Difference between revisions of "Aufgaben:Exercise 3.1: Impulse Response of the Coaxial Cable"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Digitalsignalübertragung/3.1 Ursachen/Auswirkungen von Impulsinterferenzen [[File:|right|]] ===Fragebogen=== <quiz display=simp…“)
 
 
(59 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/3.1 Ursachen/Auswirkungen von Impulsinterferenzen
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Causes_and_Effects_of_Intersymbol_Interference
 +
}}
  
 +
[[File:P_ID1370__Dig_A_3_1.png|right|frame|Impulse response of a coaxial cable]]
 +
The frequency response of a coaxial cable of length &nbsp;$l$&nbsp; can be represented by the following formula:
 +
:$$H_{\rm K}(f) \ = \ {\rm e}^{- \alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l}
 +
  \cdot
 +
  {\rm e}^{- (\alpha_1 + {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_1) \hspace{0.05cm}\cdot f \hspace{0.05cm}\cdot \hspace{0.05cm}l}  \cdot
 +
  \ {\rm e}^{- (\alpha_2 + {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2) \hspace{0.05cm}\cdot \sqrt{f} \hspace{0.05cm}\cdot \hspace{0.05cm}l}
 +
    \hspace{0.05cm}.$$
  
[[File:|right|]]
+
*The first term of this equation is due to the ohmic losses.
 +
* The second term is due to the transverse losses.
 +
*Dominant,&nbsp; however,&nbsp; is the skin effect,&nbsp; which is expressed by the third term.
  
  
===Fragebogen===
+
With the coefficients valid for a so-called&nbsp; "standard coaxial cable" &nbsp;$(2.6 \ \rm mm$&nbsp; core diameter and &nbsp;$9.5 \ \rm mm$&nbsp; outer diameter$)$
 +
:$$\alpha_2 = 0.2722 \hspace{0.15cm}\frac{\rm Np}{\rm km \cdot \sqrt{\rm MHz}}
 +
  \hspace{0.05cm},
 +
  \hspace{0.2cm} \beta_2 = 0.2722 \hspace{0.15cm}\frac{\rm rad}{\rm km \cdot \sqrt{\rm MHz}}\hspace{0.05cm},$$
 +
 
 +
the frequency response can also be represented as follows:
 +
:$$H_{\rm K}(f) \approx {\rm e}^{- 0.2722 \hspace{0.05cm}\cdot \hspace{0.05cm}l/{\rm km}
 +
  \hspace{0.05cm}\cdot \sqrt{f/{\rm MHz}} } \cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}
 +
  0.2722 \hspace{0.05cm}\cdot \hspace{0.05cm}l/{\rm km}
 +
  \hspace{0.05cm}\cdot \sqrt{f/{\rm MHz}}}
 +
    \hspace{0.05cm}.$$
 +
 
 +
That means: Attenuation curve &nbsp;$a_{\rm K}(f)$&nbsp; and phase curve &nbsp;$b_{\rm K}(f)$&nbsp; are identical except for the pseudo units&nbsp; "$\rm Np$"&nbsp; and&nbsp; "$\rm rad$".
 +
 
 +
If one defines the characteristic cable attenuation &nbsp;$a_*$&nbsp; at half the bit rate &nbsp;$(R_{\rm B}/2)$,&nbsp; one can treat digital systems of different bit rate and length uniformly:
 +
:$$a_{\star} = a_{\rm K}(f = {R_{\rm B}}/{2})
 +
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}H_{\rm K}(f) = {\rm e}^{-
 +
a_{\star} \cdot \sqrt{2f/R_{\rm
 +
  B}}}\cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} a_{\star} \cdot \sqrt{2f/R_{\rm
 +
  B}}}\hspace{0.4cm}{\rm with}\hspace{0.2cm}a_{\star}\hspace{0.2cm}{\rm in}\hspace{0.2cm}{\rm Np}
 +
  \hspace{0.05cm}.$$
 +
 
