Difference between revisions of "Aufgaben:Exercise 1.4Z: Complex Nyquist Spectrum"

From LNTwww
 
(19 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Eigenschaften von Nyquistsystemen
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Properties_of_Nyquist_Systems
 
}}
 
}}
  
  
[[File:P_ID1279__Dig_Z_1_4.png|right|frame|Komplexes Nyquistspektrum]]
+
[[File:P_ID1279__Dig_Z_1_4.png|right|frame|Complex Nyquist spectrum]]
Betrachtet wird ein Impuls $g(t)$ mit dem Spektrum gemäß der Skizze. Man erkennt aus dieser Darstellung:
+
Consider a pulse  $g(t)$  with spectrum  $G(f)$  according to the sketch.  One recognizes from this representation:
*Der Realteil von $G(f)$ verläuft trapezförmig mit den beiden Eckfrequenzen $f_{1} = 3 \ \rm kHz$ und $f_{2} = 7 \ \rm kHz$.
+
*The real part of &nbsp;$G(f)$&nbsp; is trapezoidal with the corner frequencies &nbsp;$f_{1} = 3 \, \rm kHz$&nbsp; and &nbsp;$f_{2} = 7 \, \rm kHz$.&nbsp; In the range &nbsp;$|f| < f_{1}$:
Im Bereich $|f| < f_{1}$ gilt $Re[G(f)]$ = $A = 10^{-4} \ \rm V/Hz$.
+
:$${\rm Re}\big[G(f)\big] = A = 10^{-4} \, \rm V/Hz.$$
*Der Imaginärteil von $G(f)$ wird für die Teilaufgaben (1) bis (5) stets zu $0$ angenommen. In diesem Fall ist $g(t)$ sicher ein Nyquistimpuls.
+
*The imaginary part of &nbsp;$G(f)$&nbsp; is always assumed to be &nbsp;${\rm Im}\big[G(f)\big] =0$ &nbsp; for subtasks&nbsp; '''(1)'''&nbsp; to&nbsp; '''(5)'''.&nbsp;  In this case &nbsp;$g(t)$&nbsp; is certainly a Nyquist pulse.
*Ab der Teilaufgabe (6) hat der Imaginärteil $Im[G(f)]$ im Bereich $f_{1} \leq | f | \leq f_{2}$ einen Dreiecksverlauf mit den Werten $\pm B$ bei den Dreieckspitzen.
+
*From subtask&nbsp; '''(6)''',&nbsp; the imaginary part &nbsp;${\rm Im}[G(f)]$&nbsp; in the range &nbsp;$f_{1} \leq | f | \leq f_{2}$&nbsp; has a triangular shape with the values &nbsp;$\pm B$&nbsp; at the triangle peaks.
Zu überprüfen ist, ob der Impuls $g(t)$ auch mit komplexem Spektrum der ersten Nyquistbedingung genügt:
+
 
 +
 
 +
It is necessary to check whether the pulse &nbsp;$g(t)$&nbsp; satisfies the first Nyquist condition even with complex spectrum:
 
:$$g(\nu
 
:$$g(\nu
 
T)  =  \left\{ \begin{array}{c} g_0  \\
 
T)  =  \left\{ \begin{array}{c} g_0  \\
 
  0 \\  \end{array} \right.\quad
 
  0 \\  \end{array} \right.\quad
\begin{array}{*{1}c} {\rm{f\ddot{u}r}}
+
\begin{array}{*{1}c} {\rm{for}}
\\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}
+
\\  {\rm{for}}  \\ \end{array}\begin{array}{*{20}c}
 
\nu = 0 \hspace{0.05cm}, \\
 
\nu = 0 \hspace{0.05cm}, \\
 
\nu \ne 0  \hspace{0.1cm}.  \\
 
\nu \ne 0  \hspace{0.1cm}.  \\
 
\end{array}$$
 
\end{array}$$
Im Verlauf dieser Aufgabe wird auf folgende Beschreibungsgrößen Bezug genommen:
+
 
*Die Nyquistfrequenz gibt den Symmetriepunkt des Flankenabfalls an:
+
In the course of this exercise,&nbsp;  reference is made to the following descriptive quantities:
 +
*The&nbsp;  '''Nyquist frequency'''&nbsp;  gives the symmetry point of the rolloff:
 
