Difference between revisions of "Aufgaben:Exercise 1.5: Cosine-Square Spectrum"

From LNTwww
 
(15 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Eigenschaften von Nyquistsystemen
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Properties_of_Nyquist_Systems
 
}}
 
}}
  
  
[[File:P_ID1282__Dig_A_1_5.png|right|frame|Cosinus-Quadrat-Nyquistspektrum]]
+
[[File:P_ID1282__Dig_A_1_5.png|right|frame|Cosine-square Nyquist spectrum]]
Betrachtet wird das Spektrum $G(f)$ mit cos$^{2}$–förmigem Verlauf entsprechend der Skizze. Dieses erfüllt das erste Nyquistkriterium:
+
The spectrum  $G(f)$  with  $\cos^{2}$–shaped course is considered according to the sketch.  This satisfies the first Nyquist criterion:
:$$\sum_{k = -\infty}^{+\infty} G(f -
+
:$$\sum_{k = -\infty}^{+\infty} G(f -{k}/{T} ) =  {\rm const.}$$
\frac{k}{T} ) =  {\rm const.}$$
+
Accordingly,  the associated pulse  $g(t)$  has zero crossings at multiples of  $T$,  where  $T$  remains to be determined.  The inverse Fourier  transform of  $G(f)$  yields the equation for the time course:
Dementsprechend hat der zugehörige Impuls $g(t)$ Nulldurchgänge bei Vielfachen von $T$, wobei $T$ noch zu bestimmen ist. Durch Fourierrücktransformation von $G(f)$ erhält man die Gleichung für den Zeitverlauf:
 
 
:$$g( t )= g_0 \cdot  \frac{\cos(\pi \cdot t/T)}{1 - (2 \cdot
 
:$$g( t )= g_0 \cdot  \frac{\cos(\pi \cdot t/T)}{1 - (2 \cdot
t/T)^2}\cdot {\rm si}(\pi \cdot {t}/{T})\hspace{0.05cm}.$$
+
t/T)^2}\cdot {\rm sinc}( {t}/{T})\hspace{0.5cm} \text{with}\hspace{0.5cm} {\rm sinc}(x)=\sin(\pi x)/(\pi x)\hspace{0.05cm}.$$
In den Fragen zu dieser Aufgabe werden auf folgende Eigenschaften Bezug genommen:
+
The questions for this exercise refer to the following properties:
*Die hier betrachtete Spektralfunktion $G(f)$ ist ein Sonderfall des Cosinus–Rolloff–Spektrums, das punktsymmetrisch um die Nyquistfrequenz $f_{\rm Nyq}$ ist.
+
*The spectral function  $G(f)$  is a special case of the cosine rolloff spectrum,  which is point symmetric about the Nyquist frequency  $f_{\rm Nyq}$. 
*Das Cosinus–Rolloff–Spektrum ist durch die Eckfrequenzen $f_{1}$ und $f_{2}$ vollständig gekennzeichnet. Für $| f | < f_{1}$ ist $G(f) = g_{0} \cdot T = const.$, während das Spektrum für $| f | > f_{2}$ keine Anteile besitzt.
+
*The cosine rolloff spectrum is completely characterized by the corner frequencies &nbsp;$f_{1}$&nbsp; and &nbsp;$f_{2}$.&nbsp;
*Der Zusammenhang zwischen der Nyquistfrequenz und den Eckfrequenzen lautet:
+
* For &nbsp;$| f | < f_{1}$,&nbsp; &nbsp;$G(f) = g_{0} \cdot T = \rm const.$,&nbsp; while the spectrum for &nbsp;$| f | > f_{2}$&nbsp; has no components.&nbsp;
 +
*The relation between the Nyquist frequency and the corner frequencies is:
 
:$$f_{\rm Nyq}=  \frac{f_1 +f_2 }
 
:$$f_{\rm Nyq}=  \frac{f_1 +f_2 }
 
{2 }\hspace{0.05cm}.$$
 
{2 }\hspace{0.05cm}.$$
*Die Flankensteilheit wird durch den so genannten Rolloff–Faktor charakterisiert:
+
*The edge steepness is characterized by the so-called rolloff factor:
 
