Difference between revisions of "Aufgaben:Exercise 1.08Z: BPSK Error Probability"

From LNTwww
 
(16 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Lineare digitale Modulation – Kohärente Demodulation
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Linear_Digital_Modulation_-_Coherent_Demodulation
 
}}
 
}}
  
[[File:P_ID1681__Dig_Z_4_1.png|right|frame|Komplementäre Gaußsche Fehlerfunktion]]
+
[[File:P_ID1681__Dig_Z_4_1.png|right|frame|Numerical values of function  ${\rm Q}(x)$]]
Wir gehen von dem optimalen Basisbandübertragungssystem für Binärsignale aus mit
+
We assume the optimal baseband transmission system for binary signals with
*bipolaren Amplitudenkoeffizienten $a_{\nu} \in \{–1, +1\}$,
+
*bipolar amplitude coefficients  $a_{\nu} \in \{–1, +1\}$,
*rechteckförmigem Sendesignal mit den Signalwerten $\pm s_{0}$ und der Bitdauer $T_{\rm B}$,
 
*AWGN–Rauschen mit der Rauschleistungsdichte $N_{0},$
 
*Empfangsfilter gemäß dem Matched–Filter–Prinzip,
 
*Entscheider mit der optimalen Schwelle $E = 0$.
 
  
 +
*rectangular transmitted signal with signal values  $\pm s_{0}$  and bit duration  $T_{\rm B}$,
  
Wenn nichts anderes angegeben ist, so sollten Sie zudem von den folgenden Zahlenwerten ausgehen:
+
*AWGN noise with noise power density  $N_{0}$,
 +
 
 +
*receiver filter according to the matched filter principle,
 +
 
 +
*decision with the optimal threshold  $E = 0$.
 +
 
 +
 
 +
Unless otherwise specified,  you should also assume the following numerical values:
 
:$$ s_0 = 4\,{\rm V},\hspace{0.2cm} T_{\rm B} = 1\,{\rm ns},\hspace{0.2cm}N_0 = 2 \cdot 10^{-9}\, {\rm V^2/Hz} \hspace{0.05cm}.$$
 
:$$ s_0 = 4\,{\rm V},\hspace{0.2cm} T_{\rm B} = 1\,{\rm ns},\hspace{0.2cm}N_0 = 2 \cdot 10^{-9}\, {\rm V^2/Hz} \hspace{0.05cm}.$$
  
Die Bitfehlerwahrscheinlichkeit dieses „Basisbandsystems” wurde bereits in [[Digitalsignalübertragung/Fehlerwahrscheinlichkeit_bei_Basisbandübertragung|Fehlerwahrscheinlichkeit bei Basisbandübertragung]] angegeben (Index BB):
+
The bit error probability of this  "baseband system"  has already been given in the chapter  [[Digital_Signal_Transmission/Error_Probability_for_Baseband_Transmission|"Error Probability for Baseband Transmission"]]  $($Index:  $\rm BB)$:
:$$p_{\rm BB} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right )\hspace{0.2cm}{\rm mit}\hspace{0.2cm}\sigma_d = \sqrt{\frac{N_0}{2 \cdot T_{\rm B}}}.$$
+
:$$p_{\rm BB} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right )\hspace{0.2cm}{\rm with}\hspace{0.2cm}\sigma_d = \sqrt{\frac{N_0}{2 \cdot T_{\rm B}}}.$$
  
Hierbei bezeichnet $\sigma_{d}$ den Rauscheffektivwert am Entscheider und Q$(x)$ die komplementäre Gaußsche Fehlerfunktion, die hier tabellarisch gegeben ist.
+
Here,  $\sigma_{d}$  denotes the noise rms value at the decision device and  ${\rm Q}(x)$  denotes the complementary Gaussian error function,  which is given here in tabular form.  This error probability can also be expressed in the form
Diese Fehlerwahrscheinlichkeit kann man auch in der Form
+
:$$p_{\rm BB} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ),$$
:$$p_{\rm BB} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right )$$
+
where  $E_{\rm B}$  denotes  "energy per bit."
schreiben, wobei $E_{\rm B}$ die „Energie pro Bit” bezeichnet. Die Fehlerwahrscheinlichkeit eines vergleichbaren Übertragungssystems mit Binary Phase Shift Keying (BPSK) lautet:
 
