Difference between revisions of "Aufgaben:Exercise 1.08Z: BPSK Error Probability"

From LNTwww
m (Text replacement - "Category:Aufgaben zu Digitalsignalübertragung" to "Category:Digital Signal Transmission: Exercises")
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Lineare digitale Modulation – Kohärente Demodulation
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Linear_Digital_Modulation_-_Coherent_Demodulation
 
}}
 
}}
  
[[File:P_ID1681__Dig_Z_4_1.png|right|frame|Zahlenwerte der Funktion  ${\rm Q}(x)$]]
+
[[File:P_ID1681__Dig_Z_4_1.png|right|frame|Numerical values of function  ${\rm Q}(x)$]]
Wir gehen vom optimalen Basisbandübertragungssystem für Binärsignale aus mit
+
We assume the optimal baseband transmission system for binary signals with
*bipolaren Amplitudenkoeffizienten  $a_{\nu} \in \{–1, +1\}$,
+
*bipolar amplitude coefficients  $a_{\nu} \in \{–1, +1\}$,
*rechteckförmigem Sendesignal mit den Signalwerten  $\pm s_{0}$  und der Bitdauer  $T_{\rm B}$,
 
*AWGN–Rauschen mit der Rauschleistungsdichte  $N_{0}$,
 
*Empfangsfilter gemäß dem Matched–Filter–Prinzip,
 
*Entscheider mit der optimalen Schwelle  $E = 0$.
 
  
 +
*rectangular transmitted signal with signal values  $\pm s_{0}$  and bit duration  $T_{\rm B}$,
  
Wenn nichts anderes angegeben, sollten Sie zudem von den folgenden Zahlenwerten ausgehen:
+
*AWGN noise with noise power density  $N_{0}$,
:$$ s_0 = 4\,{\rm V},\hspace{0.2cm} T_{\rm B} = 1\,{\rm ns},\hspace{0.2cm}N_0 = 2 \cdot 10^{-9}\, {\rm V^2/Hz} \hspace{0.05cm}.$$
 
  
Die Bitfehlerwahrscheinlichkeit dieses „Basisbandsystems” wurde bereits im Kapitel  [[Digital_Signal_Transmission/Fehlerwahrscheinlichkeit_bei_Basisbandübertragung|Fehlerwahrscheinlichkeit bei Basisbandübertragung]]  angegeben (Index:  BB):
+
*receiver filter according to the matched filter principle,
:$$p_{\rm BB} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right )\hspace{0.2cm}{\rm mit}\hspace{0.2cm}\sigma_d = \sqrt{\frac{N_0}{2 \cdot T_{\rm B}}}.$$
 
  
Hierbei bezeichnet  $\sigma_{d}$  den Rauscheffektivwert am Entscheider und  ${\rm Q}(x)$  die komplementäre Gaußsche Fehlerfunktion, die hier tabellarisch gegeben ist.
+
*decision with the optimal threshold  $E = 0$.
  
Diese Fehlerwahrscheinlichkeit kann man auch in der Form
 
:$$p_{\rm BB} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right )$$
 
schreiben, wobei  $E_{\rm B}$  die „Energie pro Bit” bezeichnet.
 
  
Die Fehlerwahrscheinlichkeit eines vergleichbaren Übertragungssystems mit ''Binary Phase Shift Keying'' lautet  (Index:  BPSK):
+
Unless otherwise specified,  you should also assume the following numerical values:
:$$p_{\rm BPSK} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )\hspace{0.2cm}{\rm mit}\hspace{0.2cm}\sigma_d = \sqrt{{N_0}/{T_{\rm B}}}.$$
+
:$$ s_0 = 4\,{\rm V},\hspace{0.2cm} T_{\rm B} = 1\,{\rm ns},\hspace{0.2cm}N_0 = 2 \cdot 10^{-9}\, {\rm V^2/Hz} \hspace{0.05cm}.$$
  
 +
The bit error probability of this  "baseband system"  has already been given in the chapter  [[Digital_Signal_Transmission/Error_Probability_for_Baseband_Transmission|"Error Probability for Baseband Transmission"]]  $($Index:  $\rm BB)$:
 +
:$$p_{\rm BB} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right )\hspace{0.2cm}{\rm with}\hspace{0.2cm}\sigma_d = \sqrt{\frac{N_0}{2 \cdot T_{\rm B}}}.$$
  
 +
Here,  $\sigma_{d}$  denotes the noise rms value at the decision device and  ${\rm Q}(x)$  denotes the complementary Gaussian error function,  which is given here in tabular form.  This error probability can also be expressed in the form
 +
:$$p_{\rm BB} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ),$$
 +
where  $E_{\rm B}$  denotes  "energy per bit."
  