:$$f_{\rm Nyq}= \frac{1}{2T}= \frac{f_1 +f_2 }
 
:$$f_{\rm Nyq}= \frac{1}{2T}= \frac{f_1 +f_2 }
 
{2 }\hspace{0.05cm}.$$
 
{2 }\hspace{0.05cm}.$$
*Der Rolloff–Faktor ist ein Maß für die Flankensteilheit:
+
*The&nbsp;  '''rolloff factor'''&nbsp;  is a measure of the transition steepness:
 
:$$r = \frac{f_2 -f_1 }
 
:$$r = \frac{f_2 -f_1 }
 
{f_2 +f_1 } \hspace{0.05cm}.$$
 
{f_2 +f_1 } \hspace{0.05cm}.$$
  
  
''Hinweis:''
 
  
Die Aufgabe bezieht sich auf das [[Digitalsignalübertragung/Eigenschaften_von_Nyquistsystemen|Eigenschaften von Nyquistsystemen]] Als bekannt vorausgesetzt werden kann die Fourierrücktransformierte $g(t)$ eines trapezförmigen Nyquistspektrums mit Rolloff&ndash;Faktor $r$:
+
Notes:
 +
*The exercise belongs to the chapter&nbsp;  [[Digital_Signal_Transmission/Properties_of_Nyquist_Systems|"Properties of Nyquist Systems"]].
 +
 +
*The inverse Fourier transform &nbsp;$g(t)$&nbsp; of a trapezoidal Nyquist spectrum with rolloff factor &nbsp;$r$&nbsp;  can be assumed to be known:
 +
:$$g ( t )= g_0 \cdot {\rm sinc} \left ( { t}/{T}\right)\cdot {\rm sinc} \left ( { r \cdot
 +
t}/{T}\right),\hspace{0.3cm} {\rm sinc}(x)= \sin(\pi \cdot x)/(\pi \cdot x).$$
  
Ein dreieckförmiges Tiefpass&ndash;Spektrum $G(f)$, das auf $| f | < f_{0}$ begrenzt ist und für das $G(f = 0) = B$ gilt, führt nach der Fourierrücktransformation zu folgender Zeitfunktion:
+
*A triangular low&ndash;pass spectrum &nbsp;$G(f)$ limited to &nbsp;$| f | < f_{0}$&nbsp; and where &nbsp;$G(f = 0) = B$,&nbsp; after inverse Fourier transform,&nbsp;  leads to the time function
:$$g ( t )= B \cdot f_0 \cdot {\rm si}^2 \left ( {\pi f_0
+
:$$g ( t )= B \cdot f_0 \cdot {\rm sinc}^2 \left ( { f_0 \cdot t}\right)\hspace{0.05cm},\hspace{0.3cm} {\rm sinc}(x)= \sin(\pi \cdot x)/(\pi \cdot x).$$
t}\right)\hspace{0.05cm}.$$
 
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
 
 +
{For the first questions,&nbsp; let &nbsp;$B = 0$.&nbsp; What is the Nyquist frequency?
 +
|type="{}"}
 +
$f_{\rm Nyq} \ =  \ $ { 5 3% } $\ \rm kHz$
 +
 
 +
{Which rolloff factor &nbsp;$r$&nbsp; is present here?
 +
|type="{}"}
 +
$r \ =  \ $ { 0.4 3% }
 +
 
 +
{Calculate the maximum value &nbsp;$g_{0}$&nbsp; of the Nyquist pulse &nbsp;$g(t)$.
 +
|type="{}"}
 +
$g_{0} \ =  \ ${ 1 3% } $\ \rm V$
 +
 
 +
{Further let &nbsp;$B=0$.&nbsp; Calculate &nbsp;$g(t)$&nbsp; for the time points &nbsp;$t = 100\, &micro; \rm s$&nbsp; and &nbsp;$t = 200\, &micro; \rm s$.
 +
|type="{}"}
 +
$g(t = 100\, &micro; \rm s) \ =  \ $ { 0. } $\ \rm V$
 +
$g(t = 200\, &micro; \rm s) \ =  \ $ { 0. } $\ \rm V$
 +
 