 +
The corresponding &nbsp;$\rm dB$&nbsp; value is larger by a factor of &nbsp;$8.688$.&nbsp; For a binary system, &nbsp;$R_{\rm B} = 1/T$&nbsp; applies,&nbsp; so that the characteristic cable attenuation is then related to the frequency &nbsp;$f = 1/(2T)$.&nbsp;
 +
 
 +
 
 +
The Fourier transform of &nbsp;$H_{\rm K}(f)$&nbsp; yields the impulse response &nbsp;$h_{\rm K}(t)$,&nbsp; which can be given in closed-analytic form for a coaxial cable with the approximations described here.&nbsp; For a binary system holds:
 +
:$$h_{\rm K}(t) =  \frac{ a_{\star}/T}{  \sqrt{2  \pi^2 \cdot (t/T)^3}}\hspace{0.1cm} \cdot
 +
  {\rm exp} \left[ - \frac{a_{\star}^2}{2  \pi  \cdot t/T}\hspace{0.1cm}\right]
 +
  \hspace{0.4cm}{\rm with}\hspace{0.2cm}a_{\star}\hspace{0.2cm}{\rm in}\hspace{0.2cm}{\rm Np}
 +
\hspace{0.05cm}.$$
 +
 
 +
Subtask&nbsp; '''(5)'''&nbsp; is related to the basic receiver pulse &nbsp;$g_r(t) = g_s(t) * h_K(t)$,&nbsp; where &nbsp;$g_s(t)$&nbsp; should be assumed to be a rectangular pulse with height &nbsp;$s_0$&nbsp; and duration &nbsp;$T$.&nbsp;
 +
 
 +
 
 +
 
 +
 
 +
 
 +
Notes:
 +
*The exercise belongs to the chapter&nbsp; [[Digital_Signal_Transmission/Causes_and_Effects_of_Intersymbol_Interference|"Causes and Effects of Intersymbol Interference"]].
 +
 
 +
*Reference is made in particular to the section&nbsp; [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces|"Signals, Basis Functions and Vector Spaces"]].
 +
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{What is the length &nbsp;$l$&nbsp; of a standard coaxial cable,&nbsp; if for the bit rate &nbsp;$R_{\rm B} = 140 \ \rm Mbit/s$&nbsp; the characteristic cable attenuation is &nbsp;$a_* = 60 \ \rm dB$?&nbsp;
|type="[]"}
+
|type="{}"}
- Falsch
+
$l \ = \ $ { 3 3% } $\ \rm km $
+ Richtig
 
  
 +
{At what time &nbsp;$t_{\rm max}$&nbsp; does &nbsp;$h_{\rm K}(t)$&nbsp; have its maximum?&nbsp; Let &nbsp;$a_* = 60 \ \rm dB$ be further valid.
 +
|type="{}"}
 +
$t_{\rm max}/T= \ $ { 5 3% }
  
{Input-Box Frage
+
{What is the maximum value of the impulse response?&nbsp; Let &nbsp;$a_* = 60 \ \rm dB$&nbsp; continue to hold.
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
${\rm Max}\  \big [h_{\rm K}(t)\big ]= \ $ { 0.03 3% } $\ \cdot 1/T $
 
 
  
 +
{At what time &nbsp;$t_{\rm 5\%}$&nbsp; is &nbsp;$h_{\rm K}(t)$&nbsp; less than &nbsp;$5\%$&nbsp; of the maximum?&nbsp; Consider only the first term of the given formula as an approximation.
 +
|type="{}"}
 +
$t_{\rm 5\%}/T= \ $ { 103.5 3% } 
  