 +
The error probability of a comparable transmission system with  "Binary Phase Shift Keying" is   $($Index:  $\rm BPSK)$:
 +
:$$p_{\rm BPSK} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )\hspace{0.2cm}{\rm with}\hspace{0.2cm}\sigma_d = \sqrt{{N_0}/{T_{\rm B}}}.$$
  
  
  
''Hinweise:''
+
 
*Die Aufgabe gehört zum  Kapitel   [[Digital_Signal_Transmission/Lineare_digitale_Modulation_–_Kohärente_Demodulation|Lineare digitale Modulation – Kohärente Demodulation]].
+
Notes:  
*Bezug genommen wird auch auf das Kapitel  [[Digital_Signal_Transmission/Fehlerwahrscheinlichkeit_bei_Basisbandübertragung|Fehlerwahrscheinlichkeit bei Basisbandübertragung]].  
+
*The exercise belongs to the chapter   [[Digital_Signal_Transmission/Linear_Digital_Modulation_-_Coherent_Demodulation|"Linear Digital Modulation - Coherent Demodulation"]].
 +
 
 +
*Reference is also made to the chapter  [[Digital_Signal_Transmission/Error_Probability_for_Baseband_Transmission|"Error Probability for Baseband Transmission"]].  
 
   
 
   
*Sie können die Ergebnisse mit dem Applet  [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|Komplementäre Gaußsche Fehlerfunktionen]] überprüfen.
+
*You can check the results with the HTML5/JavaScript applet  [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|"Complementary Gaussian Error Functions"]].
*Da hier der Signalwert  $s_{0}$  in „Volt” angegeben ist und keine Angabe zum Bezugswiderstand gemacht wird, hat  $E_{\rm B}$  die Einheit „$\rm V^{2}/Hz$.
+
 
 +
*Since the signal value  $s_{0}$  is specified here in  "volts"  and no specification is made for the reference resistance,  $E_{\rm B}$  has the unit "$\rm V^{2}/Hz$".
  
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Es gelte &nbsp;$s_{0} = 4 \, \rm V$. Wie groß ist die Fehlerwahrscheinlichkeit &nbsp;$p_{\rm BB}$&nbsp; des Basisbandsystems?
+
{Let &nbsp;$s_{0} = 4 \, \rm V$.&nbsp; What is the error probability &nbsp;$p_{\rm BB}$&nbsp; of the baseband system?
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm BB} \ = \ $ { 0.00317 3% } $\ \% $
 
$p_{\rm BB} \ = \ $ { 0.00317 3% } $\ \% $
  
{Wie groß ist die Energie pro Bit beim Basisbandsystem mit &nbsp;$s_{0} = 4 \, \rm V$?
+
{What is the energy per bit for the baseband system with &nbsp;$s_{0} = 4 \, \rm V$?
 
|type="{}"}
 
|type="{}"}
 
$E_{\rm B} \ = \ $ { 1.6 3% } $\ \cdot 10^{-8}\  \rm V^{2}s $
 
$E_{\rm B} \ = \ $ { 1.6 3% } $\ \cdot 10^{-8}\  \rm V^{2}s $
  
{Welche Fehlerwahrscheinlichkeit &nbsp;$p_{\rm BB}$&nbsp; ergibt sich bei halber Sendeamplitude &nbsp;$(s_{0} = 2 \, \rm V)$?
+
{What is the error probability &nbsp;$p_{\rm BB}$&nbsp; at half the transmission amplitude &nbsp; $(s_{0} = 2 \, \rm V)$?
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm BB} \ = \ $ {  2.27 3% } $\ \% $
 
$p_{\rm BB} \ = \ $ {  2.27 3% } $\ \% $
  
{Geben Sie die Fehlerwahrscheinlichkeit der BPSK abhängig vom Quotienten &nbsp;$E_{\rm B}/N_{0}$&nbsp; an. Welches Ergebnis stimmt?
+
{Give the error probability of the BPSK depending on the quotient &nbsp;$E_{\rm B}/N_{0}$.&nbsp; Which result is correct?
 
|type="[]"}
 
|type="[]"}
 
- $p_{\rm BPSK} =  {\rm Q}\big [(E_{\rm B}/N_{0})^{1/2}\big ]$,
 
- $p_{\rm BPSK} =  {\rm Q}\big [(E_{\rm B}/N_{0})^{1/2}\big ]$,
Line 64: Line 66:
 
-$p_{\rm BPSK} =  {\rm Q}\big [(4\cdot E_{\rm B}/N_{0})^{1/2}\big ]$.
 