:$$r = \frac{f_2 -f_1 }
 
:$$r = \frac{f_2 -f_1 }
 
{f_2 +f_1 }\hspace{0.2cm}(0 \le r \le 1) \hspace{0.05cm}.$$
 
{f_2 +f_1 }\hspace{0.2cm}(0 \le r \le 1) \hspace{0.05cm}.$$
  
''Hinweis:''
 
  
Diese Aufgabe bezieht sich auf die theoretischen Grundlagen von [[Digitalsignalübertragung/Eigenschaften_von_Nyquistsystemen|Eigenschaften von Nyquistsystemen]].
 
  
===Fragebogen===
+
Note:&nbsp; The exercise belongs to the chapter&nbsp;  [[Digital_Signal_Transmission/Properties_of_Nyquist_Systems|"Properties of Nyquist Systems"]].
 +
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Welche Eckfrequenzen besitzt dieses Cosinus–Rolloff–Spektrum?
+
{What are the corner frequencies of this cosine rolloff spectrum?
 
|type="{}"}
 
|type="{}"}
 
$f_{1} \ = \ $ { 0 3% } $\ \rm MHz$
 
$f_{1} \ = \ $ { 0 3% } $\ \rm MHz$
 
$f_{2} \ = \ $ { 2 3% } $\ \rm MHz$
 
$f_{2} \ = \ $ { 2 3% } $\ \rm MHz$
  
{Wie groß sind die Nyquistfrequenz und der Rolloff–Faktor?
+
{What are the Nyquist frequency and the rolloff factor?
 
|type="{}"}
 
|type="{}"}
 
$f_{\rm Nyq} \ = \ $ { 1 3% } $\ \rm MHz$
 
$f_{\rm Nyq} \ = \ $ { 1 3% } $\ \rm MHz$
 
$r \ = \ $ { 1 3% }
 
$r \ = \ $ { 1 3% }
  
{In welchem zeitlichen Abstand $T$ besitzt $g(t)$ Nulldurchgänge?
+
{At what time interval &nbsp;$T$&nbsp; does &nbsp;$g(t)$&nbsp; have zero crossings?
 
|type="{}"}
 
|type="{}"}
$T \ = \ $  { 0.5 3% } $\ \rm \mu s$
+
$T \ = \ $  { 0.5 3% } $\ \rm &micro; s$
  
{Welche der nachfolgenden Aussagen sind zutreffend?
+
{Which of the following statements is true?
 
|type="[]"}
 
|type="[]"}
+$g(t)$ erfüllt das erste Nyquistkriterium wegen des si–Terms.
+
+ $g(t)$&nbsp; satisfies the first Nyquist criterion because of the &nbsp;$\rm sinc$&ndash;term.
- $g(t)$ besitzt weitere Nulldurchgänge bei $\pm 0.5T, \pm 1.5T, \pm 2.5 T, ...$
+
- $g(t)$&nbsp; has further zero crossings at &nbsp;$\pm 0.5T, &nbsp;\pm 1.5T, &nbsp;\pm 2.5 T, \text{...}$
+ Das cos$^{2}$–Spektrum erfüllt auch das zweite Nyquistkriterium.
+
+ The &nbsp;$\cos^{2}$&ndash;spectrum also satisfies the second Nyquist criterion.
  
  
{Welchen (normierten) Wert besitzt der Impuls zum Zeitpunkt $t = T/2$?
+
{What is the&nbsp; (normalized)&nbsp; value of the pulse at time &nbsp;$t = T/2$?
 
|type="{}"}
 
|type="{}"}
 
$g(t = T/2)/g_{0} \ = \ $ { 0.5 3% }
 
$g(t = T/2)/g_{0} \ = \ $ { 0.5 3% }
Line 58: Line 60:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die obere Eckfrequenz kann aus der Grafik abgelesen werden: $f_{2} \underline{= 2 \ \rm MHz}$. Da das Spektrum in keinem Bereich konstant ist, gilt: $f_{1} \underline {= 0}$.
+
'''(1)'''&nbsp; The upper corner frequency can be read from the diagram: &nbsp; $f_{2} \underline{= 2 \ \rm MHz}$.&nbsp; Since the spectrum is not constant in any range, $f_{1} \underline {= 0}$.
 +
 
