Difference between revisions of "Aufgaben:Exercise 1.10: BPSK Baseband Model"

From LNTwww
Line 67: Line 67:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; <u>Statements 2, 3 and 4</u> are correct:  
+
'''(1)'''&nbsp; <u>Statements 2, 3 and 4</u>&nbsp; are correct:  
*$H_{\rm K,TP}(f)$ results from $H_{\rm K}(f)$ by cutting off the negative frequency components and shifting $f_{\rm T}$ to the left.
+
*$H_{\rm K,TP}(f)$&nbsp; results from&nbsp; $H_{\rm K}(f)$&nbsp; by cutting off the negative frequency components and shifting&nbsp; $f_{\rm T}$&nbsp; to the left.
* For frequency responses – in contrast to spectra – the doubling of the components at positive frequencies is omitted. Therefore:
+
 
 +
* For frequency responses&nbsp; – in contrast to spectra –&nbsp; the doubling of the components at positive frequencies is omitted.&nbsp; Therefore:
 
:$$H_{\rm K,\hspace{0.04cm} TP}(f= 0) = H_{\rm K}(f= f_{\rm T})=1.$$
 
:$$H_{\rm K,\hspace{0.04cm} TP}(f= 0) = H_{\rm K}(f= f_{\rm T})=1.$$
*Because of the real and asymmetrical spectral functions $H_{\rm K,\hspace{0.04cm}TP}(f)$ the corresponding time function (Fourier inverse transform) $h_{\rm K,\hspace{0.04cm}TP}(t)$ is complex according to the allocation theorem.
+
*Because of the real and asymmetrical spectral functions&nbsp; $H_{\rm K,\hspace{0.04cm}TP}(f),$&nbsp; the corresponding time function&nbsp; (inverse Fourier transform)&nbsp; $h_{\rm K,\hspace{0.04cm}TP}(t)$&nbsp; is complex according to the&nbsp; "Allocation Theorem".
 +
 
  
 +
[[File:P_ID1684__Dig_A_4_3_a.png|right|frame|Low-pass functions for&nbsp; $H_{\rm K}(f)$]]
  
[[File:P_ID1684__Dig_A_4_3_a.png|center|frame|Lowpass functions for $H_{\rm K}(f)$]]
+
'''(2)'''&nbsp; Here only the&nbsp; <u>third proposed solution</u>&nbsp; is correct:
 +
*The spectral function&nbsp; $H_{\rm MKD}(f)$&nbsp; always has an even real part and no imaginary part.&nbsp; Consequently&nbsp; $h_{\rm MKD}(t)$&nbsp; is always real.
  
'''(2)'''&nbsp; Here only the <u>third proposed solution</u> is correct:
+
*If&nbsp; $H_{\rm K}(f)$&nbsp; had additionally an imaginary part odd by&nbsp;$f= f_{\rm T}$,&nbsp; $H_{\rm MKD}(f)$&nbsp; would have an imaginary part odd by&nbsp;$f = 0$.&nbsp; Thus&nbsp; $h_{\rm MKD}(t)$&nbsp; would still be a real function.
*The spectral function $H_{\rm MKD}(f)$ always has an even real part and no imaginary part. Consequently $h_{\rm MKD}(t)$ is always real.
 
*If $H_{\rm K}(f)$ had additionally an imaginary part odd by $f_{\rm T}$, $H_{\rm MKD}(f)$ would have an imaginary part odd by $f = 0$. Thus $h_{\rm MKD}(t)$ would still be a real function.
 
  
  
The diagram illustrates the differences between $H_{\rm K,\hspace{0.04cm}TP}(f)$ and $H_{\rm MKD}(f)$. The parts of $H_{\rm MKD}(f)$ in the range around $\pm 2f_{\rm T}$ need not be considered further.
+
The diagram illustrates the differences between&nbsp; $H_{\rm K,\hspace{0.04cm}TP}(f)$&nbsp; and&nbsp; $H_{\rm MKD}(f)$.&nbsp; The parts of&nbsp; $H_{\rm MKD}(f)$&nbsp; in the range around&nbsp; $\pm 2f_{\rm T}$&nbsp; need not be considered further.
  
  
'''(3)'''&nbsp; $H_{\rm MKD}(f)$ is additively composed of a rectangle and a triangle, each with width $\Delta f_{\rm K}$ and height $0.5$. It follows:
+
'''(3)'''&nbsp; $H_{\rm MKD}(f)$&nbsp; is additively composed of a rectangle and a triangle,&nbsp; each with width&nbsp; $\Delta f_{\rm K}$&nbsp; and height&nbsp; $0.5$. It follows:
:$$h_{\rm MKD}(t) = \frac{\Delta f_{\rm K}}{2} \cdot {\rm si} (\pi \cdot \Delta f_{\rm K} \cdot t)+ \frac{\Delta f_{\rm K}}{4} \cdot {\rm si}^2 (\pi \cdot \frac{\Delta f_{\rm K}}{2} \cdot t)$$
+
:$$h_{\rm MKD}(t) = \frac{\Delta f_{\rm K}}{2} \cdot {\rm sinc} ( \Delta f_{\rm K} \cdot t)+ \frac{\Delta f_{\rm K}}{4} \cdot {\rm sinc}^2 ( \frac{\Delta f_{\rm K}}{2} \cdot t)$$
 
