Difference between revisions of "Aufgaben:Exercise 1.2Z: Bit Error Measurement"

From LNTwww
 
(28 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Fehlerwahrscheinlichkeit bei Basisbandübertragung
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Error_Probability_for_Baseband_Transmission
 
}}
 
}}
  
  
[[File:P_ID1265__Dig_Z_1_2.png|right|]]
+
[[File:EN_Dig_Z_1_2.png|right|frame|Simulated bit error frequencies  $(h_{\rm B})$;     in last column  $(N \to \infty) $:     $h_{\rm B} \to p_{\rm B}$   ⇒   bit error probability.]]
Die Bitfehlerwahrscheinlichkeit $$p_{\rm B} = {1}/{2} \cdot{\rm erfc} \left( \sqrt{\frac{E_{\rm B}}{N_0}}\right)$$ eines Binärsystems wurde durch eine Messung der Bitfehlerquote (BER) $$h_{\rm B} = \frac {n_{\rm B}}{N}$$ simulativ ermittelt. Oftmals wird <i>h</i><sub>B</sub> auch Bitfehlerhäufigkeit genannt. <br><br>In obigen Gleichungen bedeuten
+
The bit error probability
*<i>E</i><sub>B</sub> : Energie pro Bit,
+
:$$p_{\rm B} = {1}/{2} \cdot{\rm erfc} \left( \sqrt{{E_{\rm B}}/{N_0}}\right)$$  
*<i>N</i><sub>0</sub> : AWGN&ndash;Rauschleistungsdichte,
+
of a binary system was simulatively determined by a measurement of the bit error rate&nbsp; $\rm (BER)$:
*<i>n</i><sub>B</sub> : Anzahl der aufgetretenen Bitfehler,
+
:$$h_{\rm B} = {n_{\rm B}}/{N}.$$
*<i>N</i> : Anzahl der simulierten Bit einer Versuchsreihe.
+
Often, &nbsp;$h_{\rm B}$&nbsp; is also called&nbsp; "bit error frequency".
  
Die Tabelle zeigt die Ergebnisse einiger Versuchsreihen mit <i>N</i> = 64000, <i>N</i> = 128000 und <i>N</i> = 1.6 Millionen. Die letzte mit <i>N</i> &#8594; &#8734; benannte Spalte gibt die Bitfehlerwahrscheinlichkeit <i>p</i><sub>B</sub> wieder.
 
  
Im Fragebogen zur Aufgabe wird auf folgende Eigenschaften Bezug genommen:
+
In above equations mean:
*Die Bitfehlerhäufigkeit <i>h</i><sub>B</sub> ist in erster Näherung eine gaußverteilte Zufallsgröße mit dem Mittelwert <i>m<sub>h</sub></i> = <i>p</i><sub>B</sub> und der Varianz <i>&sigma;<sub>h</sub></i><sup>2</sup> &asymp; <i>p</i><sub>B</sub>/<i>N</i>.
+
*$E_{\rm B}$: &nbsp; energy per bit,
*Die relative Abweichung der Bitfehlerhäufigkeit von der Wahrscheinlichkeit beträgt
+
*$N_0$: &nbsp; AWGN noise power density,
 +
*$n_{\rm B}$:  &nbsp; number of bit errors occurred,
 +
*$N$:  &nbsp; &nbsp; number of simulated bits of a test series.
  
$$\varepsilon_{\rm rel}= \frac {h_{\rm B}-p_{\rm B}}{p_{\rm B}}\hspace{0.05cm}.$$
 
  
*Als eine grobe Faustregel zur erforderlichen Genauigkeit gilt, dass die Anzahl <i>n</i><sub>B</sub> der gemessenen Bitfehler mindestens 100 sein sollte.
+
The table shows the results of some test series with &nbsp;$N = 6.4 \cdot 10^4 $, &nbsp;$N = 1. 28 \cdot 10^5$&nbsp; and &nbsp;$N = 1.6 \cdot 10^6$. The last column named &nbsp;$N \to \infty $&nbsp; gives the bit error probability &nbsp;$p_{\rm B}$.&nbsp;
<b>Hinweis:</b> Die Aufgabe bezieht sich auf den Lehrstoff von
 
  
 +
The following properties are referred to in the exercise questionnaire:
 +
*The bit error frequency &nbsp;$h_{\rm B}$&nbsp; is&nbsp; (to a first approximation)&nbsp; a Gaussian distributed random variable with mean &nbsp;$m_h = p_{\rm B}$&nbsp; and variance &nbsp;$\sigma_h^2  \approx p_{\rm B}/N$.
 +
*The relative deviation of the bit error frequency from the probability is
 +
:$$\varepsilon_{\rm rel}= \frac {h_{\rm B}-p_{\rm B}}{p_{\rm B}}\hspace{0.05cm}.$$
  