:$$p_{\rm BPSK} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )\hspace{0.2cm}{\rm mit}\hspace{0.2cm}\sigma_d = \sqrt{{N_0}/{T_{\rm B}}}.$$
 
  
''Hinweis:''
+
The error probability of a comparable transmission system with  "Binary Phase Shift Keying" is   $($Index:  $\rm BPSK)$:
 +
:$$p_{\rm BPSK} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )\hspace{0.2cm}{\rm with}\hspace{0.2cm}\sigma_d = \sqrt{{N_0}/{T_{\rm B}}}.$$
  
Die Aufgabe gehört zum Themengebiet von [[Digitalsignalübertragung/Lineare_digitale_Modulation_–_Kohärente_Demodulation|Lineare digitale Modulation – Kohärente Demodulation]] Da hier $s_{0}$ in „Volt” angegeben ist, besitzt $E_{\rm B}$ die Einheit „$\rm V^{2}/Hz$”.
 
  
  
  
 +
Notes:
 +
*The exercise belongs to the chapter   [[Digital_Signal_Transmission/Linear_Digital_Modulation_-_Coherent_Demodulation|"Linear Digital Modulation - Coherent Demodulation"]].
  
===Fragebogen===
+
*Reference is also made to the chapter  [[Digital_Signal_Transmission/Error_Probability_for_Baseband_Transmission|"Error Probability for Baseband Transmission"]].
 +
 +
*You can check the results with the HTML5/JavaScript applet  [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|"Complementary Gaussian Error Functions"]].
 +
 
 +
*Since the signal value  $s_{0}$  is specified here in  "volts"  and no specification is made for the reference resistance,  $E_{\rm B}$  has the unit "$\rm V^{2}/Hz$".
 +
 
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Wie groß ist die Fehlerwahrscheinlichkeit des Basisbandsystems?
+
{Let &nbsp;$s_{0} = 4 \, \rm V$.&nbsp; What is the error probability &nbsp;$p_{\rm BB}$&nbsp; of the baseband system?
 
|type="{}"}
 
|type="{}"}
$s_{0} = 4 \ \rm V:$  $p_{\rm BB} \ = \ $ { 0.317 3% } $\ \cdot 10^{-4} $
+
$p_{\rm BB} \ = \ $ { 0.00317 3% } $\ \% $
  
{Wie groß ist die Energie pro Bit beim Basisbandsystem?
+
{What is the energy per bit for the baseband system with &nbsp;$s_{0} = 4 \, \rm V$?
 
|type="{}"}
 
|type="{}"}
$ s_{0} = 4 \ \rm V:$  $E_{\rm B} \ = \ $ { 1.6 3% } $\ \cdot 10^{-8}\  \rm V^{2}s $
+
$E_{\rm B} \ = \ $ { 1.6 3% } $\ \cdot 10^{-8}\  \rm V^{2}s $
  
{Welche Fehlerwahrscheinlichkeit ergibt sich bei halber Sendeamplitude?
+
{What is the error probability &nbsp;$p_{\rm BB}$&nbsp; at half the transmission amplitude &nbsp; $(s_{0} = 2 \, \rm V)$?
 
|type="{}"}
 
|type="{}"}
$ s_{0} = 2 \ \rm V:$  $p_{\rm BB} \ = \ $ {  0.227 3% } $\ \cdot 10^{-1} $
+
$p_{\rm BB} \ = \ $ {  2.27 3% } $\ \% $
  
{Geben Sie die Fehlerwahrscheinlichkeit der BPSK abhängig vom Quotienten $E_{\rm B}/N_{0}$ an. Welches Ergebnis stimmt?
+
{Give the error probability of the BPSK depending on the quotient &nbsp;$E_{\rm B}/N_{0}$.&nbsp; Which result is correct?
 
|type="[]"}
 
|type="[]"}
- $p_{\rm BPSK} = $ Q$[(E_{\rm B}/N_{0})^{1/2}]$,
+
- $p_{\rm BPSK} = {\rm Q}\big [(E_{\rm B}/N_{0})^{1/2}\big ]$,
+ $p_{\rm BPSK} = $ Q$[(2E_{\rm B}/N_{0})^{1/2}]$,
+
+ $p_{\rm BPSK} = {\rm Q}\big [(2 \cdot E_{\rm B}/N_{0})^{1/2}\big ]$,
-$p_{\rm BPSK} = $ Q$[(4E_{\rm B}/N_{0})^{1/2}]$.
+
-$p_{\rm BPSK} = {\rm Q}\big [(4\cdot E_{\rm B}/N_{0})^{1/2}\big ]$.
  