:$$ \Rightarrow \hspace{0.3cm}h_{\rm MKD}(t = 0) = \frac{\Delta f_{\rm K}}{2} + \frac{\Delta f_{\rm K}}{4} = 0.75 \cdot \Delta f_{\rm K}\hspace{0.3cm}
 
:$$ \Rightarrow \hspace{0.3cm}h_{\rm MKD}(t = 0) = \frac{\Delta f_{\rm K}}{2} + \frac{\Delta f_{\rm K}}{4} = 0.75 \cdot \Delta f_{\rm K}\hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm}h_{\rm MKD}(t = 0)/{\Delta f_{\rm K}} \hspace{0.1cm}\underline {= 0.75} .$$
 
\Rightarrow \hspace{0.3cm}h_{\rm MKD}(t = 0)/{\Delta f_{\rm K}} \hspace{0.1cm}\underline {= 0.75} .$$
  
  
'''(4)'''&nbsp; The <u>second proposed solution</u> is correct:
+
'''(4)'''&nbsp; The&nbsp; <u>second proposed solution</u>&nbsp; is correct:
*The first si function does have equidistant zero crossings at the distance $1/\Delta f_{\rm K}$.  
+
*The first sinc&ndash;function does have equidistant zero crossings at the distance&nbsp; $1/\Delta f_{\rm K}$.  
*But the equidistant zero crossings of the whole time function $h_{\rm MKD}$ are determined by the second term:
+
*But the equidistant zero crossings of the whole time function&nbsp; $h_{\rm MKD}(t)$&nbsp; are determined by the second term:
:$$h_{\rm MKD}(t = \frac{1}{\Delta f_{\rm K}}) = \ \frac{\Delta f_{\rm K}}{2} \cdot {\rm si} (\pi )+
+
:$$h_{\rm MKD}(t = \frac{1}{\Delta f_{\rm K}}) = \ \frac{\Delta f_{\rm K}}{2} \cdot {\rm sinc} (1 )+
\frac{\Delta f_{\rm K}}{4} \cdot {\rm si}^2 (\pi/2) = \frac{\Delta
+
\frac{\Delta f_{\rm K}}{4} \cdot {\rm sinc}^2 (0.5) = \frac{\Delta
 
f_{\rm K}}{4},$$
 
f_{\rm K}}{4},$$
 
:$$h_{\rm MKD}(t = \frac{2}{\Delta f_{\rm K}})  = \ \frac{\Delta
 
:$$h_{\rm MKD}(t = \frac{2}{\Delta f_{\rm K}})  = \ \frac{\Delta
f_{\rm K}}{2} \cdot {\rm si} (2\pi )+ \frac{\Delta f_{\rm K}}{4}
+
f_{\rm K}}{2} \cdot {\rm sinc} (2 )+ \frac{\Delta f_{\rm K}}{4}
\cdot {\rm si}^2 (\pi) = 0.$$
+
\cdot {\rm sinc}^2 (1) = 0.$$
  
  

Revision as of 13:57, 7 May 2022

Unbalanced channel frequency response

In this exercise,  we consider a BPSK system with coherent demodulation,  i.e.

$$s(t) \ = \ z(t) \cdot q(t),$$
$$b(t) \ = \ 2 \cdot z(t) \cdot r(t) .$$

The designations chosen here are based on the  block diagram  in the theory section.

The influence of a channel frequency response  $H_{\rm K}(f)$  can be taken into account in a simple way if it is described together with modulator and demodulator by a common baseband frequency response:

$$H_{\rm MKD}(f) = {1}/{2} \cdot \big [ H_{\rm K}(f-f_{\rm T}) + H_{\rm K}(f+f_{\rm T})\big ] .$$
  • Thus the modulator and demodulator are virtually shortened against each other,  and
  • the bandpass channel  $H_{\rm K}(f)$  is transformed into the low-pass range.


The resulting transmission function  $H_{\rm MKD}(f)$  should not be confused with the low-pass transmission function  $H_{\rm K, \, TP}(f)$  as described in the chapter  "Equivalent Low-Pass Signal and its Spectral Function"  of the book "Signal Representation",  which results from  $H_{\rm K}(f)$  by truncating the components at negative frequencies as well as a frequency shift by the carrier frequency $f_{\rm T}$  to the left.

For frequency responses,  in contrast to spectral functions,  the doubling of the components at positive frequencies must be omitted.



