Difference between revisions of "Aufgaben:Exercise 3.1Z: Frequency Response of the Coaxial Cable"

From LNTwww
(Die Seite wurde neu angelegt: „{{quiz-Header|Buchseite=Digitalsignalübertragung/Ursachen_und_Auswirkungen_von_Impulsinterferenzen }} [[File:|right|]] ===Fragebogen=== <quiz display=si…“)
 
 
(70 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Digitalsignalübertragung/Ursachen_und_Auswirkungen_von_Impulsinterferenzen
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Causes_and_Effects_of_Intersymbol_Interference
 
}}
 
}}
  
 +
[[File:P_ID1371__Dig_Z_3_1.png|right|frame|Some coaxial cable types]]
 +
A so-called&nbsp; "standard coaxial cable"
 +
*with core diameter &nbsp;$2.6 \ \rm mm$,
 +
*outer diameter &nbsp;$9.5 \ \rm mm$&nbsp; and
 +
*length &nbsp;$l$&nbsp;
  
[[File:|right|]]
 
  
 +
has the following frequency response:
 +
:$$H_{\rm K}(f)  \ = \ {\rm e}^{- \alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l}  \cdot
 +
  {\rm e}^{- \alpha_1  \hspace{0.05cm}\cdot \hspace{0.05cm}l \hspace{0.05cm}\cdot \hspace{0.05cm}f}  \cdot
 +
  {\rm e}^{- \alpha_2  \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot
 +
  \sqrt{f}}  \cdot
 +
  {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_1  \hspace{0.05cm}\cdot \hspace{0.05cm} l \hspace{0.05cm}\cdot \hspace{0.05cm}f}  \cdot
 +
  {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2  \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot
 +
  \sqrt{f}}  \hspace{0.05cm}.$$
  
===Fragebogen===
+
The attenuation parameters &nbsp;$\alpha_0$, &nbsp;$\alpha_1$&nbsp; and &nbsp;$\alpha_2$&nbsp; are to be entered in&nbsp; "Neper" &nbsp;$(\rm Np)$,&nbsp; the phase parameters &nbsp;$\beta_1$&nbsp; and &nbsp;$\beta_2$&nbsp; in&nbsp; "radian" &nbsp;$(\rm rad)$.&nbsp;
 +
The following numerical values apply:
 +
:$$\alpha_0 = 0.00162 \hspace{0.15cm}\frac{\rm Np}{\rm km} \hspace{0.05cm},\hspace{0.2cm}
 +
  \alpha_1 = 0.000435 \hspace{0.15cm}\frac{\rm Np}{\rm km\cdot{\rm MHz}} \hspace{0.05cm},
 +
  \hspace{0.2cm}
 +
  \alpha_2 = 0.2722 \hspace{0.15cm}\frac{\rm Np}{\rm km\cdot\sqrt{\rm MHz}} \hspace{0.05cm}.$$
 +
 
 +
Often,&nbsp; to describe a &nbsp;[[Linear_and_Time_Invariant_Systems/Systembeschreibung_im_Frequenzbereich|"linear time-invariant system"]]&nbsp; $\rm (LTI)$&nbsp; in terms of system theory,&nbsp; one uses
 +
* the attenuation function&nbsp; $($in &nbsp;$\rm Np$&nbsp; or &nbsp;$\rm dB)$:
 +
:$$a_{\rm K}(f) = - {\rm ln} \hspace{0.10cm}|H_{\rm K}(f)|= - 20 \cdot {\rm lg} \hspace{0.10cm}|H_{\rm K}(f)|
 +
    \hspace{0.05cm},$$
 +
* the phase function&nbsp; $($in &nbsp;$\rm rad$&nbsp; or&nbsp; $\rm degrees)$:
 +
:$$b_{\rm K}(f) = - {\rm arc} \hspace{0.10cm}H_{\rm K}(f)
 +
    \hspace{0.05cm}.$$
 +
 
 +
In practice one often uses the approximation
 +
:$$H_{\rm K}(f) =
 +
  {\rm e}^{- \alpha_2  \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot
 +
  \sqrt{f}}  \cdot
 +
  {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2  \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot
 +
  \sqrt{f}}$$
 +
:$$\Rightarrow \hspace{0.3cm} a_{\rm K}(f) = \alpha_2 \cdot l \cdot
 +
  \sqrt{f}, \hspace{0.2cm}b_{\rm K}(f) = a_{\rm K}(f) \cdot
 +
  \frac{\rm rad}{\rm Np}\hspace{0.05cm}.$$
 +
 