 +
*As a rough rule of thumb on the required accuracy,&nbsp; the number of measured bit errors should be &nbsp;$n_{\rm B} \ge 100$.&nbsp;
  
===Fragebogen===
+
 
 +
 
 +
 
 +
 
 +
 
 +
Note:
 +
*The exercise belongs to the chapter&nbsp;  [[Digital_Signal_Transmission/Error_Probability_for_Baseband_Transmission|"Error Probability for Baseband Transmission"]].
 +
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
- Falsch
+
- The accuracy of the BER measurement is independent of &nbsp;$N$.
+ Richtig
+
+ The larger &nbsp;$N$&nbsp; is,&nbsp; the more accurate the BER measurement is on average.
 +
- The larger &nbsp;$N$&nbsp; is,&nbsp; the more accurate each individual BER measurement is.
 +
 
 +
 
 +
{Give the standard deviation &nbsp;$\sigma_h$&nbsp; for different &nbsp;$N$.&nbsp; Let &nbsp;$10 \cdot \lg \ E_{\rm B}/N_0 = 0 \ \rm dB$.
 +
|type="{}"}
 +
$N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}  σ_h \ = \ $  { 1.1 3% }  $\ \cdot 10^{ -3 }\ $
 +
$N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm}  σ_h \ = \ $  { 0.22 3% }  $\ \cdot 10^{ -3 }\ $
 +
 
 +
 
 +
{What is the respective relative deviation for &nbsp;$10 \cdot \lg \ E_{\rm B}/N_0 = 0 \ \rm dB$?
 +
|type="{}"}
 +
$N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}  ε_{\rm rel} \ = \ $  { -0.927--0.873 }  $\  \% $
 +
$N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm}  ε_{\rm rel} \ = \ $  { -0.515--0.485 }  $\  \% $
  
  
{Input-Box Frage
+
{Give the standard deviation &nbsp;$\sigma_h$&nbsp; for different &nbsp;$N$.&nbsp; Let $10 \cdot \lg \ E_{\rm B}/N_0 = 9 \ \rm dB$.
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}  σ_h \ = \ $  { 2.3 3% }  $\ \cdot 10^{ -5 }\ $
 +
$N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm}  σ_h \ = \ $  { 0.46 3% }  $\ \cdot 10^{ -5 }\ $
 +
 
 +
 
 +
{What is the respective relative deviation for &nbsp;$10 \cdot \lg \ E_{\rm B}/N_0 = 9 \ \rm dB$?
 +
|type="{}"}
 +
$N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}  ε_{\rm rel} \ = \ $  { 86 3% }  $\  \% $
 +
$N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm}  ε_{\rm rel} \ = \ $  { -3.333--3.267 }  $\  \% $
 +
 
 +
 
 +
{Up to what (logarithmic) &nbsp;$E_{\rm B}/N_0$&nbsp; value is &nbsp;$N = 1.6 \cdot 10^6$&nbsp; sufficient due to the condition &nbsp;$n_{\rm B} \ge 100$?&nbsp;
 +
|type="{}"}
 +
$\text{Maximum} \ \big [10 \cdot \lg \ E_{\rm B}/N_0 \big]  \ = \ $ { 8 3% }  $\ \rm dB $
  
  
Line 41: Line 81:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;
+
'''(1)'''&nbsp; Only the&nbsp; <u>second solution</u>&nbsp; is correct:
'''(2)'''&nbsp;
+
*Of course,&nbsp; the accuracy of the BER measurement is influenced by the parameter&nbsp; $N$&nbsp; to a large extent.&nbsp; On statistical average,&nbsp; the BER measurement naturally becomes better when&nbsp; $N$&nbsp; is increased.
'''(3)'''&nbsp;
+
*However,&nbsp; there is no deterministic relationship between the number of simulated bits and the accuracy of the BER measurement,&nbsp; as shown,&nbsp; for example,&nbsp; by the results for&nbsp; $10 \cdot \lg \ E_{\rm B}/N_0 = 6 \ \rm dB$:
'''(4)'''&nbsp;
+
*For&nbsp; $N = 6.4 \cdot 10^4\  (h_{\rm B} = 0.258 \cdot 10^{-2})$,&nbsp; the deviation from the true value&nbsp; $(0.239 \cdot 10^{-2})$&nbsp; is smaller than for&nbsp; $N = 1.28 \cdot 10^5\  (h_{\rm B} = 0.272 \cdot 10^{-2})$.
'''(5)'''&nbsp;
+
 