 +
{Calculate the pulse value at time &nbsp;$t = 250\ &micro; \rm s$.
 +
|type="{}"}
 +
$g(t = 250\, &micro; \rm s) \ =  \ $ { 0. } $\ \rm V$
 +
 
 +
{Which statements are true for &nbsp;$B \neq 0$?&nbsp; $G(f)$&nbsp; is then complex-valued.
 
|type="[]"}
 
|type="[]"}
- Falsch
+
+The Nyquist condition is satisfied if the triangle function is between &nbsp;$3 \, \rm kHz$&nbsp; and &nbsp;$7 \, \rm kHz$&nbsp; as in the diagram.
+ Richtig
+
- The Nyquist condition is fulfilled if the triangle function lies symmetrically between &nbsp;$3 \, \rm kHz$&nbsp; and &nbsp;$5 \, \rm kHz$.&nbsp;
 +
+ The Nyquist condition is fulfilled if the triangle function lies symmetrically between &nbsp;$4.5 \, \rm kHz$&nbsp; and &nbsp;$5.5 \, \rm kHz$.&nbsp;
  
  
{Input-Box Frage
+
{Calculate &nbsp;$g(t)$&nbsp; for &nbsp;$t = 250\, &micro; \rm s$&nbsp; and &nbsp;$B = A = 10^{–4} \, \rm V/Hz$ &nbsp; &rArr; &nbsp; complex spectral function.
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$g(t = 250\ &micro; \rm s) \ =  \ $ { 0.162 3% } $\ \rm V$
  
  
Line 54: Line 83:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;
+
'''(1)'''&nbsp; The Nyquist frequency specifies the symmetry point of the rolloff.&nbsp; The following holds true:
'''(2)'''&nbsp;
+
:$$f_{\rm Nyq}=  \frac{f_1 +f_2 }
'''(3)'''&nbsp;
+
{2 }= \frac{3\, {\rm kHz} + 7\, {\rm kHz}} {2 } \hspace{0.1cm}\underline { = 5\, {\rm kHz}}
'''(4)'''&nbsp;
+
\hspace{0.05cm}.$$
'''(5)'''&nbsp;
+
 
'''(6)'''&nbsp;
+
'''(2)'''&nbsp; The rolloff factor is also determined by the two corner frequencies&nbsp; $f_{1}$&nbsp; and&nbsp; $f_{2}$:
 +
:$$r = \frac{f_2 -f_1 }
 +
{f_2 +f_1 } = \frac{7\, {\rm kHz} - 3\, {\rm kHz}} {7\, {\rm kHz}
 +
+ 3\, {\rm kHz} }\hspace{0.1cm}\underline { = 0.4 }\hspace{0.05cm}.$$
 +
 
 +
'''(3)'''&nbsp; For a pulse with real low–pass spectrum,&nbsp; the maximum is always at&nbsp; $t = 0$&nbsp; and it holds:
 +
:$$g_0 = g(t=0) =  \int_{-\infty}^{+\infty}G(f) \,{\rm d} f
 +
= A \cdot 2  f_{\rm Nyq} = 10^{-4 }\,\frac{\rm V}{\rm Hz}\cdot 2 \cdot 5 \cdot10^{3} \,{\rm
 +
Hz}\hspace{0.1cm}\underline { = 1\,{\rm V}}\hspace{0.05cm}.$$
 +
 
 +
'''(4)'''&nbsp; For the Nyquist pulse,&nbsp; the equidistant zero crossings occur at the interval&nbsp; $T = 1/(2f_{\rm Nyq}) = 100 \, \rm &micro; s$.&nbsp; From this one obtains directly:
 +
:$$g(t= 100\,{\rm &micro; s}) = \ \hspace{0.1cm}\underline { g(T) = 0,}$$
 +
:$$g(t= 200\,{\rm &micro; s}) = \  \hspace{0.1cm}\underline {g(2T) = 0}
 +
\hspace{0.05cm}.$$
 +
This result also follows from the given equation with&nbsp; $r = 0.4$:
 +
:$$g ( t )= g_0 \cdot {\rm sinc} \left ( {
 +
t}/{T}\right)\cdot {\rm sinc} \left ( {0.4 \cdot
 +
t}/{T}\right) \hspace{0.05cm}.$$
 +
Responsible for satisfying the first Nyquist condition is the first term.
 +
 