{Welche Fehlerwahrscheinlichkeiten ergeben sich für $E_{\rm B}/N_{0} = 8$ und $E_{\rm B}/N_{0} = 2$?
+
{What are the error probabilities for the BPSK and &nbsp;$E_{\rm B}/N_{0} = 8$&nbsp; resp. &nbsp;$E_{\rm B}/N_{0} = 2$?
 
|type="{}"}
 
|type="{}"}
$E_{\rm B}/N_{0} = 8:  p_{\rm BPSK} \ = \ $ { 0.317 3% } $\ \cdot 10^{-4} $
+
$E_{\rm B}/N_{0} = 8\text{:}\hspace{0.4cm} p_{\rm BPSK} \ = \ $ { 0.00317 3% } $\ \% $
$E_{\rm B}/N_{0} = 2:  p_{\rm BPSK} \ = \ $ {  0.227 3% } $\ \cdot 10^{-1} $
+
$E_{\rm B}/N_{0} = 2\text{:}\hspace{0.4cm} p_{\rm BPSK} \ = \ $ {  2.27 3% } $\ \% $
  
  
Line 62: Line 75:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Der Rauscheffektivwert ergibt sich hier zu
+
'''(1)'''&nbsp; The noise rms value is given here by
:$$\sigma_d = \sqrt{\frac{N_0}{2 \cdot T_{\rm B}}}= \sqrt{\frac{2 \cdot 10^{-9}\,{\rm V^2/Hz}}{2 \cdot 1\,{\rm ns}}}= 1\,{\rm V}$$
+
:$$\sigma_d = \sqrt{\frac{N_0}{2 \cdot T_{\rm B}}}= \sqrt{\frac{2 \cdot 10^{-9}\,{\rm V^2/Hz}}{2 \cdot 1\,{\rm ns}}}= 1\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}p_{\rm BB} = {\rm Q}\left ({s_0}/{\sigma_d } \right
:$$\Rightarrow \hspace{0.3cm}p_{\rm BB} = {\rm Q}\left ({s_0}/{\sigma_d } \right
+
  )=  {\rm Q}(4)= 0.317 \cdot 10^{-4}\hspace{0.1cm}\underline {= 0.00317 \%}.$$
  )=  {\rm Q}(4)\hspace{0.1cm}\underline {= 0.317 \cdot 10^{-4}}.$$
+
 
  
'''(2)'''&nbsp; Beim Basisbandsystem gilt:
+
'''(2)'''&nbsp; For the baseband system:
 
:$$E_{\rm B} = s_0^2 \cdot T_{\rm B}= (4\,{\rm V})^2 \cdot
 
:$$E_{\rm B} = s_0^2 \cdot T_{\rm B}= (4\,{\rm V})^2 \cdot
 
10^{-9}\,{\rm s}\hspace{0.1cm}\underline {= 1.6 \cdot 10^{-8}\,{\rm V^2s}}.$$
 
10^{-9}\,{\rm s}\hspace{0.1cm}\underline {= 1.6 \cdot 10^{-8}\,{\rm V^2s}}.$$
Natürlich ergibt sich mit der zusätzlich angegebenen Gleichung die genau gleiche Fehlerwahrscheinlichkeit
+
*Of course, the additional given equation gives the exact same error probability:
 
:$$p_{\rm BB} = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right
 
:$$p_{\rm BB} = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right
 
  ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot 16 \cdot 10^{-9}\,{\rm V^2s}}{2 \cdot 10^{-9}\, {\rm
 
  ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot 16 \cdot 10^{-9}\,{\rm V^2s}}{2 \cdot 10^{-9}\, {\rm
Line 78: Line 91:
 