 +
 
  
'''(2)'''&nbsp; Aus den angegebenen Gleichungen erhält man:
+
'''(2)'''&nbsp; From the given equations we obtain:
 
:$$f_{\rm Nyq}  = \  \frac{f_1 +f_2 }
 
:$$f_{\rm Nyq}  = \  \frac{f_1 +f_2 }
{2 }\hspace{0.1cm}\underline { = 1\,{\rm MHz}}\hspace{0.05cm},$$
+
{2 }\hspace{0.1cm}\underline { = 1\,{\rm MHz}}\hspace{0.05cm},\hspace{0.5cm} r = \ \frac{f_2 -f_1 } {f_2 +f_1 }\hspace{0.1cm}\underline { = 1 }\hspace{0.05cm}.$$
:$$r = \ \frac{f_2 -f_1 } {f_2 +f_1 }\hspace{0.1cm}\underline { = 1 }\hspace{0.05cm}.$$
+
 
  
'''(3)'''&nbsp; Der Abstand äquidistanter Nulldurchgänge hängt direkt mit der Nyquistfrequenz zusammen:
+
'''(3)'''&nbsp; The spacing of equidistant zero crossings is directly related to the Nyquist frequency:
:$$f_{\rm Nyq}= \frac{1}{2T} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} T= \frac{1}{2f_{\rm Nyq}}\hspace{0.1cm}\underline { = 0.5\,{\rm \mu s}}\hspace{0.05cm}.$$
+
:$$f_{\rm Nyq}= \frac{1}{2T} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} T= \frac{1}{2f_{\rm Nyq}}\hspace{0.1cm}\underline { = 0.5\,{\rm &micro; s}}\hspace{0.05cm}.$$
  
'''(4)'''&nbsp; Die erste Aussage ist richtig: Die Funktion $si(π · t/T)$ führt zu Nulldurchgängen bei $\nu T (\nu \neq 0)$. Auch die letzte Aussage trifft zu: Wegen $g(t) = 0$ für $t =\pm 1.5T, \pm 2.5T, \pm 3.5T, ...$ wird auch das zweite Nyquistkriterium erfüllt. Falsch ist dagegen die mittlere Aussage, da $g(t = T/2) \neq 0$ ist. Richtig sind also nur die <u>Aussagen 1 und 3</u>.
 
  
Die Bedingung für das zweite Nyquistkriterium lautet im Frequenzbereich:
+
'''(4)'''&nbsp; <u>Statements 1 and 3</u>&nbsp; are correct:
 +
*The first statement is correct: &nbsp; The function&nbsp; ${\rm sinc}(t/T)$&nbsp; leads to zero crossings at&nbsp; $\nu T (\nu \neq 0)$.
 +
*The last statement is also true: &nbsp;Because of&nbsp; $g(t) = 0$&nbsp; for&nbsp; $t =\pm 1.5T, \pm 2.5T, \pm 3.5T, ...$&nbsp; the second Nyquist criterion is also fulfilled.
 +
*On the other hand,&nbsp; the middle statement is false,&nbsp; since $g(t = T/2) \neq 0$.
 +
*The condition for the second Nyquist criterion is in the frequency domain:
 
:$$G_{\rm Per}(f) = \sum_{k = -\infty}^{+\infty} \frac {G \left ( f -
 
:$$G_{\rm Per}(f) = \sum_{k = -\infty}^{+\infty} \frac {G \left ( f -
\frac{k}{T} \right)}{\cos(\pi \cdot f \cdot T - k \cdot \pi)}=
+
{k}/{T} \right)}{\cos(\pi \cdot f \cdot T - k \cdot \pi)}=
 