 +
 
 +
'''(5)'''&nbsp; According to the equation given in&nbsp; '''(4)''':
 +
:$$g(t= 250\,{\rm &micro; s})= g_0 \cdot {\rm sinc}  ( {1 })\cdot {\rm sinc}  ( 2.5 )\hspace{0.1cm}\underline { = 0} \hspace{0.05cm}.$$
 +
This zero is due to the second term and does not lie in the Nyquist time grid&nbsp; $\nu T$
 +
 
 +
 
 +
'''(6)'''&nbsp; For the following derivation,&nbsp; let&nbsp; $g(t)= g_{\rm R}(t) +  g_{\rm I}(t) \hspace{0.05cm},$&nbsp; where&nbsp; $g_{\rm R}(t)$&nbsp; is due to the real part and&nbsp; $g_{\rm I}(t)$&nbsp; is due to the imaginary part of&nbsp; $G(f)$.
 +
*The first part is calculated exactly as in point&nbsp; '''(4)''':
 +
:$$g_{\rm R} ( t )= g_0 \cdot {\rm sinc} \left ( {
 +
t}/{T}\right)\cdot {\rm sinc} \left ( { 0.4 \cdot
 +
t}/{T}\right) \hspace{0.05cm}.$$
 +
*To satisfy the first Nyquist criterion, the following must hold for the imaginary part with $1/T = 10 \, \rm kHz$:
 +
:$$\sum_{k = -\infty}^{+\infty} {\rm Im}\left[G \left ( f -
 +
{k}/{T} \right)\right]= 0 \hspace{0.05cm}.$$
 +
*With the given corner frequencies&nbsp; $f_{1} = 3 \, \rm kHz$&nbsp; and&nbsp; $f_{2} = 7 \ \rm kHz$,&nbsp; the two triangles are around&nbsp; $\pm 5\, \rm kHz$,&nbsp; so the above equation is satisfied.
 +
 
 +
*The same is true for&nbsp; $f_{1} = 4.5\, \rm kHz$&nbsp; and&nbsp; $f_{2} = 5.5 \, \rm kHz$.
 +
 +
*In contrast,&nbsp; the triangle peaks with&nbsp; $f_{1} = 3\, \rm kHz$&nbsp; and&nbsp; $f_{2} = 5 \, \rm kHz$&nbsp; are at&nbsp; $\pm 4 \ \rm kHz$.
 +
 +
*In this case the triangle functions do not cancel due to the periodic continuation and the Nyquist condition is not fulfilled.
 +
 
 +
 
 +
Therefore the correct solutions are&nbsp; <u>1 and 3</u>.
 +
 
 +
 
 +
'''(7)'''&nbsp; With the result &nbsp;$g_{\rm R}(2.5T) = 0$&nbsp; from&nbsp; '''(3)''',&nbsp; it follows &nbsp;$g(2.5T) = g_{\rm I}(2.5T)$,&nbsp; where &nbsp;$g_{\rm I}(t)$&nbsp; is the inverse Fourier transform of&nbsp;  ${\rm j}\cdot \ G_{\rm I}(f)$.&nbsp; It holds:
 +
:$${\rm j} \cdot G_{\rm I}(f)  = {\rm j} \cdot\left[ \delta(f + f_{\rm Nyq}) - \delta(f - f_{\rm Nyq})\right] \star D(f) \hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} g_{\rm I}(t)  = 2 \cdot {\rm sin}  ( 2
 +
\pi\cdot f_{\rm Nyq} \cdot t )\cdot  d(t)\hspace{0.05cm}.$$
 +
*The sine function enforces the required zero crossings at multiples of&nbsp; $T = 100 \, \rm &micro; s$.
 +
 +
*$D(f)$&nbsp; is a triangular function around&nbsp; $f = 0$&nbsp; with&nbsp; $D(f = 0) = B$&nbsp; and one-sided width&nbsp; $f_{0}= f_{2} - f_{\rm Nyq} = f_{\rm Nyq} - f_{1} = 2 \, \rm kHz$.
 +
 +
*For the associated time function we can thus write according to the specification:
 +
:$$g_{\rm I}(t )  = 2 \cdot B \cdot f_0 \cdot{\rm sin}  ( 2
 +
\pi\cdot f_{\rm Nyq} \cdot t)\cdot {\rm sinc}^2( f_{\rm 0} \cdot t) \hspace{0.05cm}.$$
 +
 