-$p_{\rm BPSK} =  {\rm Q}\big [(4\cdot E_{\rm B}/N_{0})^{1/2}\big ]$.
  
{Welche Fehlerwahrscheinlichkeiten ergeben sich für die BPSK und &nbsp;$E_{\rm B}/N_{0} = 8$&nbsp; bzw.  &nbsp;$E_{\rm B}/N_{0} = 2$?
+
{What are the error probabilities for the BPSK and &nbsp;$E_{\rm B}/N_{0} = 8$&nbsp; resp.  &nbsp;$E_{\rm B}/N_{0} = 2$?
 
|type="{}"}
 
|type="{}"}
 
$E_{\rm B}/N_{0} = 8\text{:}\hspace{0.4cm}  p_{\rm BPSK} \ = \ $ { 0.00317 3% } $\ \% $
 
$E_{\rm B}/N_{0} = 8\text{:}\hspace{0.4cm}  p_{\rm BPSK} \ = \ $ { 0.00317 3% } $\ \% $
Line 73: Line 75:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Der Rauscheffektivwert ergibt sich hier zu
+
'''(1)'''&nbsp; The noise rms value is given here by
 
:$$\sigma_d = \sqrt{\frac{N_0}{2 \cdot T_{\rm B}}}= \sqrt{\frac{2 \cdot 10^{-9}\,{\rm V^2/Hz}}{2 \cdot 1\,{\rm ns}}}= 1\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}p_{\rm BB} = {\rm Q}\left ({s_0}/{\sigma_d } \right
 
:$$\sigma_d = \sqrt{\frac{N_0}{2 \cdot T_{\rm B}}}= \sqrt{\frac{2 \cdot 10^{-9}\,{\rm V^2/Hz}}{2 \cdot 1\,{\rm ns}}}= 1\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}p_{\rm BB} = {\rm Q}\left ({s_0}/{\sigma_d } \right
 
  )=  {\rm Q}(4)= 0.317 \cdot 10^{-4}\hspace{0.1cm}\underline {= 0.00317 \%}.$$
 
  )=  {\rm Q}(4)= 0.317 \cdot 10^{-4}\hspace{0.1cm}\underline {= 0.00317 \%}.$$
  
  
'''(2)'''&nbsp; Beim Basisbandsystem gilt:
+
'''(2)'''&nbsp; For the baseband system:
 
:$$E_{\rm B} = s_0^2 \cdot T_{\rm B}= (4\,{\rm V})^2 \cdot
 
:$$E_{\rm B} = s_0^2 \cdot T_{\rm B}= (4\,{\rm V})^2 \cdot
 
10^{-9}\,{\rm s}\hspace{0.1cm}\underline {= 1.6 \cdot 10^{-8}\,{\rm V^2s}}.$$
 
10^{-9}\,{\rm s}\hspace{0.1cm}\underline {= 1.6 \cdot 10^{-8}\,{\rm V^2s}}.$$
Natürlich ergibt sich mit der zusätzlich angegebenen Gleichung die genau gleiche Fehlerwahrscheinlichkeit:
+
*Of course, the additional given equation gives the exact same error probability:
 
:$$p_{\rm BB} = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right
 
:$$p_{\rm BB} = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right
 
  ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot 16 \cdot 10^{-9}\,{\rm V^2s}}{2 \cdot 10^{-9}\, {\rm
 
  ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot 16 \cdot 10^{-9}\,{\rm V^2s}}{2 \cdot 10^{-9}\, {\rm
Line 89: Line 91:
 