{\rm const.}$$
 
{\rm const.}$$
Die Bedingung ist beim cos$^{2}$–Spektrum tatsächlich erfüllt, wie man nach längerer Rechnung zeigen kann. Wir beschränken uns hier auf den Frequenzbereich $| f · T | \leq 1$ und setzen vereinfachend $g_{0} \cdot  T = 1$:
+
*The condition is indeed fulfilled for the&nbsp; cos$^{2}$&ndash;spectrum,&nbsp; as can be shown after a longer calculation.  
 +
*We restrict ourselves here to the frequency range&nbsp; $| f · T | \leq 1$&nbsp; and set&nbsp; $g_{0} \cdot  T = 1$&nbsp; for simplicity:
 
:$$G_{\rm Per}(f) =  \frac {\cos^2 \left [\pi/2 \cdot  ( f_{\rm Nyq}
 
:$$G_{\rm Per}(f) =  \frac {\cos^2 \left [\pi/2 \cdot  ( f_{\rm Nyq}
 
- f) \cdot T \right ]}{\cos \left [\pi \cdot  ( f_{\rm Nyq} - f)
 
- f) \cdot T \right ]}{\cos \left [\pi \cdot  ( f_{\rm Nyq} - f)
Line 82: Line 90:
 
+ f) \cdot T \right ]}{\cos \left [\pi \cdot  ( f_{\rm Nyq} + f)
 
+ f) \cdot T \right ]}{\cos \left [\pi \cdot  ( f_{\rm Nyq} + f)
 
\cdot T \right ]}\hspace{0.05cm}.$$
 
\cdot T \right ]}\hspace{0.05cm}.$$
Weiter gilt:
+
*Further holds:
 
:$$\frac {\cos^2 (x)}{\cos(2x)} = {1}/{2} \cdot \frac
 
:$$\frac {\cos^2 (x)}{\cos(2x)} = {1}/{2} \cdot \frac
 
{1+\cos(2x)}{\cos(2x)}= {1}/{2} \cdot \left [1+ \frac
 
{1+\cos(2x)}{\cos(2x)}= {1}/{2} \cdot \left [1+ \frac
Line 90: Line 98:
 
- f) \cdot T \right ]} +1- \frac {1}{\cos \left [\pi \cdot ( f_{\rm Nyq}
 
- f) \cdot T \right ]} +1- \frac {1}{\cos \left [\pi \cdot ( f_{\rm Nyq}
 
+ f) \cdot T \right ]}\right ]\hspace{0.05cm}.$$
 
+ f) \cdot T \right ]}\right ]\hspace{0.05cm}.$$
:$$\cos \left [ \pi \cdot ( f_{\rm Nyq} \pm f) \cdot T \right] = \cos
+
* Because of&nbsp; $\cos \left [ \pi \cdot ( f_{\rm Nyq} \pm f) \cdot T \right] = \cos
 
\left (  {\pi}/{2} \pm \pi  f  T \right) =  \sin \left ( \pm
 
\left (  {\pi}/{2} \pm \pi  f  T \right) =  \sin \left ( \pm
\pi  f  T \right)$$
+
\pi  f  T \right)\text{:}$
 
:$$\Rightarrow \hspace{0.3cm} G_{\rm Per}(f) =  2 - \frac {1}{\sin
 
:$$\Rightarrow \hspace{0.3cm} G_{\rm Per}(f) =  2 - \frac {1}{\sin
 
(\pi  f  T)} + \frac {1}{\sin (\pi  f  T)} = 2  = {\rm const}\hspace{0.05cm}.$$
 
(\pi  f  T)} + \frac {1}{\sin (\pi  f  T)} = 2  = {\rm const}\hspace{0.05cm}.$$
  
'''(5)'''&nbsp; Für $t = T/2$ liefert die angegebene Gleichung einen unbestimmten Wert (0 geteilt durch 0), der allerdings mit der Regel von l'Hospital ermittelt werden kann. Dazu bildet man die Ableitungen von Zähler und Nenner und setzt in das Ergebnis den gewünschten Zeitpunkt $t = T/2$ ein:
+
 