 +
*In particular,&nbsp; for time $t = 250 \, \rm &micro; s$&nbsp;  (green square):
 +
:$$g(t = 2.5 T)  = g_{\rm I}(t = 2.5 T)  = \ 2 \cdot B \cdot f_0 \cdot{\rm sin}  ( 2.5
 +
\pi )\cdot {\rm sinc}^2(0.5)= \  \frac{8}{\pi^2} \cdot B \cdot f_0 = \  \frac{8}{\pi^2} \cdot 10^{-4 }\,\frac{\rm V}{\rm Hz}\cdot 2 \cdot 10^{3} \,{\rm
 +
Hz}\hspace{0.1cm}\underline {= 0.162\,{\rm
 +
V}} \hspace{0.05cm}.$$
 +
 
 +
[[File:P_ID1283__Dig_Z_1_4g.png|right|frame|Asymmetric Nyquist pulse &nbsp; $g(t)= g_{\rm R}(t) +  g_{\rm I}(t) $]]
 +
The diagram shows the change of the time function due to the imaginary part&nbsp; (green time course):
 +
*The result is now an asymmetric function curve&nbsp; $g(t)$,&nbsp; shown in blue.
 +
*However, the zero crossings of&nbsp; $g_{\rm R}(t)$&nbsp; at the distance&nbsp; $T$&nbsp; remain.
 +
 
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 67: Line 164:
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^1.3 Eigenschaften von Nyquistsystemen^]]
+
[[Category:Digital Signal Transmission: Exercises|^1.3 Nyquist System Properties^]]

Latest revision as of 17:31, 1 May 2022


Complex Nyquist spectrum

Consider a pulse  $g(t)$  with spectrum  $G(f)$  according to the sketch.  One recognizes from this representation:

  • The real part of  $G(f)$  is trapezoidal with the corner frequencies  $f_{1} = 3 \, \rm kHz$  and  $f_{2} = 7 \, \rm kHz$.  In the range  $|f| < f_{1}$:
$${\rm Re}\big[G(f)\big] = A = 10^{-4} \, \rm V/Hz.$$
  • The imaginary part of  $G(f)$  is always assumed to be  ${\rm Im}\big[G(f)\big] =0$   for subtasks  (1)  to  (5).  In this case  $g(t)$  is certainly a Nyquist pulse.
  • From subtask  (6),  the imaginary part  ${\rm Im}[G(f)]$  in the range  $f_{1} \leq | f | \leq f_{2}$  has a triangular shape with the values  $\pm B$  at the triangle peaks.


It is necessary to check whether the pulse  $g(t)$  satisfies the first Nyquist condition even with complex spectrum:

$$g(\nu T) = \left\{ \begin{array}{c} g_0 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} \nu = 0 \hspace{0.05cm}, \\ \nu \ne 0 \hspace{0.1cm}. \\ \end{array}$$

In the course of this exercise,  reference is made to the following descriptive quantities:

  • The  Nyquist frequency  gives the symmetry point of the rolloff:
$$f_{\rm Nyq}= \frac{1}{2T}= \frac{f_1 +f_2 } {2 }\hspace{0.05cm}.$$
  • The  rolloff factor  is a measure of the transition steepness:
$$r = \frac{f_2 -f_1 } {f_2 +f_1 } \hspace{0.05cm}.$$


Notes:

  • The inverse Fourier transform  $g(t)$  of a trapezoidal Nyquist spectrum with rolloff factor  $r$  can be assumed to be known:
$$g ( t )= g_0 \cdot {\rm sinc} \left ( { t}/{T}\right)\cdot {\rm sinc} \left ( { r \cdot t}/{T}\right),\hspace{0.3cm} {\rm sinc}(x)= \sin(\pi \cdot x)/(\pi \cdot x).$$
  • A triangular low–pass spectrum  $G(f)$ limited to  $| f | < f_{0}$  and where  $G(f = 0) = B$,  after inverse Fourier transform,  leads to the time function
$$g ( t )= B \cdot f_0 \cdot {\rm sinc}^2 \left ( { f_0 \cdot t}\right)\hspace{0.05cm},\hspace{0.3cm} {\rm sinc}(x)= \sin(\pi \cdot x)/(\pi \cdot x).$$


Questions

1

For the first questions,  let  $B = 0$.  What is the Nyquist frequency?