Notes:

  • The subscript  "MKD"  stands for  "modulator – channel – demodulator"  German:  "Modulator – Kanal – Demodulator").



Questions

1

Which statements are valid for the equivalent low-pass function  $H_{\rm K, \, TP}(f)$ ?

 $H_{\rm K, \, TP}(f=0)= 2$.
 $H_{\rm K, \, TP}(f = \Delta f_{\rm K}/4) = 1$.
 $H_{\rm K, \, TP}(f = -\Delta f_{\rm K}/4) = 0.75$.
The corresponding time function  $h_{\rm K, \, TP}(t)$  is complex.

2

Which statements are valid for the frequency response  $H_{\rm MKD}(f)$ ?

 $H_{\rm MKD}(f=0)= 2$.
 $H_{\rm MKD}(f = \Delta f_{\rm K}/4) = 1$.
 $H_{\rm MKD}(f = -\Delta f_{\rm K}/4) = 0.75$.
The corresponding time function  $h_{\rm MKD}(t)$  is complex.

3

Calculate the time function  $h_{\rm MKD}(t)$.  Specify the value at  $t = 0$. 

$ h_{\rm MKD}(t = 0)/\Delta f_{\rm K} \ = \ $

4

Which of the following statements are true?

$h_{\rm MKD}(t)$  has equidistant zero crossings at distance  $1/\Delta f_{\rm K}$.
$h_{\rm MKD}(t)$  has equidistant zero crossings at distance  $2/\Delta f_{\rm K}$.


Solution

(1)  Statements 2, 3 and 4  are correct:

  • $H_{\rm K,TP}(f)$  results from  $H_{\rm K}(f)$  by cutting off the negative frequency components and shifting  $f_{\rm T}$  to the left.
  • For frequency responses  – in contrast to spectra –  the doubling of the components at positive frequencies is omitted.  Therefore:
$$H_{\rm K,\hspace{0.04cm} TP}(f= 0) = H_{\rm K}(f= f_{\rm T})=1.$$
  • Because of the real and asymmetrical spectral functions  $H_{\rm K,\hspace{0.04cm}TP}(f),$  the corresponding time function  (inverse Fourier transform)  $h_{\rm K,\hspace{0.04cm}TP}(t)$  is complex according to the  "Allocation Theorem".


Low-pass functions for  $H_{\rm K}(f)$

(2)  Here only the  third proposed solution  is correct:

  • The spectral function  $H_{\rm MKD}(f)$  always has an even real part and no imaginary part.  Consequently  $h_{\rm MKD}(t)$  is always real.
  • If  $H_{\rm K}(f)$  had additionally an imaginary part odd by $f= f_{\rm T}$,  $H_{\rm MKD}(f)$  would have an imaginary part odd by $f = 0$.  Thus  $h_{\rm MKD}(t)$  would still be a real function.


The diagram illustrates the differences between  $H_{\rm K,\hspace{0.04cm}TP}(f)$  and  $H_{\rm MKD}(f)$.  The parts of  $H_{\rm MKD}(f)$  in the range around  $\pm 2f_{\rm T}$  need not be considered further.


(3)  $H_{\rm MKD}(f)$  is additively composed of a rectangle and a triangle,  each with width  $\Delta f_{\rm K}$  and height  $0.5$. It follows:

$$h_{\rm MKD}(t) = \frac{\Delta f_{\rm K}}{2} \cdot {\rm sinc} ( \Delta f_{\rm K} \cdot t)+ \frac{\Delta f_{\rm K}}{4} \cdot {\rm sinc}^2 ( \frac{\Delta f_{\rm K}}{2} \cdot t)$$
$$ \Rightarrow \hspace{0.3cm}h_{\rm MKD}(t = 0) = \frac{\Delta f_{\rm K}}{2} + \frac{\Delta f_{\rm K}}{4} = 0.75 \cdot \Delta f_{\rm K}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}h_{\rm MKD}(t = 0)/{\Delta f_{\rm K}} \hspace{0.1cm}\underline {= 0.75} .$$


(4)  The  second proposed solution  is correct:

  • The first sinc–function does have equidistant zero crossings at the distance  $1/\Delta f_{\rm K}$.
  • But the equidistant zero crossings of the whole time function  $h_{\rm MKD}(t)$  are determined by the second term:
$$h_{\rm MKD}(t = \frac{1}{\Delta f_{\rm K}}) = \ \frac{\Delta f_{\rm K}}{2} \cdot {\rm sinc} (1 )+ \frac{\Delta f_{\rm K}}{4} \cdot {\rm sinc}^2 (0.5) = \frac{\Delta f_{\rm K}}{4},$$
$$h_{\rm MKD}(t = \frac{2}{\Delta f_{\rm K}}) = \ \frac{\Delta f_{\rm K}}{2} \cdot {\rm sinc} (2 )+ \frac{\Delta f_{\rm K}}{4} \cdot {\rm sinc}^2 (1) = 0.$$