:$$\frac{g( t = T/2)}{g_0}  = \ {{\rm si}(\pi \cdot \frac{t}{T})
+
'''(5)'''&nbsp; For&nbsp; $t = T/2$,&nbsp; the given equation yields an indeterminate value&nbsp; ("0 divided by 0"),&nbsp; which can be determined using l'Hospital's rule.
 +
*To do this,&nbsp; form the derivatives of the numerator and denominator and insert the desired time&nbsp; $t = T/2$&nbsp; into the result:
 +
 
 +
:$$\frac{g( t = T/2)}{g_0}  = \ {{\rm sinc}( \frac{t}{T})
 
\cdot \frac{{\rm d}/{\rm d}t \left [ \cos(\pi \cdot
 
\cdot \frac{{\rm d}/{\rm d}t \left [ \cos(\pi \cdot
 
t/T)\right]}{{\rm d}/{\rm d}t\left [ 1 - (2 \cdot t/T)^2\right]}}
 
t/T)\right]}{{\rm d}/{\rm d}t\left [ 1 - (2 \cdot t/T)^2\right]}}
\bigg |_{t = T/2} =
+
\bigg |_{t = T/2} = \ {{\rm sinc}( \frac{t}{T}) \cdot \frac{- \pi/T \cdot
= \ {{\rm si}(\pi \cdot \frac{t}{T}) \cdot \frac{- \pi/T \cdot
+
  \sin(\pi \cdot t/T)}{-2 \cdot (2\cdot t/T) \cdot (2/T)}} \bigg |_{t = T/2} = \frac {2}{\pi}\cdot
  \sin(\pi \cdot t/T)}{-2 \cdot (2
 
\cdot t/T) \cdot (2/T)}} \bigg |_{t = T/2} = \frac {2}{\pi}\cdot
 
 
\frac {\pi}{4}\hspace{0.1cm}\underline { = 0.5}\hspace{0.05cm}.$$
 
\frac {\pi}{4}\hspace{0.1cm}\underline { = 0.5}\hspace{0.05cm}.$$
Ein zweiter Lösungsweg führt zu der Darstellung:
+
 
:$$\frac{g( t )}{g_0}  = {\rm si}(\pi \cdot \frac{t}{T}) \cdot
+
*A second solution method leads to the expression:
\frac {\pi}{4} \cdot \big [ {\rm si}(\pi \cdot (t/T + 1/2)) +
+
:$$\frac{g( t )}{g_0}  = {\rm sinc}( \frac{t}{T}) \cdot
{\rm si}(\pi \cdot (t/T - 1/2))\big] \hspace{0.05cm}.$$
+
\frac {\pi}{4} \cdot \big [ {\rm sinc}( t/T + 1/2) +
Der zweite Klammerausdruck kann wie folgt umgeformt werden:
+
{\rm sinc}(t/T - 1/2)\big] \hspace{0.05cm}.$$
 +
*The second bracket expression can be transformed as follows:
 
:$$\frac {\pi}{4} \cdot \bigg [ \hspace{0.1cm}... \hspace{0.1cm}
 
:$$\frac {\pi}{4} \cdot \bigg [ \hspace{0.1cm}... \hspace{0.1cm}
 
\bigg ]  = \  \frac {\pi}{4} \cdot \left [ \frac {{\rm sin}(\pi
 
\bigg ]  = \  \frac {\pi}{4} \cdot \left [ \frac {{\rm sin}(\pi
 
\cdot t/T + \pi/2)}{\pi \cdot t/T + \pi/2} + \frac {{\rm sin}(\pi
 
\cdot t/T + \pi/2)}{\pi \cdot t/T + \pi/2} + \frac {{\rm sin}(\pi
\cdot t/T - \pi/2)}{\pi \cdot t/T - \pi/2}\right] =
+
\cdot t/T - \pi/2)}{\pi \cdot t/T - \pi/2}\right]   = \  \frac {1}{2} \cdot {\rm cos}(\pi
\\  = \  \frac {1}{2} \cdot {\rm cos}(\pi
 