 +
This is allowed because &nbsp;$\alpha_2$&nbsp; and &nbsp;$\beta_2$&nbsp; have exactly the same numerical value &ndash; just different pseudo units.&nbsp;
 +
 
 +
Using the definition of the &nbsp;'''characteristic cable attenuation'''&nbsp; (in Neper or decibels)
 +
:$$a_{\rm * (Np)} = a_{\rm K}(f = {R_{\rm B}}/{2}) = 0.1151 \cdot a_{\rm * (dB)}$$
 +
 
 +
digital systems with different bit rate &nbsp;$R_{\rm B}$&nbsp; and cable length &nbsp;$l$&nbsp; can be treated uniformly.
 +
 
 +
 
 +
 
 +
 
 +
Notes:
 +
*The exercise belongs to the chapter&nbsp; [[Digital_Signal_Transmission/Causes_and_Effects_of_Intersymbol_Interference|"Causes and Effects of Intersymbol Interference"]].
 +
*Reference is made in particular to the section&nbsp; [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces|"Signals, Basis Functions and Vector Spaces"]].
 +
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{Which terms of &nbsp;$H_{\rm K}(f)$&nbsp; do not lead to distortions?&nbsp; The
 
|type="[]"}
 
|type="[]"}
- Falsch
+
+ $\alpha_0$&ndash;term,
+ Richtig
+
- $\alpha_1$&ndash;term,
 +
- $\alpha_2$&ndash;term,
 +
+ $\beta_1$&ndash;term,
 +
- $\beta_2$&ndash;term.
  
 +
{What length &nbsp;$l_{\rm max}$&nbsp; could such a cable have to attenuate a DC signal by no more than &nbsp;$1\%$?&nbsp;
 +
|type="{}"}
 +
$l_{\rm max} \ = \ $  { 6.173 3% } $\ {\rm km} $
  
{Input-Box Frage
+
{What is the attenuation&nbsp; $($in &nbsp;$\rm Np)$&nbsp; at the frequency &nbsp;$f = 70\,{\rm MHz}$,&nbsp; if the cable length is &nbsp;$l = 2\,{\rm km}$?&nbsp;
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$a_{\rm K}(f = 70\,{\rm MHz})\ = \ $ { 4.619 3% } $\ {\rm Np} $
  
 +
{All other things being equal,&nbsp; what attenuation results when only the &nbsp;$\alpha_2$&ndash;term is considered?
 +
|type="{}"}
 +
$a_{\rm K}(f = 70\,{\rm MHz})\ = \ $ { 4.555 3% } $\ {\rm Np} $
  
 +
{What is the formula for the conversion between &nbsp;$\rm Np$&nbsp; and &nbsp;$\rm dB$?&nbsp; What is the &nbsp;$\rm dB$&ndash;value for the attenuation calculated in subtask&nbsp; '''(4)'''?
 +
|type="{}"}
 +
$a_{\rm K}(f = 70\,{\rm MHz})\ = \ $ { 39.57 3% } $\ {\rm dB} $
  
 +
{Which of the statements are true provided that one restricts oneself to the &nbsp;$\alpha_2$&ndash;value with respect to the attenuation function?
 +
|type="[]"}
 +
+ One can also do without the phase term &nbsp;$\beta_1$.&nbsp;
 +
- One can also do without the phase term &nbsp;$\beta_2$.&nbsp;
 +
- $a_* &asymp; 40\,{\rm dB}$&nbsp; is valid for a system with &nbsp;$R_{\rm B} = 70\,{\rm Mbit/s}$&nbsp; and &nbsp;$l = 2\,{\rm km}$.
 +
+ $a_* &asymp; 40\,{\rm dB}$&nbsp; is valid for a system with &nbsp;$R_{\rm B} = 140\,{\rm Mbit/s}$&nbsp; and &nbsp;$l = 2\,{\rm km}$.
 +
+ $a_* &asymp; 40\,{\rm dB}$&nbsp; is valid for a system with &nbsp;$R_{\rm B} = 560\,{\rm Mbit/s}$&nbsp; and &nbsp;$l = 1\,{\rm km}$.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;
+
'''(1)'''&nbsp; <u>Solutions 1 and 4</u>&nbsp; are correct:
'''(2)'''&nbsp;
+
*The&nbsp; $\alpha_0$&ndash;term causes only frequency-independent attenuation and the&nbsp; $\beta_1$&ndash;term&nbsp; (linear phase)&nbsp; causes frequency-independent delay.
'''(3)'''&nbsp;
+
*All other terms contribute to the&nbsp; (linear)&nbsp; distortions.
'''(4)'''&nbsp;
+
 