 +
{Which statements are true for the basic receiver pulse &nbsp;$g_r(t)$?&nbsp;
 +
|type="[]"}
 +
- $g_r(t)$&nbsp; is twice as wide as &nbsp;$h_{\rm K}(t)$.
 +
+ It is approximately &nbsp;$g_r(t) = h_{\rm K}(t) \cdot s_0 \cdot T$.
 +
- $g_r(t)$&nbsp; can be approximated by a Gaussian pulse.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;
+
'''(1)'''&nbsp; The characteristic cable attenuation&nbsp; $a_* = 60 \ \rm dB$&nbsp; corresponds to about&nbsp; $6.9 \ \rm Np$.&nbsp; Therefore,&nbsp; it must hold:
'''(2)'''&nbsp;
+
:$$\alpha_2 \cdot l \cdot {R_{\rm B}}/{2} = 6.9\,\,{\rm
'''(3)'''&nbsp;
+
Np}$$
'''(4)'''&nbsp;
+
:$$\Rightarrow \hspace{0.3cm} l = \frac{6.9\,\,{\rm
'''(5)'''&nbsp;
+
Np}}{0.2722\,\,\frac{\rm Np}{{\rm km} \cdot \sqrt{\rm MHz}}
'''(6)'''&nbsp;
+
\cdot \sqrt{70\,\,{\rm MHz}}} \hspace{0.15cm}\underline {\approx 3\,\,{\rm km}}
 +
  \hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(2)'''&nbsp; With the substitutions
 +
:$$x =  { t}/{  T}, \hspace{0.2cm} K_1 = \frac{a_*/T}{\sqrt{2\pi^2 }}, \hspace{0.2cm}
 +
  K_2 = \frac{a_*^2}{2\pi}$$
 +
 
 +
the impulse response can be described as follows:
 +
:$$h_{\rm K}(x) =  K_1 \cdot x^{-3/2}\cdot {\rm e}^{-K_2/x}
 +
  \hspace{0.05cm}.$$
 +
 
 +
*By setting the derivative to zero,&nbsp; it follows:
 +
:$$- {3}/{2} \cdot  K_1 \cdot x^{-5/2}\cdot {\rm e}^{-K_2/x}+ K_1 \cdot x^{-3/2}\cdot {\rm
 +
  e}^{-K_2/x}\cdot (-K_2) \cdot (-x^{-2})= 0
 +
  \hspace{0.05cm}$$
 +
:$$\Rightarrow \hspace{0.3cm} {3}/{2} \cdot x^{-5/2} = K_2 \cdot
 +
x^{-7/2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 +
x_{\rm max} = {2}/{3} \cdot  K_2 = { a_{\star}^2}/({3  \pi})
 +
  \hspace{0.05cm}.$$
 +
 
 +
*This gives for&nbsp; $60 \ \rm dB$&nbsp; cable attenuation&nbsp; $(a_* &asymp; 6.9 \ \rm Np)$:
 +
:$$x_{\rm max} =  { t_{\rm max}}/{  T} \hspace{-0.1cm}: \hspace{0.2cm} { t_{\rm max}}/{  T} = { 6.9^2}/({3\pi})\hspace{0.15cm}\underline {\approx 5} \hspace{0.2cm}.$$
 +
 