 
\cdot t/T )\cdot \left [ \frac {1}{2 \cdot t/T + 1} - \frac {1}{ 2
 
\cdot t/T )\cdot \left [ \frac {1}{2 \cdot t/T + 1} - \frac {1}{ 2
\cdot t/T - 1}\right] = \\
+
\cdot t/T - 1}\right] $$
\= \  \frac {1}{2} \cdot {\rm cos}(\pi
+
:$$\Rightarrow \hspace{0.3cm} \frac {\pi}{4} \cdot \bigg [ \hspace{0.1cm}... \hspace{0.1cm}
 +
\bigg ]    = \  \frac {1}{2} \cdot {\rm cos}(\pi
 
\cdot t/T )\cdot \frac{1- 2 \cdot t/T + 1+ 2 \cdot t/T}{(1+ 2
 
\cdot t/T )\cdot \frac{1- 2 \cdot t/T + 1+ 2 \cdot t/T}{(1+ 2
 
\cdot t/T)(1- 2 \cdot t/T)}= \frac{\cos(\pi \cdot t/T)}{1 - (2
 
\cdot t/T)(1- 2 \cdot t/T)}= \frac{\cos(\pi \cdot t/T)}{1 - (2
 
\cdot t/T)^2}\hspace{0.05cm}.$$
 
\cdot t/T)^2}\hspace{0.05cm}.$$
Daraus folgt, dass beide Ausdrücke tatsächlich gleich sind. Für den Zeitpunkt $t = T/2$ gilt somit weiterhin:
+
*It follows that both expressions are actually equal.&nbsp; Thus,&nbsp; for time&nbsp; $t = T/2$,&nbsp; the following is still true:
:$$\frac{g( t = T/2)}{g_0}  = {\rm si}(  \frac{\pi}{2}) \cdot \frac
+
:$$\frac{g( t = T/2)}{g_0}  = {\rm sinc}(  0.5) \cdot \frac
{\pi}{4} \cdot \left [ {\rm si}(\pi ) + {\rm si}(0)\right]= \frac
+
{\pi}{4} \cdot \big [ {\rm sinc}(1 ) + {\rm sinc}(0)\big]= \frac
 
{2}{\pi}\cdot \frac {\pi}{4} = 0.5 \hspace{0.05cm}.$$
 
{2}{\pi}\cdot \frac {\pi}{4} = 0.5 \hspace{0.05cm}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 129: Line 139:
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^1.3 Eigenschaften von Nyquistsystemen^]]
+
[[Category:Digital Signal Transmission: Exercises|^1.3 Nyquist System Properties^]]

Latest revision as of 13:24, 2 May 2022


Cosine-square Nyquist spectrum

The spectrum  $G(f)$  with  $\cos^{2}$–shaped course is considered according to the sketch.  This satisfies the first Nyquist criterion:

$$\sum_{k = -\infty}^{+\infty} G(f -{k}/{T} ) = {\rm const.}$$

Accordingly,  the associated pulse  $g(t)$  has zero crossings at multiples of  $T$,  where  $T$  remains to be determined.  The inverse Fourier transform of  $G(f)$  yields the equation for the time course:

$$g( t )= g_0 \cdot \frac{\cos(\pi \cdot t/T)}{1 - (2 \cdot t/T)^2}\cdot {\rm sinc}( {t}/{T})\hspace{0.5cm} \text{with}\hspace{0.5cm} {\rm sinc}(x)=\sin(\pi x)/(\pi x)\hspace{0.05cm}.$$

The questions for this exercise refer to the following properties:

  • The spectral function  $G(f)$  is a special case of the cosine rolloff spectrum,  which is point symmetric about the Nyquist frequency  $f_{\rm Nyq}$. 
  • The cosine rolloff spectrum is completely characterized by the corner frequencies  $f_{1}$  and  $f_{2}$. 
  • For  $| f | < f_{1}$,   $G(f) = g_{0} \cdot T = \rm const.$,  while the spectrum for  $| f | > f_{2}$  has no components. 
  • The relation between the Nyquist frequency and the corner frequencies is:
$$f_{\rm Nyq}= \frac{f_1 +f_2 } {2 }\hspace{0.05cm}.$$
  • The edge steepness is characterized by the so-called rolloff factor:
$$r = \frac{f_2 -f_1 } {f_2 +f_1 }\hspace{0.2cm}(0 \le r \le 1) \hspace{0.05cm}.$$


Note:  The exercise belongs to the chapter  "Properties of Nyquist Systems".