'''(5)'''&nbsp;
+
 
'''(6)'''&nbsp;
+
 
 +
'''(2)'''&nbsp; With&nbsp; $a_0 = \alpha_0 \cdot l$,&nbsp; the following equation must be satisfied:
 +
:$${\rm e}^{- a_0 }  \ge 0.99
 +
  \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_0 < {\rm ln}
 +
  \hspace{0.10cm}\frac{1}{0.99}\approx 0.01\,\,{\rm (Np)}
 +
  \hspace{0.05cm}.$$
 +
 
 +
*This gives the following for the maximum cable length:
 +
:$$l_{\rm max} = \frac{a_0 }{\alpha_0 }  = \frac{0.01\,\,{\rm Np}}{0.00162\,\,{\rm Np/km}}\hspace{0.15cm}\underline {\approx 6.173\,\,{\rm km}}
 +
  \hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(3)'''&nbsp; For the attenuation curve,&nbsp; considering all terms:
 +
:$$a_{\rm K}(f) \ = \ \big[\alpha_0 + \alpha_1  \cdot f + \alpha_2  \cdot
 +
  \sqrt{f}\hspace{0.05cm}\big] \cdot l = \big [0.00162 + 0.000435  \cdot 70 + 0.2722  \cdot \sqrt{70}\hspace{0.05cm}\big]\, \frac{\rm Np}{\rm km} \cdot 2\,{\rm km} = \hspace{0.15cm}\underline {= 4.619\, {\rm Np}}\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(4)'''&nbsp; According to the calculation at point&nbsp; '''(3)''',&nbsp; the attenuation value&nbsp; $\underline {4.555\,{\rm Np}}$&nbsp; is obtained here.
 +
 
 +
 
 +
'''(5)'''&nbsp; For any positive quantity&nbsp; $x$&nbsp; holds:
 +
:$$x_{\rm Np} = {\rm ln} \hspace{0.10cm} x =  \frac{{\rm lg} \hspace{0.10cm} x}{{\rm lg} \hspace{0.10cm} {\rm e}}
 +
  =  \frac{1}{{20 \cdot \rm lg} \hspace{0.10cm} {\rm e}} \cdot
 +
  (20 \cdot {\rm lg} \hspace{0.10cm} x) = 0.1151 \cdot x_{\rm dB}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} x_{\rm dB} = 8.686 \cdot x_{\rm
 +
Np}\hspace{0.05cm}.$$
 +
*Thus,&nbsp; the attenuation value&nbsp; $4.555\,{\rm Np}$&nbsp; is identical to&nbsp; $\underline{39.57\,{\rm dB} }$.
 +
 