  
 +
'''(3)'''&nbsp; Substituting the result of&nbsp; '''(2)'''&nbsp; into the given equation,&nbsp; we obtain&nbsp; (using&nbsp; $a$&nbsp; instead of&nbsp; $a_*$):
 +
:$$h_{\rm K}(t_{\rm max})  \ = \  \frac{1}{T} \cdot \frac{ a}{  \sqrt{2  \pi^2 \cdot \frac{a^6}{(3\pi)^3}}}\hspace{0.1cm} \cdot
 +
  {\rm exp} \left[ - \frac{a^2}{2\pi} \cdot
 +
  \frac{3\pi}{a^2}\hspace{0.1cm}\right]= \frac{1}{T} \cdot \frac{1}{a^2}\cdot
 +
  \sqrt{\frac{27 \pi
 +
}{2}} \cdot {\rm e}^{-3/2}\hspace{0.15cm}\approx  \frac{1}{T} \cdot \frac{1.453}{a^2}
 +
\hspace{0.05cm}.$$
 +
 +
*Thus,&nbsp; with&nbsp; $a = 6.9$,&nbsp; we arrive at the final result:
 +
:$${\rm Max} \ [h_{\rm K}(t)]  = \frac{1.453}{{6.9\,}^2} \cdot {1}/{T}\hspace{0.15cm}\underline {\approx  0.03 \cdot {1}/{T}}
 +
  \hspace{0.05cm}.$$
 +
 +
 +
'''(4)'''&nbsp; Using the result of subtask&nbsp; '''(3)''',&nbsp; the determining equation is:
 +
:$$\frac{ a/T}{  \sqrt{2  \pi^2 \cdot (t_{5\%}/T)^3}}= 0.05 \cdot 0.03 \cdot {1}/{T}= 0.0015  \cdot {1}/{T} \hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm}  (t_{5\%}/T)^{3/2} = \frac{a}{\sqrt{2} \cdot \pi \cdot
 +
  0.0015}\approx 1036 \hspace{0.3cm}\Rightarrow
 +
  \hspace{0.3cm}t_{5\%}/T \hspace{0.15cm}\underline {\approx 103.5}\hspace{0.05cm}.$$
 +
 +
*This value is slightly too large because the second term&nbsp; ${\rm e}^{\rm &ndash; 0.05} &asymp; 0.95$&nbsp; was neglected.
 +
*The exact calculation gives&nbsp; $t_{\rm 5\%}/T &asymp; 97$.
 +
 +
 +
'''(5)'''&nbsp; The <u>second solution</u>&nbsp; is correct.&nbsp; In general:
 +
:$$g_r(t) = g_s(t) \star h_{\rm K}(t) = s_0 \cdot
 +
\int_{t-T/2}^{t+T/2} h_{\rm K}(\tau) \,{\rm d} \tau .$$
 +
 +
*Since the channel impulse response&nbsp; $h_{\rm K}(t)$&nbsp; changes only insignificantly within a symbol duration,&nbsp; it can also be written for this purpose:
 +
:$$g_r(t) \approx h_{\rm K}(t) \cdot s_0 \cdot T .$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
 
+
[[Category:Digital Signal Transmission: Exercises|^3.1 Intersymbol Interference^]]
[[Category:Aufgaben zu Digitalsignalübertragung|^3.1 Ursachen/Auswirkungen von Impulsinterferenzen^]]
 

Latest revision as of 13:59, 31 May 2022

Impulse response of a coaxial cable

The frequency response of a coaxial cable of length  $l$  can be represented by the following formula:

$$H_{\rm K}(f) \ = \ {\rm e}^{- \alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l} \cdot {\rm e}^{- (\alpha_1 + {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_1) \hspace{0.05cm}\cdot f \hspace{0.05cm}\cdot \hspace{0.05cm}l} \cdot \ {\rm e}^{- (\alpha_2 + {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2) \hspace{0.05cm}\cdot \sqrt{f} \hspace{0.05cm}\cdot \hspace{0.05cm}l} \hspace{0.05cm}.$$
  • The first term of this equation is due to the ohmic losses.
  • The second term is due to the transverse losses.
  • Dominant,  however,  is the skin effect,  which is expressed by the third term.


With the coefficients valid for a so-called  "standard coaxial cable"  $(2.6 \ \rm mm$  core diameter and  $9.5 \ \rm mm$  outer diameter$)$

$$\alpha_2 = 0.2722 \hspace{0.15cm}\frac{\rm Np}{\rm km \cdot \sqrt{\rm MHz}} \hspace{0.05cm}, \hspace{0.2cm} \beta_2 = 0.2722 \hspace{0.15cm}\frac{\rm rad}{\rm km \cdot \sqrt{\rm MHz}}\hspace{0.05cm},$$

the frequency response can also be represented as follows:

$$H_{\rm K}(f) \approx {\rm e}^{- 0.2722 \hspace{0.05cm}\cdot \hspace{0.05cm}l/{\rm km} \hspace{0.05cm}\cdot \sqrt{f/{\rm MHz}} } \cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} 0.2722 \hspace{0.05cm}\cdot \hspace{0.05cm}l/{\rm km} \hspace{0.05cm}\cdot \sqrt{f/{\rm MHz}}} \hspace{0.05cm}.$$

That means: Attenuation curve  $a_{\rm K}(f)$  and phase curve  $b_{\rm K}(f)$  are identical except for the pseudo units  "$\rm Np$"  and  "$\rm rad$".