  ) =  {\rm Q}(4)= 0.317 \cdot 10^{-4}.$$
 
  ) =  {\rm Q}(4)= 0.317 \cdot 10^{-4}.$$
  
Ein Vergleich mit der Teilaufgabe '''(4)''' von [[Aufgaben:1.08_Vergleich_ASK_und_BPSK|Aufgabe A1.8]] zeigt, dass &nbsp;$E_{\rm B}/N_{0} = 8$&nbsp; nicht (exakt) gleich &nbsp;$10 \cdot \lg E_{\rm B}/N_{0} = 9 \ \rm dB$&nbsp; ist. Im ersten Fall ergibt sich &nbsp;$p_{\rm BB} = 0.317 \cdot 10^{–4}$, im zweiten &nbsp;$p_{\rm BB} = 0.336 \cdot 10^{-4}$.
+
*A comparison with question&nbsp; '''(4)'''&nbsp; of&nbsp; [[Aufgaben:Exercise_1.08:_Comparison_of_ASK_and_BPSK|"Exercise 1.8"]]&nbsp; shows that &nbsp;$E_{\rm B}/N_{0} = 8$&nbsp; is not&nbsp; (exactly)&nbsp; equal to &nbsp;$10 \cdot \lg E_{\rm B}/N_{0} = 9 \ \rm dB$.&nbsp;  
 +
*In the first case &nbsp;$p_{\rm BB} = 0.317 \cdot 10^{–4}$ is obtained,&nbsp; in the second &nbsp;$p_{\rm BB} = 0.336 \cdot 10^{-4}$.
  
  
'''(3)'''&nbsp; Bei halber Sendeamplitude $s_{0} = 2 \ \rm V$ sinkt die Energie pro Bit auf ein Viertel und es gelten folgende Gleichungen:
+
'''(3)'''&nbsp; At half the transmission amplitude&nbsp; $s_{0} = 2 \ \rm V$,&nbsp; the energy per bit decreases to a quarter and the following equations apply:
 
:$$p_{\rm BB} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right )= {\rm Q}\left ( \frac{2\,{\rm V}}{1\,{\rm V}} \right )\hspace{0.1cm}\underline {= {\rm Q}(2)= 2.27 \%},$$
 
:$$p_{\rm BB} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right )= {\rm Q}\left ( \frac{2\,{\rm V}}{1\,{\rm V}} \right )\hspace{0.1cm}\underline {= {\rm Q}(2)= 2.27 \%},$$
 
:$$p_{\rm BB} = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot 4 \cdot 10^{-9}\,{\rm V^2s}}{2 \cdot 10^{-9}\, {\rm V^2/Hz} }} \hspace{0.1cm}\right ) = {\rm Q}(2)= 2.27 \%.$$
 
:$$p_{\rm BB} = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot 4 \cdot 10^{-9}\,{\rm V^2s}}{2 \cdot 10^{-9}\, {\rm V^2/Hz} }} \hspace{0.1cm}\right ) = {\rm Q}(2)= 2.27 \%.$$
  
  
'''(4)'''&nbsp; Unter Berücksichtigung der nur mehr halben Energie $E_{\rm B} = s^{2}_{0} \cdot T_{\rm B}/2$ erhält man mit $\sigma^{2}_{d} = N_{0}/T_{\rm B}$ und
+
'''(4)'''&nbsp; Considering only half the energy&nbsp; $E_{\rm B} = s^{2}_{0} \cdot T_{\rm B}/2$,&nbsp; we obtain with&nbsp; $\sigma^{2}_{d} = N_{0}/T_{\rm B}$&nbsp; and
 
:$$p_{\rm BPSK} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )= {\rm Q}\left ( \sqrt{{s_0^2 \cdot T_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }}\hspace{0.1cm}\right )$$
 
:$$p_{\rm BPSK} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )= {\rm Q}\left ( \sqrt{{s_0^2 \cdot T_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }}\hspace{0.1cm}\right )$$
das genau gleiche Ergebnis wie beim optimalen Basisbandsystem &nbsp; &rArr; &nbsp; <u>Lösungsvorschlag 2</u>.
+
the exact same result as for the optimal baseband system &nbsp; &rArr; &nbsp; <u>solution 2</u>.
  