'''(6)'''&nbsp;
+
 
 +
 
 +
'''(2)'''&nbsp; At&nbsp; $10 \cdot \lg \ E_{\rm B}/N_0 = 0 \ \rm dB$,&nbsp; i.e.&nbsp; $E_{\rm B} = N_0$,&nbsp; the following values are obtained:
 +
:$$N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\sigma_h = \sqrt{{p}/{N}}= \sqrt{\frac{0.0786}{64000}}\hspace{0.1cm}\underline {\approx 1.1
 +
  \cdot10^{-3}}\hspace{0.05cm},$$
 +
:$$N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm} \sigma_h = \sqrt{{p}/{N}}= \sqrt{\frac{0.0786}{1600000}}\hspace{0.1cm}\underline {\approx
 +
  0.22 \cdot10^{-3}}\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(3)'''&nbsp; For this,&nbsp; $10 \cdot \lg \ E_{\rm B}/N_0 = 0 \ \rm dB$&nbsp; yields the following values:
 +
:$$N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\varepsilon_{\rm rel}= \frac{h_{\rm B}-  p_{\rm B}}{h_{\rm B}}
 +
= \frac{0.0779-0.0786}{0.0786}\hspace{0.1cm}\underline {\approx -0.9\% }\hspace{0.05cm}$$
 +
:$$N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm} \varepsilon_{\rm rel}= \frac{h_{\rm B}-  p_{\rm B}}{h_{\rm B}}= \frac{0.0782-0.0786}{0.0786}\hspace{0.1cm}\underline {\approx -0.5\% } \hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(4)'''&nbsp; Due to the smaller error probability,&nbsp; the values are now smaller than in subtask&nbsp; '''(2)''':
 +
:$$N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\sigma_h = \sqrt{{p}/{N}}= \sqrt{\frac{0.336 \cdot 10^{-4}}{6.4 \cdot 10^{4}}}\hspace{0.1cm}\underline {\approx
 +
  2.3 \cdot 10^{-5}}\hspace{0.05cm},$$
 +
:$$ N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm}\sigma_h = \sqrt{{p}/{N}}= \sqrt{\frac{0.336 \cdot 10^{-4}}{1.6 \cdot 10^{6}}}\hspace{0.1cm}\underline {\approx 0.46 \cdot10^{-5}}\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(5)'''&nbsp; Despite the much smaller standard deviation&nbsp; $\sigma_h$,&nbsp; the smaller error probability results in larger relative deviations for&nbsp; $10 \cdot \lg \ E_{\rm B}/N_0 = 9 \ \rm dB$&nbsp; <br> &nbsp; &nbsp; &nbsp; &nbsp; than for&nbsp; $10 \cdot \lg \ E_{\rm B}/N_0 = 0 \ \rm dB$:
 +
:$$N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\varepsilon_{\rm rel}= \frac{h_{\rm B}-  p_{\rm B}}{h_{\rm B}}= \frac{0.625 \cdot 10^{-4} - 0.336 \cdot 10^{-4}}{0.336 \cdot 10^{-4}}\hspace{0.1cm}\underline { \approx 86\% } \hspace{0.05cm},$$
 +
:$$N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm}\varepsilon_{\rm rel}= \frac{h_{\rm B}-  p_{\rm B}}{h_{\rm B}}= \frac{0.325 \cdot 10^{-4} - 0.336 \cdot 10^{-4}}{0.336 \cdot 10^{-4}}\hspace{0.1cm}\underline {\approx -3.3\%}\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(6)'''&nbsp; The number of measured bit errors should be&nbsp; $n_{\rm B} \ge 100$.&nbsp; Therefore,&nbsp; approximately (rounding errors should be taken into account):
 +
:$$n_{\rm B} =  {p_{\rm B}}\cdot {N} > 100 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 +
p_{\rm B} > \frac{100}{1.6 \cdot 10^6} = 0.625 \cdot 10^{-4}\hspace{0.05cm}.$$
 +
*It further follows that in the simulation for&nbsp; $10 \cdot \lg \ E_{\rm B}/N_0\hspace{0.05cm}\underline{ = 8 \ \rm dB}$&nbsp; still a sufficient number of bit errors occurred&nbsp; $(n_{\rm B} =1.6 \cdot 10^{6}\cdot 0.197 \cdot 10^{-3}= 315)$,&nbsp; while for&nbsp; $10 \cdot \lg \ E_{\rm B}/N_0 = 9 \ \rm dB$&nbsp; on average only&nbsp; $n_{\rm B} =52$&nbsp; errors are to be expected.
 +
*For this dB value,&nbsp; about twice the number of bits would have to be simulated.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 54: Line 124:
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^1.2 BER bei Basisbandsystemen^]]
+
[[Category:Digital Signal Transmission: Exercises|^1.2 BER for Baseband Systems^]]