$f_{\rm Nyq} \ = \ $

$\ \rm kHz$

2

Which rolloff factor  $r$  is present here?

$r \ = \ $

3

Calculate the maximum value  $g_{0}$  of the Nyquist pulse  $g(t)$.

$g_{0} \ = \ $

$\ \rm V$

4

Further let  $B=0$.  Calculate  $g(t)$  for the time points  $t = 100\, µ \rm s$  and  $t = 200\, µ \rm s$.

$g(t = 100\, µ \rm s) \ = \ $

$\ \rm V$
$g(t = 200\, µ \rm s) \ = \ $

$\ \rm V$

5

Calculate the pulse value at time  $t = 250\ µ \rm s$.

$g(t = 250\, µ \rm s) \ = \ $

$\ \rm V$

6

Which statements are true for  $B \neq 0$?  $G(f)$  is then complex-valued.

The Nyquist condition is satisfied if the triangle function is between  $3 \, \rm kHz$  and  $7 \, \rm kHz$  as in the diagram.
The Nyquist condition is fulfilled if the triangle function lies symmetrically between  $3 \, \rm kHz$  and  $5 \, \rm kHz$. 
The Nyquist condition is fulfilled if the triangle function lies symmetrically between  $4.5 \, \rm kHz$  and  $5.5 \, \rm kHz$. 

7

Calculate  $g(t)$  for  $t = 250\, µ \rm s$  and  $B = A = 10^{–4} \, \rm V/Hz$   ⇒   complex spectral function.

$g(t = 250\ µ \rm s) \ = \ $

$\ \rm V$


Solution

(1)  The Nyquist frequency specifies the symmetry point of the rolloff.  The following holds true:

$$f_{\rm Nyq}= \frac{f_1 +f_2 } {2 }= \frac{3\, {\rm kHz} + 7\, {\rm kHz}} {2 } \hspace{0.1cm}\underline { = 5\, {\rm kHz}} \hspace{0.05cm}.$$

(2)  The rolloff factor is also determined by the two corner frequencies  $f_{1}$  and  $f_{2}$:

$$r = \frac{f_2 -f_1 } {f_2 +f_1 } = \frac{7\, {\rm kHz} - 3\, {\rm kHz}} {7\, {\rm kHz} + 3\, {\rm kHz} }\hspace{0.1cm}\underline { = 0.4 }\hspace{0.05cm}.$$

(3)  For a pulse with real low–pass spectrum,  the maximum is always at  $t = 0$  and it holds:

$$g_0 = g(t=0) = \int_{-\infty}^{+\infty}G(f) \,{\rm d} f = A \cdot 2 f_{\rm Nyq} = 10^{-4 }\,\frac{\rm V}{\rm Hz}\cdot 2 \cdot 5 \cdot10^{3} \,{\rm Hz}\hspace{0.1cm}\underline { = 1\,{\rm V}}\hspace{0.05cm}.$$

(4)  For the Nyquist pulse,  the equidistant zero crossings occur at the interval  $T = 1/(2f_{\rm Nyq}) = 100 \, \rm µ s$.  From this one obtains directly:

$$g(t= 100\,{\rm µ s}) = \ \hspace{0.1cm}\underline { g(T) = 0,}$$
$$g(t= 200\,{\rm µ s}) = \ \hspace{0.1cm}\underline {g(2T) = 0} \hspace{0.05cm}.$$

This result also follows from the given equation with  $r = 0.4$:

$$g ( t )= g_0 \cdot {\rm sinc} \left ( { t}/{T}\right)\cdot {\rm sinc} \left ( {0.4 \cdot t}/{T}\right) \hspace{0.05cm}.$$

Responsible for satisfying the first Nyquist condition is the first term.