  
'''(5)'''&nbsp; Es ergeben sich damit natürlich auch die genau gleichen Ergebnisse wie bei der Basisbandübertragung:
+
'''(5)'''&nbsp; Of course,&nbsp; this also gives the exact same results as for the baseband transmission:
 
:$${ E_{\rm B}}/{N_0 }= 8{\rm :} \hspace{0.2cm}p_{\rm BPSK} = {\rm Q}(\sqrt{16}) =  {\rm Q}(4)\hspace{0.1cm}\underline {= 0.00317 \%},$$
 
:$${ E_{\rm B}}/{N_0 }= 8{\rm :} \hspace{0.2cm}p_{\rm BPSK} = {\rm Q}(\sqrt{16}) =  {\rm Q}(4)\hspace{0.1cm}\underline {= 0.00317 \%},$$
 
:$${ E_{\rm B}}/{N_0 }= 2{\rm :} \hspace{0.2cm}p_{\rm BPSK} = {\rm Q}(\sqrt{4}) =  {\rm Q}(2) \hspace{0.1cm}\underline {= 2.27 \%}.$$
 
:$${ E_{\rm B}}/{N_0 }= 2{\rm :} \hspace{0.2cm}p_{\rm BPSK} = {\rm Q}(\sqrt{4}) =  {\rm Q}(2) \hspace{0.1cm}\underline {= 2.27 \%}.$$
Line 111: Line 114:
  
  
[[Category:Digital Signal Transmission: Exercises|^1.5 Lineare digitale Modulation^]]
+
[[Category:Digital Signal Transmission: Exercises|^1.5 Linear Digital Modulation^]]

Latest revision as of 16:12, 10 May 2022

Numerical values of function  ${\rm Q}(x)$

We assume the optimal baseband transmission system for binary signals with

  • bipolar amplitude coefficients  $a_{\nu} \in \{–1, +1\}$,
  • rectangular transmitted signal with signal values  $\pm s_{0}$  and bit duration  $T_{\rm B}$,
  • AWGN noise with noise power density  $N_{0}$,
  • receiver filter according to the matched filter principle,
  • decision with the optimal threshold  $E = 0$.


Unless otherwise specified,  you should also assume the following numerical values:

$$ s_0 = 4\,{\rm V},\hspace{0.2cm} T_{\rm B} = 1\,{\rm ns},\hspace{0.2cm}N_0 = 2 \cdot 10^{-9}\, {\rm V^2/Hz} \hspace{0.05cm}.$$

The bit error probability of this  "baseband system"  has already been given in the chapter  "Error Probability for Baseband Transmission"  $($Index:  $\rm BB)$:

$$p_{\rm BB} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right )\hspace{0.2cm}{\rm with}\hspace{0.2cm}\sigma_d = \sqrt{\frac{N_0}{2 \cdot T_{\rm B}}}.$$

Here,  $\sigma_{d}$  denotes the noise rms value at the decision device and  ${\rm Q}(x)$  denotes the complementary Gaussian error function,  which is given here in tabular form.  This error probability can also be expressed in the form

$$p_{\rm BB} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ),$$

where  $E_{\rm B}$  denotes  "energy per bit."

The error probability of a comparable transmission system with  "Binary Phase Shift Keying" is  $($Index:  $\rm BPSK)$:

$$p_{\rm BPSK} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )\hspace{0.2cm}{\rm with}\hspace{0.2cm}\sigma_d = \sqrt{{N_0}/{T_{\rm B}}}.$$



Notes:

  • Since the signal value  $s_{0}$  is specified here in  "volts"  and no specification is made for the reference resistance,  $E_{\rm B}$  has the unit "$\rm V^{2}/Hz$".



Questions

1

Let  $s_{0} = 4 \, \rm V$.  What is the error probability  $p_{\rm BB}$  of the baseband system?

$p_{\rm BB} \ = \ $

$\ \% $

2

What is the energy per bit for the baseband system with  $s_{0} = 4 \, \rm V$?

$E_{\rm B} \ = \ $

$\ \cdot 10^{-8}\ \rm V^{2}s $

3

What is the error probability  $p_{\rm BB}$  at half the transmission amplitude   $(s_{0} = 2 \, \rm V)$?

$p_{\rm BB} \ = \ $

$\ \% $

4

Give the error probability of the BPSK depending on the quotient  $E_{\rm B}/N_{0}$.  Which result is correct?