  ) =  {\rm Q}(4)= 0.317 \cdot 10^{-4}.$$
 
  ) =  {\rm Q}(4)= 0.317 \cdot 10^{-4}.$$
  
Ein Vergleich mit Aufgabe A1.8(4) zeigt, dass $E_{\rm B}/N_{0} = 8$ nicht (exakt) gleich $10 \cdot \lg E_{\rm B}/N_{0} = 9 \ \rm dB$ ist. Im ersten Fall ergibt sich $p_{\rm BB} = 0.317 \cdot 10^{–4}$, im zweiten $p_{\rm BB} = 0.336 \cdot 10^{-4}$.
+
*A comparison with question&nbsp; '''(4)'''&nbsp; of&nbsp; [[Aufgaben:Exercise_1.08:_Comparison_of_ASK_and_BPSK|"Exercise 1.8"]]&nbsp; shows that &nbsp;$E_{\rm B}/N_{0} = 8$&nbsp; is not&nbsp; (exactly)&nbsp; equal to &nbsp;$10 \cdot \lg E_{\rm B}/N_{0} = 9 \ \rm dB$.&nbsp;
 +
*In the first case &nbsp;$p_{\rm BB} = 0.317 \cdot 10^{–4}$ is obtained,&nbsp; in the second &nbsp;$p_{\rm BB} = 0.336 \cdot 10^{-4}$.
 +
 
  
'''(3)'''&nbsp; Bei halber Sendeamplitude $s_{0} = 2 \ \rm V$ sinkt die Energie pro Bit auf ein Viertel und es gelten folgende Gleichungen:
+
'''(3)'''&nbsp; At half the transmission amplitude&nbsp; $s_{0} = 2 \ \rm V$,&nbsp; the energy per bit decreases to a quarter and the following equations apply:
:$$p_{\rm BB} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right )= {\rm Q}\left ( \frac{2\,{\rm V}}{1\,{\rm V}} \right )\hspace{0.1cm}\underline {= {\rm Q}(2)= 0.227 \cdot 10^{-1}},$$
+
:$$p_{\rm BB} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right )= {\rm Q}\left ( \frac{2\,{\rm V}}{1\,{\rm V}} \right )\hspace{0.1cm}\underline {= {\rm Q}(2)= 2.27 \%},$$
:$$p_{\rm BB} = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot 4 \cdot 10^{-9}\,{\rm V^2s}}{2 \cdot 10^{-9}\, {\rm V^2/Hz} }} \hspace{0.1cm}\right ) = {\rm Q}(2)= 0.227 \cdot 10^{-1}.$$
+
:$$p_{\rm BB} = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot 4 \cdot 10^{-9}\,{\rm V^2s}}{2 \cdot 10^{-9}\, {\rm V^2/Hz} }} \hspace{0.1cm}\right ) = {\rm Q}(2)= 2.27 \%.$$
  
'''(4)'''&nbsp; Unter Berücksichtigung der nur mehr halben Energie $E_{\rm B} = s^{2}_{0} \cdot T_{\rm B}/2$ erhält man mit $\sigma^{2}_{d} = N_{0}/T_{\rm B}$ und
+
 
 +
'''(4)'''&nbsp; Considering only half the energy&nbsp; $E_{\rm B} = s^{2}_{0} \cdot T_{\rm B}/2$,&nbsp; we obtain with&nbsp; $\sigma^{2}_{d} = N_{0}/T_{\rm B}$&nbsp; and
 
:$$p_{\rm BPSK} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )= {\rm Q}\left ( \sqrt{{s_0^2 \cdot T_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }}\hspace{0.1cm}\right )$$
 
:$$p_{\rm BPSK} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )= {\rm Q}\left ( \sqrt{{s_0^2 \cdot T_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }}\hspace{0.1cm}\right )$$
das genau gleiche Ergebnis wie beim optimalen Basisbandsystem (<u>zweiter Lösungsvorschlag</u>).
+
the exact same result as for the optimal baseband system &nbsp; &rArr; &nbsp; <u>solution 2</u>.
 +
 