If one defines the characteristic cable attenuation  $a_*$  at half the bit rate  $(R_{\rm B}/2)$,  one can treat digital systems of different bit rate and length uniformly:

$$a_{\star} = a_{\rm K}(f = {R_{\rm B}}/{2}) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}H_{\rm K}(f) = {\rm e}^{- a_{\star} \cdot \sqrt{2f/R_{\rm B}}}\cdot {\rm e}^{- {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} a_{\star} \cdot \sqrt{2f/R_{\rm B}}}\hspace{0.4cm}{\rm with}\hspace{0.2cm}a_{\star}\hspace{0.2cm}{\rm in}\hspace{0.2cm}{\rm Np} \hspace{0.05cm}.$$

The corresponding  $\rm dB$  value is larger by a factor of  $8.688$.  For a binary system,  $R_{\rm B} = 1/T$  applies,  so that the characteristic cable attenuation is then related to the frequency  $f = 1/(2T)$. 


The Fourier transform of  $H_{\rm K}(f)$  yields the impulse response  $h_{\rm K}(t)$,  which can be given in closed-analytic form for a coaxial cable with the approximations described here.  For a binary system holds:

$$h_{\rm K}(t) = \frac{ a_{\star}/T}{ \sqrt{2 \pi^2 \cdot (t/T)^3}}\hspace{0.1cm} \cdot {\rm exp} \left[ - \frac{a_{\star}^2}{2 \pi \cdot t/T}\hspace{0.1cm}\right] \hspace{0.4cm}{\rm with}\hspace{0.2cm}a_{\star}\hspace{0.2cm}{\rm in}\hspace{0.2cm}{\rm Np} \hspace{0.05cm}.$$

Subtask  (5)  is related to the basic receiver pulse  $g_r(t) = g_s(t) * h_K(t)$,  where  $g_s(t)$  should be assumed to be a rectangular pulse with height  $s_0$  and duration  $T$. 



Notes:



Questions

1

What is the length  $l$  of a standard coaxial cable,  if for the bit rate  $R_{\rm B} = 140 \ \rm Mbit/s$  the characteristic cable attenuation is  $a_* = 60 \ \rm dB$? 

$l \ = \ $

$\ \rm km $

2

At what time  $t_{\rm max}$  does  $h_{\rm K}(t)$  have its maximum?  Let  $a_* = 60 \ \rm dB$ be further valid.

$t_{\rm max}/T= \ $

3

What is the maximum value of the impulse response?  Let  $a_* = 60 \ \rm dB$  continue to hold.

${\rm Max}\ \big [h_{\rm K}(t)\big ]= \ $

$\ \cdot 1/T $

4

At what time  $t_{\rm 5\%}$  is  $h_{\rm K}(t)$  less than  $5\%$  of the maximum?  Consider only the first term of the given formula as an approximation.

$t_{\rm 5\%}/T= \ $

5

Which statements are true for the basic receiver pulse  $g_r(t)$? 

$g_r(t)$  is twice as wide as  $h_{\rm K}(t)$.
It is approximately  $g_r(t) = h_{\rm K}(t) \cdot s_0 \cdot T$.
$g_r(t)$  can be approximated by a Gaussian pulse.


Solution

(1)  The characteristic cable attenuation  $a_* = 60 \ \rm dB$  corresponds to about  $6.9 \ \rm Np$.  Therefore,  it must hold:

$$\alpha_2 \cdot l \cdot {R_{\rm B}}/{2} = 6.9\,\,{\rm Np}$$
$$\Rightarrow \hspace{0.3cm} l = \frac{6.9\,\,{\rm Np}}{0.2722\,\,\frac{\rm Np}{{\rm km} \cdot \sqrt{\rm MHz}} \cdot \sqrt{70\,\,{\rm MHz}}} \hspace{0.15cm}\underline {\approx 3\,\,{\rm km}} \hspace{0.05cm}.$$