(5)  According to the equation given in  (4):

$$g(t= 250\,{\rm µ s})= g_0 \cdot {\rm sinc} ( {1 })\cdot {\rm sinc} ( 2.5 )\hspace{0.1cm}\underline { = 0} \hspace{0.05cm}.$$

This zero is due to the second term and does not lie in the Nyquist time grid  $\nu T$


(6)  For the following derivation,  let  $g(t)= g_{\rm R}(t) + g_{\rm I}(t) \hspace{0.05cm},$  where  $g_{\rm R}(t)$  is due to the real part and  $g_{\rm I}(t)$  is due to the imaginary part of  $G(f)$.

  • The first part is calculated exactly as in point  (4):
$$g_{\rm R} ( t )= g_0 \cdot {\rm sinc} \left ( { t}/{T}\right)\cdot {\rm sinc} \left ( { 0.4 \cdot t}/{T}\right) \hspace{0.05cm}.$$
  • To satisfy the first Nyquist criterion, the following must hold for the imaginary part with $1/T = 10 \, \rm kHz$:
$$\sum_{k = -\infty}^{+\infty} {\rm Im}\left[G \left ( f - {k}/{T} \right)\right]= 0 \hspace{0.05cm}.$$
  • With the given corner frequencies  $f_{1} = 3 \, \rm kHz$  and  $f_{2} = 7 \ \rm kHz$,  the two triangles are around  $\pm 5\, \rm kHz$,  so the above equation is satisfied.
  • The same is true for  $f_{1} = 4.5\, \rm kHz$  and  $f_{2} = 5.5 \, \rm kHz$.
  • In contrast,  the triangle peaks with  $f_{1} = 3\, \rm kHz$  and  $f_{2} = 5 \, \rm kHz$  are at  $\pm 4 \ \rm kHz$.
  • In this case the triangle functions do not cancel due to the periodic continuation and the Nyquist condition is not fulfilled.


Therefore the correct solutions are  1 and 3.


(7)  With the result  $g_{\rm R}(2.5T) = 0$  from  (3),  it follows  $g(2.5T) = g_{\rm I}(2.5T)$,  where  $g_{\rm I}(t)$  is the inverse Fourier transform of  ${\rm j}\cdot \ G_{\rm I}(f)$.  It holds:

$${\rm j} \cdot G_{\rm I}(f) = {\rm j} \cdot\left[ \delta(f + f_{\rm Nyq}) - \delta(f - f_{\rm Nyq})\right] \star D(f) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} g_{\rm I}(t) = 2 \cdot {\rm sin} ( 2 \pi\cdot f_{\rm Nyq} \cdot t )\cdot d(t)\hspace{0.05cm}.$$
  • The sine function enforces the required zero crossings at multiples of  $T = 100 \, \rm µ s$.
  • $D(f)$  is a triangular function around  $f = 0$  with  $D(f = 0) = B$  and one-sided width  $f_{0}= f_{2} - f_{\rm Nyq} = f_{\rm Nyq} - f_{1} = 2 \, \rm kHz$.
  • For the associated time function we can thus write according to the specification:
$$g_{\rm I}(t ) = 2 \cdot B \cdot f_0 \cdot{\rm sin} ( 2 \pi\cdot f_{\rm Nyq} \cdot t)\cdot {\rm sinc}^2( f_{\rm 0} \cdot t) \hspace{0.05cm}.$$
  • In particular,  for time $t = 250 \, \rm µ s$  (green square):
$$g(t = 2.5 T) = g_{\rm I}(t = 2.5 T) = \ 2 \cdot B \cdot f_0 \cdot{\rm sin} ( 2.5 \pi )\cdot {\rm sinc}^2(0.5)= \ \frac{8}{\pi^2} \cdot B \cdot f_0 = \ \frac{8}{\pi^2} \cdot 10^{-4 }\,\frac{\rm V}{\rm Hz}\cdot 2 \cdot 10^{3} \,{\rm Hz}\hspace{0.1cm}\underline {= 0.162\,{\rm V}} \hspace{0.05cm}.$$
Asymmetric Nyquist pulse   $g(t)= g_{\rm R}(t) + g_{\rm I}(t) $

The diagram shows the change of the time function due to the imaginary part  (green time course):

  • The result is now an asymmetric function curve  $g(t)$,  shown in blue.
  • However, the zero crossings of  $g_{\rm R}(t)$  at the distance  $T$  remain.