Questions

1

What are the corner frequencies of this cosine rolloff spectrum?

$f_{1} \ = \ $

$\ \rm MHz$
$f_{2} \ = \ $

$\ \rm MHz$

2

What are the Nyquist frequency and the rolloff factor?

$f_{\rm Nyq} \ = \ $

$\ \rm MHz$
$r \ = \ $

3

At what time interval  $T$  does  $g(t)$  have zero crossings?

$T \ = \ $

$\ \rm µ s$

4

Which of the following statements is true?

$g(t)$  satisfies the first Nyquist criterion because of the  $\rm sinc$–term.
$g(t)$  has further zero crossings at  $\pm 0.5T,  \pm 1.5T,  \pm 2.5 T, \text{...}$
The  $\cos^{2}$–spectrum also satisfies the second Nyquist criterion.

5

What is the  (normalized)  value of the pulse at time  $t = T/2$?

$g(t = T/2)/g_{0} \ = \ $


Solution

(1)  The upper corner frequency can be read from the diagram:   $f_{2} \underline{= 2 \ \rm MHz}$.  Since the spectrum is not constant in any range, $f_{1} \underline {= 0}$.


(2)  From the given equations we obtain:

$$f_{\rm Nyq} = \ \frac{f_1 +f_2 } {2 }\hspace{0.1cm}\underline { = 1\,{\rm MHz}}\hspace{0.05cm},\hspace{0.5cm} r = \ \frac{f_2 -f_1 } {f_2 +f_1 }\hspace{0.1cm}\underline { = 1 }\hspace{0.05cm}.$$


(3)  The spacing of equidistant zero crossings is directly related to the Nyquist frequency:

$$f_{\rm Nyq}= \frac{1}{2T} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} T= \frac{1}{2f_{\rm Nyq}}\hspace{0.1cm}\underline { = 0.5\,{\rm µ s}}\hspace{0.05cm}.$$


(4)  Statements 1 and 3  are correct:

  • The first statement is correct:   The function  ${\rm sinc}(t/T)$  leads to zero crossings at  $\nu T (\nu \neq 0)$.
  • The last statement is also true:  Because of  $g(t) = 0$  for  $t =\pm 1.5T, \pm 2.5T, \pm 3.5T, ...$  the second Nyquist criterion is also fulfilled.
  • On the other hand,  the middle statement is false,  since $g(t = T/2) \neq 0$.
  • The condition for the second Nyquist criterion is in the frequency domain:
$$G_{\rm Per}(f) = \sum_{k = -\infty}^{+\infty} \frac {G \left ( f - {k}/{T} \right)}{\cos(\pi \cdot f \cdot T - k \cdot \pi)}= {\rm const.}$$
  • The condition is indeed fulfilled for the  cos$^{2}$–spectrum,  as can be shown after a longer calculation.
  • We restrict ourselves here to the frequency range  $| f · T | \leq 1$  and set  $g_{0} \cdot T = 1$  for simplicity:
$$G_{\rm Per}(f) = \frac {\cos^2 \left [\pi/2 \cdot ( f_{\rm Nyq} - f) \cdot T \right ]}{\cos \left [\pi \cdot ( f_{\rm Nyq} - f) \cdot T \right ]}+\frac {\cos^2 \left [\pi/2 \cdot ( f_{\rm Nyq} + f) \cdot T \right ]}{\cos \left [\pi \cdot ( f_{\rm Nyq} + f) \cdot T \right ]}\hspace{0.05cm}.$$
  • Further holds:
$$\frac {\cos^2 (x)}{\cos(2x)} = {1}/{2} \cdot \frac {1+\cos(2x)}{\cos(2x)}= {1}/{2} \cdot \left [1+ \frac {1}{\cos(2x)}\right ]$$
$$\Rightarrow \hspace{0.3cm} G_{\rm Per}(f) = {1}/{2} \cdot \left [1+ \frac {1}{\cos \left [\pi \cdot ( f_{\rm Nyq} - f) \cdot T \right ]} +1- \frac {1}{\cos \left [\pi \cdot ( f_{\rm Nyq} + f) \cdot T \right ]}\right ]\hspace{0.05cm}.$$
  • Because of  $\cos \left [ \pi \cdot ( f_{\rm Nyq} \pm f) \cdot T \right] = \cos \left ( {\pi}/{2} \pm \pi f T \right) = \sin \left ( \pm \pi f T \right)\text{:}$
$$\Rightarrow \hspace{0.3cm} G_{\rm Per}(f) = 2 - \frac {1}{\sin (\pi f T)} + \frac {1}{\sin (\pi f T)} = 2 = {\rm const}\hspace{0.05cm}.$$