  
'''(5)'''&nbsp; Es ergeben sich die genau gleichen Ergebnisse wie bei der Basisbandübertragung:
+
'''(5)'''&nbsp; Of course,&nbsp; this also gives the exact same results as for the baseband transmission:
:$${ E_{\rm B}}/{N_0 }= 8{\rm :} \hspace{0.2cm}p_{\rm BPSK} = {\rm Q}(\sqrt{16}) =  {\rm Q}(4)\hspace{0.1cm}\underline {= 0.317 \cdot
+
:$${ E_{\rm B}}/{N_0 }= 8{\rm :} \hspace{0.2cm}p_{\rm BPSK} = {\rm Q}(\sqrt{16}) =  {\rm Q}(4)\hspace{0.1cm}\underline {= 0.00317 \%},$$
  10^{-4}},$$
+
:$${ E_{\rm B}}/{N_0 }= 2{\rm :} \hspace{0.2cm}p_{\rm BPSK} = {\rm Q}(\sqrt{4}) =  {\rm Q}(2) \hspace{0.1cm}\underline {= 2.27 \%}.$$
:$${ E_{\rm B}}/{N_0 }= 2{\rm :} \hspace{0.2cm}p_{\rm BPSK} = {\rm Q}(\sqrt{4}) =  {\rm Q}(2) \hspace{0.1cm}\underline {= 0.227 \cdot
 
  10^{-1}}.$$
 
  
  
Line 99: Line 114:
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^1.5 Lineare digitale Modulation^]]
+
[[Category:Digital Signal Transmission: Exercises|^1.5 Linear Digital Modulation^]]

Latest revision as of 16:12, 10 May 2022

Numerical values of function  ${\rm Q}(x)$

We assume the optimal baseband transmission system for binary signals with

  • bipolar amplitude coefficients  $a_{\nu} \in \{–1, +1\}$,
  • rectangular transmitted signal with signal values  $\pm s_{0}$  and bit duration  $T_{\rm B}$,
  • AWGN noise with noise power density  $N_{0}$,
  • receiver filter according to the matched filter principle,
  • decision with the optimal threshold  $E = 0$.


Unless otherwise specified,  you should also assume the following numerical values:

$$ s_0 = 4\,{\rm V},\hspace{0.2cm} T_{\rm B} = 1\,{\rm ns},\hspace{0.2cm}N_0 = 2 \cdot 10^{-9}\, {\rm V^2/Hz} \hspace{0.05cm}.$$

The bit error probability of this  "baseband system"  has already been given in the chapter  "Error Probability for Baseband Transmission"  $($Index:  $\rm BB)$:

$$p_{\rm BB} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right )\hspace{0.2cm}{\rm with}\hspace{0.2cm}\sigma_d = \sqrt{\frac{N_0}{2 \cdot T_{\rm B}}}.$$

Here,  $\sigma_{d}$  denotes the noise rms value at the decision device and  ${\rm Q}(x)$  denotes the complementary Gaussian error function,  which is given here in tabular form.  This error probability can also be expressed in the form

$$p_{\rm BB} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ),$$

where  $E_{\rm B}$  denotes  "energy per bit."

The error probability of a comparable transmission system with  "Binary Phase Shift Keying" is  $($Index:  $\rm BPSK)$:

$$p_{\rm BPSK} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )\hspace{0.2cm}{\rm with}\hspace{0.2cm}\sigma_d = \sqrt{{N_0}/{T_{\rm B}}}.$$



Notes:

  • Since the signal value  $s_{0}$  is specified here in  "volts"  and no specification is made for the reference resistance,  $E_{\rm B}$  has the unit "$\rm V^{2}/Hz$".



Questions

1

Let  $s_{0} = 4 \, \rm V$.  What is the error probability  $p_{\rm BB}$  of the baseband system?

$p_{\rm BB} \ = \ $

$\ \% $

2

What is the energy per bit for the baseband system with  $s_{0} = 4 \, \rm V$?

$E_{\rm B} \ = \ $

$\ \cdot 10^{-8}\ \rm V^{2}s $

3

What is the error probability  $p_{\rm BB}$  at half the transmission amplitude   $(s_{0} = 2 \, \rm V)$?

$p_{\rm BB} \ = \ $

$\ \% $

4

Give the error probability of the BPSK depending on the quotient  $E_{\rm B}/N_{0}$.  Which result is correct?