Latest revision as of 17:16, 29 April 2022


Simulated bit error frequencies  $(h_{\rm B})$;     in last column  $(N \to \infty) $:     $h_{\rm B} \to p_{\rm B}$   ⇒   bit error probability.

The bit error probability

$$p_{\rm B} = {1}/{2} \cdot{\rm erfc} \left( \sqrt{{E_{\rm B}}/{N_0}}\right)$$

of a binary system was simulatively determined by a measurement of the bit error rate  $\rm (BER)$:

$$h_{\rm B} = {n_{\rm B}}/{N}.$$

Often,  $h_{\rm B}$  is also called  "bit error frequency".


In above equations mean:

  • $E_{\rm B}$:   energy per bit,
  • $N_0$:   AWGN noise power density,
  • $n_{\rm B}$:   number of bit errors occurred,
  • $N$:     number of simulated bits of a test series.


The table shows the results of some test series with  $N = 6.4 \cdot 10^4 $,  $N = 1. 28 \cdot 10^5$  and  $N = 1.6 \cdot 10^6$. The last column named  $N \to \infty $  gives the bit error probability  $p_{\rm B}$. 

The following properties are referred to in the exercise questionnaire:

  • The bit error frequency  $h_{\rm B}$  is  (to a first approximation)  a Gaussian distributed random variable with mean  $m_h = p_{\rm B}$  and variance  $\sigma_h^2 \approx p_{\rm B}/N$.
  • The relative deviation of the bit error frequency from the probability is
$$\varepsilon_{\rm rel}= \frac {h_{\rm B}-p_{\rm B}}{p_{\rm B}}\hspace{0.05cm}.$$
  • As a rough rule of thumb on the required accuracy,  the number of measured bit errors should be  $n_{\rm B} \ge 100$. 




Note:



Questions

1

Which of the following statements are true?

The accuracy of the BER measurement is independent of  $N$.
The larger  $N$  is,  the more accurate the BER measurement is on average.
The larger  $N$  is,  the more accurate each individual BER measurement is.

2

Give the standard deviation  $\sigma_h$  for different  $N$.  Let  $10 \cdot \lg \ E_{\rm B}/N_0 = 0 \ \rm dB$.

$N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm} σ_h \ = \ $

$\ \cdot 10^{ -3 }\ $
$N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm} σ_h \ = \ $

$\ \cdot 10^{ -3 }\ $

3

What is the respective relative deviation for  $10 \cdot \lg \ E_{\rm B}/N_0 = 0 \ \rm dB$?

$N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm} ε_{\rm rel} \ = \ $

$\ \% $
$N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm} ε_{\rm rel} \ = \ $

$\ \% $

4

Give the standard deviation  $\sigma_h$  for different  $N$.  Let $10 \cdot \lg \ E_{\rm B}/N_0 = 9 \ \rm dB$.

$N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm} σ_h \ = \ $

$\ \cdot 10^{ -5 }\ $
$N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm} σ_h \ = \ $

$\ \cdot 10^{ -5 }\ $

5

What is the respective relative deviation for  $10 \cdot \lg \ E_{\rm B}/N_0 = 9 \ \rm dB$?

$N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm} ε_{\rm rel} \ = \ $

$\ \% $
$N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm} ε_{\rm rel} \ = \ $

$\ \% $

6

Up to what (logarithmic)  $E_{\rm B}/N_0$  value is  $N = 1.6 \cdot 10^6$  sufficient due to the condition  $n_{\rm B} \ge 100$? 

$\text{Maximum} \ \big [10 \cdot \lg \ E_{\rm B}/N_0 \big] \ = \ $

$\ \rm dB $


Solution

(1)  Only the  second solution  is correct:

  • Of course,  the accuracy of the BER measurement is influenced by the parameter  $N$  to a large extent.  On statistical average,  the BER measurement naturally becomes better when  $N$  is increased.
  • However,  there is no deterministic relationship between the number of simulated bits and the accuracy of the BER measurement,  as shown,  for example,  by the results for  $10 \cdot \lg \ E_{\rm B}/N_0 = 6 \ \rm dB$:
  • For  $N = 6.4 \cdot 10^4\ (h_{\rm B} = 0.258 \cdot 10^{-2})$,  the deviation from the true value  $(0.239 \cdot 10^{-2})$  is smaller than for  $N = 1.28 \cdot 10^5\ (h_{\rm B} = 0.272 \cdot 10^{-2})$.