$p_{\rm BPSK} = {\rm Q}\big [(E_{\rm B}/N_{0})^{1/2}\big ]$,
$p_{\rm BPSK} = {\rm Q}\big [(2 \cdot E_{\rm B}/N_{0})^{1/2}\big ]$,
$p_{\rm BPSK} = {\rm Q}\big [(4\cdot E_{\rm B}/N_{0})^{1/2}\big ]$.

5

What are the error probabilities for the BPSK and  $E_{\rm B}/N_{0} = 8$  resp.  $E_{\rm B}/N_{0} = 2$?

$E_{\rm B}/N_{0} = 8\text{:}\hspace{0.4cm} p_{\rm BPSK} \ = \ $

$\ \% $
$E_{\rm B}/N_{0} = 2\text{:}\hspace{0.4cm} p_{\rm BPSK} \ = \ $

$\ \% $


Solution

(1)  The noise rms value is given here by

$$\sigma_d = \sqrt{\frac{N_0}{2 \cdot T_{\rm B}}}= \sqrt{\frac{2 \cdot 10^{-9}\,{\rm V^2/Hz}}{2 \cdot 1\,{\rm ns}}}= 1\,{\rm V}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}p_{\rm BB} = {\rm Q}\left ({s_0}/{\sigma_d } \right )= {\rm Q}(4)= 0.317 \cdot 10^{-4}\hspace{0.1cm}\underline {= 0.00317 \%}.$$


(2)  For the baseband system:

$$E_{\rm B} = s_0^2 \cdot T_{\rm B}= (4\,{\rm V})^2 \cdot 10^{-9}\,{\rm s}\hspace{0.1cm}\underline {= 1.6 \cdot 10^{-8}\,{\rm V^2s}}.$$
  • Of course, the additional given equation gives the exact same error probability:
$$p_{\rm BB} = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot 16 \cdot 10^{-9}\,{\rm V^2s}}{2 \cdot 10^{-9}\, {\rm V^2/Hz} }} \hspace{0.1cm}\right ) = {\rm Q}(4)= 0.317 \cdot 10^{-4}.$$
  • A comparison with question  (4)  of  "Exercise 1.8"  shows that  $E_{\rm B}/N_{0} = 8$  is not  (exactly)  equal to  $10 \cdot \lg E_{\rm B}/N_{0} = 9 \ \rm dB$. 
  • In the first case  $p_{\rm BB} = 0.317 \cdot 10^{–4}$ is obtained,  in the second  $p_{\rm BB} = 0.336 \cdot 10^{-4}$.


(3)  At half the transmission amplitude  $s_{0} = 2 \ \rm V$,  the energy per bit decreases to a quarter and the following equations apply:

$$p_{\rm BB} = {\rm Q}\left ( \frac{s_0}{\sigma_d } \right )= {\rm Q}\left ( \frac{2\,{\rm V}}{1\,{\rm V}} \right )\hspace{0.1cm}\underline {= {\rm Q}(2)= 2.27 \%},$$
$$p_{\rm BB} = {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{\frac{2 \cdot 4 \cdot 10^{-9}\,{\rm V^2s}}{2 \cdot 10^{-9}\, {\rm V^2/Hz} }} \hspace{0.1cm}\right ) = {\rm Q}(2)= 2.27 \%.$$


(4)  Considering only half the energy  $E_{\rm B} = s^{2}_{0} \cdot T_{\rm B}/2$,  we obtain with  $\sigma^{2}_{d} = N_{0}/T_{\rm B}$  and

$$p_{\rm BPSK} = {\rm Q}\left ( {s_0}/{\sigma_d } \right )= {\rm Q}\left ( \sqrt{{s_0^2 \cdot T_{\rm B}}/{N_0 }} \hspace{0.1cm}\right ) = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm B}}/{N_0 }}\hspace{0.1cm}\right )$$

the exact same result as for the optimal baseband system   ⇒   solution 2.


(5)  Of course,  this also gives the exact same results as for the baseband transmission:

$${ E_{\rm B}}/{N_0 }= 8{\rm :} \hspace{0.2cm}p_{\rm BPSK} = {\rm Q}(\sqrt{16}) = {\rm Q}(4)\hspace{0.1cm}\underline {= 0.00317 \%},$$
$${ E_{\rm B}}/{N_0 }= 2{\rm :} \hspace{0.2cm}p_{\rm BPSK} = {\rm Q}(\sqrt{4}) = {\rm Q}(2) \hspace{0.1cm}\underline {= 2.27 \%}.$$