(2)  With the substitutions

$$x = { t}/{ T}, \hspace{0.2cm} K_1 = \frac{a_*/T}{\sqrt{2\pi^2 }}, \hspace{0.2cm} K_2 = \frac{a_*^2}{2\pi}$$

the impulse response can be described as follows:

$$h_{\rm K}(x) = K_1 \cdot x^{-3/2}\cdot {\rm e}^{-K_2/x} \hspace{0.05cm}.$$
  • By setting the derivative to zero,  it follows:
$$- {3}/{2} \cdot K_1 \cdot x^{-5/2}\cdot {\rm e}^{-K_2/x}+ K_1 \cdot x^{-3/2}\cdot {\rm e}^{-K_2/x}\cdot (-K_2) \cdot (-x^{-2})= 0 \hspace{0.05cm}$$
$$\Rightarrow \hspace{0.3cm} {3}/{2} \cdot x^{-5/2} = K_2 \cdot x^{-7/2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} x_{\rm max} = {2}/{3} \cdot K_2 = { a_{\star}^2}/({3 \pi}) \hspace{0.05cm}.$$
  • This gives for  $60 \ \rm dB$  cable attenuation  $(a_* ≈ 6.9 \ \rm Np)$:
$$x_{\rm max} = { t_{\rm max}}/{ T} \hspace{-0.1cm}: \hspace{0.2cm} { t_{\rm max}}/{ T} = { 6.9^2}/({3\pi})\hspace{0.15cm}\underline {\approx 5} \hspace{0.2cm}.$$


(3)  Substituting the result of  (2)  into the given equation,  we obtain  (using  $a$  instead of  $a_*$):

$$h_{\rm K}(t_{\rm max}) \ = \ \frac{1}{T} \cdot \frac{ a}{ \sqrt{2 \pi^2 \cdot \frac{a^6}{(3\pi)^3}}}\hspace{0.1cm} \cdot {\rm exp} \left[ - \frac{a^2}{2\pi} \cdot \frac{3\pi}{a^2}\hspace{0.1cm}\right]= \frac{1}{T} \cdot \frac{1}{a^2}\cdot \sqrt{\frac{27 \pi }{2}} \cdot {\rm e}^{-3/2}\hspace{0.15cm}\approx \frac{1}{T} \cdot \frac{1.453}{a^2} \hspace{0.05cm}.$$
  • Thus,  with  $a = 6.9$,  we arrive at the final result:
$${\rm Max} \ [h_{\rm K}(t)] = \frac{1.453}{{6.9\,}^2} \cdot {1}/{T}\hspace{0.15cm}\underline {\approx 0.03 \cdot {1}/{T}} \hspace{0.05cm}.$$


(4)  Using the result of subtask  (3),  the determining equation is:

$$\frac{ a/T}{ \sqrt{2 \pi^2 \cdot (t_{5\%}/T)^3}}= 0.05 \cdot 0.03 \cdot {1}/{T}= 0.0015 \cdot {1}/{T} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} (t_{5\%}/T)^{3/2} = \frac{a}{\sqrt{2} \cdot \pi \cdot 0.0015}\approx 1036 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}t_{5\%}/T \hspace{0.15cm}\underline {\approx 103.5}\hspace{0.05cm}.$$
  • This value is slightly too large because the second term  ${\rm e}^{\rm – 0.05} ≈ 0.95$  was neglected.
  • The exact calculation gives  $t_{\rm 5\%}/T ≈ 97$.


(5)  The second solution  is correct.  In general:

$$g_r(t) = g_s(t) \star h_{\rm K}(t) = s_0 \cdot \int_{t-T/2}^{t+T/2} h_{\rm K}(\tau) \,{\rm d} \tau .$$
  • Since the channel impulse response  $h_{\rm K}(t)$  changes only insignificantly within a symbol duration,  it can also be written for this purpose:
$$g_r(t) \approx h_{\rm K}(t) \cdot s_0 \cdot T .$$