(5)  For  $t = T/2$,  the given equation yields an indeterminate value  ("0 divided by 0"),  which can be determined using l'Hospital's rule.

  • To do this,  form the derivatives of the numerator and denominator and insert the desired time  $t = T/2$  into the result:
$$\frac{g( t = T/2)}{g_0} = \ {{\rm sinc}( \frac{t}{T}) \cdot \frac{{\rm d}/{\rm d}t \left [ \cos(\pi \cdot t/T)\right]}{{\rm d}/{\rm d}t\left [ 1 - (2 \cdot t/T)^2\right]}} \bigg |_{t = T/2} = \ {{\rm sinc}( \frac{t}{T}) \cdot \frac{- \pi/T \cdot \sin(\pi \cdot t/T)}{-2 \cdot (2\cdot t/T) \cdot (2/T)}} \bigg |_{t = T/2} = \frac {2}{\pi}\cdot \frac {\pi}{4}\hspace{0.1cm}\underline { = 0.5}\hspace{0.05cm}.$$
  • A second solution method leads to the expression:
$$\frac{g( t )}{g_0} = {\rm sinc}( \frac{t}{T}) \cdot \frac {\pi}{4} \cdot \big [ {\rm sinc}( t/T + 1/2) + {\rm sinc}(t/T - 1/2)\big] \hspace{0.05cm}.$$
  • The second bracket expression can be transformed as follows:
$$\frac {\pi}{4} \cdot \bigg [ \hspace{0.1cm}... \hspace{0.1cm} \bigg ] = \ \frac {\pi}{4} \cdot \left [ \frac {{\rm sin}(\pi \cdot t/T + \pi/2)}{\pi \cdot t/T + \pi/2} + \frac {{\rm sin}(\pi \cdot t/T - \pi/2)}{\pi \cdot t/T - \pi/2}\right] = \ \frac {1}{2} \cdot {\rm cos}(\pi \cdot t/T )\cdot \left [ \frac {1}{2 \cdot t/T + 1} - \frac {1}{ 2 \cdot t/T - 1}\right] $$
$$\Rightarrow \hspace{0.3cm} \frac {\pi}{4} \cdot \bigg [ \hspace{0.1cm}... \hspace{0.1cm} \bigg ] = \ \frac {1}{2} \cdot {\rm cos}(\pi \cdot t/T )\cdot \frac{1- 2 \cdot t/T + 1+ 2 \cdot t/T}{(1+ 2 \cdot t/T)(1- 2 \cdot t/T)}= \frac{\cos(\pi \cdot t/T)}{1 - (2 \cdot t/T)^2}\hspace{0.05cm}.$$
  • It follows that both expressions are actually equal.  Thus,  for time  $t = T/2$,  the following is still true:
$$\frac{g( t = T/2)}{g_0} = {\rm sinc}( 0.5) \cdot \frac {\pi}{4} \cdot \big [ {\rm sinc}(1 ) + {\rm sinc}(0)\big]= \frac {2}{\pi}\cdot \frac {\pi}{4} = 0.5 \hspace{0.05cm}.$$