Answer 1  is correct:

  • Due to a phase shift of   $Δϕ_{\rm T} = 30^\circ$,  the phase diagram was rotated,  resulting in degradation.
  • The two components   $\rm I$  and  $\rm Q$  influence each other,  but there is no intersymbol interference as in system  $\rm (C)$. 
  • A  "Nyquist system"  never leads to intersymbol interference.



(3)  Answer 2  is correct:

  • In particular,  the nine crosses in each quadrant of the phase diagram  $\rm (C)$,  which mark the noise-free case,  show the influence of intersymbol interference.
  • Instead of the optimal receiver filter for a rectangular basic transmission pulse  $g_s(t)$   ⇒   rectangular impulse response   $h_{\rm E}(t)$ , a   Gaussian low-pass filter  with (normalized) cutoff frequency   $f_{\rm G} · T = 0.6$  was used here.
  • This causes intersymbol interference.  Even without noise,  there are nine crosses in each quadrant indicating one leader and one follower per component.



(4)  Answers 2 and 3  are correct:

  • Systems  $\rm (B)$  and  $\rm (C)$  are not optimal.  This already shows that statement 1 is not correct.
  • In contrast,  Answer 2 is right.  Every 4-QAM system,  which follows the matched filter principle and additionally fulfills the first Nyquist criterion,  has the error probability given above:
$$p_{\rm B} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {1}/{2}\cdot {\rm erfc}\left ( \sqrt{{E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ).$$
  • Thus,  the so-called  "root-Nyquist configuration",  which was treated for example in Exercise 4.12,  has exactly the same error probability as system  $\rm (A)$  and also the same phase diagram at the detection times.  The transitions between the individual points are nevertheless different.
  • The third statement is also true.  One can already recognize incorrect decisions from the phase diagram of system  $\rm (B)$,  and this will always be the case when the points do not match the quadrants in terms of color.


The error probabilities of system  $\rm (B)$  and system  $\rm (C)$  are derived in the book "Digital Signal Transmission". The results of a system simulation confirm the above statements:

  • System  $\rm (A)$:     $p_{\rm B} ≈ 3.3 · 10^{–5}$ (see Question 1),
  • System  $\rm (B)$:     $p_{\rm B} ≈ 3.5 · 10^{–2}$,
  • System  $\rm (C)$:     $p_{\rm B} ≈ 2.4 · 10^{–4}$.