$p_{\rm BPSK} = {\rm Q}\big [(E_{\rm B}/N_{0})^{1/2}\big ]$,
$p_{\rm BPSK} = {\rm Q}\big [(2 \cdot E_{\rm B}/N_{0})^{1/2}\big ]$,
$p_{\rm BPSK} = {\rm Q}\big [(4\cdot E_{\rm B}/N_{0})^{1/2}\big ]$.

5

What are the error probabilities for the BPSK and  $E_{\rm B}/N_{0} = 8$  resp.  $E_{\rm B}/N_{0} = 2$?

$E_{\rm B}/N_{0} = 8\text{:}\hspace{0.4cm} p_{\rm BPSK} \ = \ $

$\ \% $
$E_{\rm B}/N_{0} = 2\text{:}\hspace{0.4cm} p_{\rm BPSK} \ = \ $

$\ \% $


Solution

(1)  The noise rms value is given here by

$$\sigma_d = \sqrt{\frac{N_0}{2 \cdot T_{\rm B}}}= \sqrt{\frac{2 \cdot 10^{-9}\,{\rm V^2/Hz}}{2 \cdot 1\,{\rm ns}}}= 1\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}p_{\rm BB} = {\rm Q}\left ({s_0}/{\sigma_d } \right )= {\rm Q}(4)= 0.317 \cdot 10^{-4}\hspace{0.1cm}\underline {= 0.00317 \%}.$$


(2)  For the baseband system:

$$E_{\rm B} = s_0^2 \cdot T_{\rm B}= (4\,{\rm V})^2 \cdot 10^{-9}\,{\rm s}\hspace{0.1cm}\underline {= 1.6 \cdot 10^{-8}\,{\rm V^2s}}.$$
  • Of course, the additional given equation gives the exact same error probability:
$$p_{\rm BB} = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot 16 \cdot 10^{-9}\,{\rm V^2s}}{2 \cdot 10^{-9}\, {\rm V^2/Hz} }} \hspace{0.1cm}\right ) = {\rm Q}(4)= 0.317 \cdot 10^{-4}.$$
  • A comparison with question  (4)  of  "Exercise 1.8"  shows that  $E_{\rm B}/N_{0} = 8$  is not  (exactly)  equal to  $10 \cdot \lg E_{\rm B}/N_{0} = 9 \ \rm dB$. 
  • In the first case  $p_{\rm BB} = 0.317 \cdot 10^{–4}$ is obtained,  in the second  $p_{\rm BB} = 0.336 \cdot 10^{-4}$.


(3)  At half the transmission amplitude  $s_{0} = 2 \ \rm V$,  the energy per bit decreases to a quarter and the following equations apply:

$$p_{\rm BB} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right )= {\rm Q}\left ( \frac{2\,{\rm V}}{1\,{\rm V}} \right )\hspace{0.1cm}\underline {= {\rm Q}(2)= 2.27 \%},$$
$$p_{\rm BB} = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot 4 \cdot 10^{-9}\,{\rm V^2s}}{2 \cdot 10^{-9}\, {\rm V^2/Hz} }} \hspace{0.1cm}\right ) = {\rm Q}(2)= 2.27 \%.$$


(4)  Considering only half the energy  $E_{\rm B} = s^{2}_{0} \cdot T_{\rm B}/2$,  we obtain with  $\sigma^{2}_{d} = N_{0}/T_{\rm B}$  and

$$p_{\rm BPSK} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )= {\rm Q}\left ( \sqrt{{s_0^2 \cdot T_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }}\hspace{0.1cm}\right )$$

the exact same result as for the optimal baseband system   ⇒   solution 2.


(5)  Of course,  this also gives the exact same results as for the baseband transmission:

$${ E_{\rm B}}/{N_0 }= 8{\rm :} \hspace{0.2cm}p_{\rm BPSK} = {\rm Q}(\sqrt{16}) = {\rm Q}(4)\hspace{0.1cm}\underline {= 0.00317 \%},$$
$${ E_{\rm B}}/{N_0 }= 2{\rm :} \hspace{0.2cm}p_{\rm BPSK} = {\rm Q}(\sqrt{4}) = {\rm Q}(2) \hspace{0.1cm}\underline {= 2.27 \%}.$$