(2)  At  $10 \cdot \lg \ E_{\rm B}/N_0 = 0 \ \rm dB$,  i.e.  $E_{\rm B} = N_0$,  the following values are obtained:

$$N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\sigma_h = \sqrt{{p}/{N}}= \sqrt{\frac{0.0786}{64000}}\hspace{0.1cm}\underline {\approx 1.1 \cdot10^{-3}}\hspace{0.05cm},$$
$$N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm} \sigma_h = \sqrt{{p}/{N}}= \sqrt{\frac{0.0786}{1600000}}\hspace{0.1cm}\underline {\approx 0.22 \cdot10^{-3}}\hspace{0.05cm}.$$


(3)  For this,  $10 \cdot \lg \ E_{\rm B}/N_0 = 0 \ \rm dB$  yields the following values:

$$N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\varepsilon_{\rm rel}= \frac{h_{\rm B}- p_{\rm B}}{h_{\rm B}} = \frac{0.0779-0.0786}{0.0786}\hspace{0.1cm}\underline {\approx -0.9\% }\hspace{0.05cm}$$
$$N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm} \varepsilon_{\rm rel}= \frac{h_{\rm B}- p_{\rm B}}{h_{\rm B}}= \frac{0.0782-0.0786}{0.0786}\hspace{0.1cm}\underline {\approx -0.5\% } \hspace{0.05cm}.$$


(4)  Due to the smaller error probability,  the values are now smaller than in subtask  (2):

$$N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\sigma_h = \sqrt{{p}/{N}}= \sqrt{\frac{0.336 \cdot 10^{-4}}{6.4 \cdot 10^{4}}}\hspace{0.1cm}\underline {\approx 2.3 \cdot 10^{-5}}\hspace{0.05cm},$$
$$ N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm}\sigma_h = \sqrt{{p}/{N}}= \sqrt{\frac{0.336 \cdot 10^{-4}}{1.6 \cdot 10^{6}}}\hspace{0.1cm}\underline {\approx 0.46 \cdot10^{-5}}\hspace{0.05cm}.$$


(5)  Despite the much smaller standard deviation  $\sigma_h$,  the smaller error probability results in larger relative deviations for  $10 \cdot \lg \ E_{\rm B}/N_0 = 9 \ \rm dB$ 
        than for  $10 \cdot \lg \ E_{\rm B}/N_0 = 0 \ \rm dB$:

$$N = 6.4 \cdot 10^4\text{:}\hspace{0.4cm}\varepsilon_{\rm rel}= \frac{h_{\rm B}- p_{\rm B}}{h_{\rm B}}= \frac{0.625 \cdot 10^{-4} - 0.336 \cdot 10^{-4}}{0.336 \cdot 10^{-4}}\hspace{0.1cm}\underline { \approx 86\% } \hspace{0.05cm},$$
$$N = 1.6 \cdot 10^6\text{:}\hspace{0.4cm}\varepsilon_{\rm rel}= \frac{h_{\rm B}- p_{\rm B}}{h_{\rm B}}= \frac{0.325 \cdot 10^{-4} - 0.336 \cdot 10^{-4}}{0.336 \cdot 10^{-4}}\hspace{0.1cm}\underline {\approx -3.3\%}\hspace{0.05cm}.$$


(6)  The number of measured bit errors should be  $n_{\rm B} \ge 100$.  Therefore,  approximately (rounding errors should be taken into account):

$$n_{\rm B} = {p_{\rm B}}\cdot {N} > 100 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm B} > \frac{100}{1.6 \cdot 10^6} = 0.625 \cdot 10^{-4}\hspace{0.05cm}.$$
  • It further follows that in the simulation for  $10 \cdot \lg \ E_{\rm B}/N_0\hspace{0.05cm}\underline{ = 8 \ \rm dB}$  still a sufficient number of bit errors occurred  $(n_{\rm B} =1.6 \cdot 10^{6}\cdot 0.197 \cdot 10^{-3}= 315)$,  while for  $10 \cdot \lg \ E_{\rm B}/N_0 = 9 \ \rm dB$  on average only  $n_{\rm B} =52$  errors are to be expected.
  • For this dB value,  about twice the number of bits would have to be simulated.