  
 +
'''(6)'''&nbsp; <u>Solutions 1, 4 and 5</u>&nbsp; are correct:
 +
*With the restriction to the attenuation term with&nbsp; $\alpha_2$,&nbsp; the following holds for the frequency response:
 +
:$$H_{\rm K}(f)  =
 +
  {\rm e}^{- \alpha_2  \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot
 +
  \sqrt{f}}  \cdot
 +
  {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_1  \hspace{0.05cm}\cdot \hspace{0.05cm} l \hspace{0.05cm}\cdot f}  \cdot
 +
  {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2  \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot
 +
  \sqrt{f}}  \hspace{0.05cm}.$$
 +
*If we omit the&nbsp; $\beta_1$&nbsp; phase term,&nbsp; nothing changes with respect to the distortions.&nbsp; Only the phase and group delay would become smaller&nbsp; (both equal)&nbsp; by the value&nbsp; $\tau_1 = (\beta_1 \cdot l)/2\pi$.
 +
*On the other hand,&nbsp; if the&nbsp; $\beta_2$&ndash;term is omitted,&nbsp; completely different ratios result:
 +
# The frequency response&nbsp; $H_{\rm K}(f)$&nbsp; now no longer satisfies the requirement of a causal system;&nbsp; for such a system&nbsp; $H_{\rm K}(f)$&nbsp; must be minimum-phase.
 +
# The impulse response&nbsp; $h_{\rm K}(t)$&nbsp; is symmetrical about&nbsp; $t = 0$&nbsp; with real frequency response,&nbsp; which does not correspond to the conditions.
 +
*Therefore as an approximation for the coaxial cable frequency response is allowed:
 +
:$$a_{\rm K}(f) = \alpha_2  \cdot l \cdot
 +
  \sqrt{f}, \hspace{0.2cm}b_{\rm K}(f) = a_{\rm K}(f) \cdot
 +
  \frac{\rm rad}{\rm Np}\hspace{0.05cm}.$$
 +
*That means:&nbsp; $a_{\rm K}(f)$&nbsp; and&nbsp; $b_{\rm K}(f)$&nbsp; of a coaxial cable are identical in form and differ only in their units.
 +
*For a digital system with bit rate&nbsp; $R_{\rm B} = 140\,{\rm Mbit/s}$ &nbsp; &#8658; &nbsp; $R_{\rm B}/2 = 70\,{\rm Mbit/s}$&nbsp; and cable length&nbsp; $l = 2\,{\rm km}$:&nbsp; <br> &nbsp; &nbsp; &nbsp; $a_* &asymp; 40\,{\rm dB}$ is indeed valid &ndash; see solution to subtask&nbsp; '''(5)'''.
 +
*A system with four times the bit rate&nbsp; $(R_{\rm B}/2 = 280\,{\rm Mbit/s})$&nbsp; and half the length&nbsp; $(l = 1\,{\rm km})$&nbsp; results in the same characteristic cable attenuation.
 +
*In contrast,&nbsp; for a system with&nbsp; $R_{\rm B}/2 = 35\,{\rm Mbit/s}$&nbsp; and&nbsp; $l = 2\,{\rm km}$&nbsp; holds:
 +
:$$a_{\rm dB} = 0.2722 \frac{\rm Np}{\rm km\cdot \sqrt{\rm MHz}}  \cdot 2 \ \rm km \cdot \sqrt{35 \ \rm MHz} \cdot 8.6859 \frac{\rm dB}{\rm Np} &asymp; 28 \ \rm dB.$$
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 37: Line 157:
 
{{Display}}
 
{{Display}}
  
[[Category:Aufgaben zu Digitalsignalübertragung|^3.1 Auswirkungen von Impulsinterferenzen^]]
+
[[Category:Digital Signal Transmission: Exercises|^3.1 Intersymbol Interference^]]

Latest revision as of 16:14, 31 May 2022

Some coaxial cable types

A so-called  "standard coaxial cable"

  • with core diameter  $2.6 \ \rm mm$,
  • outer diameter  $9.5 \ \rm mm$  and
  • length  $l$ 


has the following frequency response:

$$H_{\rm K}(f) \ = \ {\rm e}^{- \alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l} \cdot {\rm e}^{- \alpha_1 \hspace{0.05cm}\cdot \hspace{0.05cm}l \hspace{0.05cm}\cdot \hspace{0.05cm}f} \cdot {\rm e}^{- \alpha_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot \sqrt{f}} \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_1 \hspace{0.05cm}\cdot \hspace{0.05cm} l \hspace{0.05cm}\cdot \hspace{0.05cm}f} \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot \sqrt{f}} \hspace{0.05cm}.$$

The attenuation parameters  $\alpha_0$,  $\alpha_1$  and  $\alpha_2$  are to be entered in  "Neper"  $(\rm Np)$,  the phase parameters  $\beta_1$  and  $\beta_2$  in  "radian"  $(\rm rad)$.  The following numerical values apply:

$$\alpha_0 = 0.00162 \hspace{0.15cm}\frac{\rm Np}{\rm km} \hspace{0.05cm},\hspace{0.2cm} \alpha_1 = 0.000435 \hspace{0.15cm}\frac{\rm Np}{\rm km\cdot{\rm MHz}} \hspace{0.05cm}, \hspace{0.2cm} \alpha_2 = 0.2722 \hspace{0.15cm}\frac{\rm Np}{\rm km\cdot\sqrt{\rm MHz}} \hspace{0.05cm}.$$

Often,  to describe a  "linear time-invariant system"  $\rm (LTI)$  in terms of system theory,  one uses

  • the attenuation function  $($in  $\rm Np$  or  $\rm dB)$:
$$a_{\rm K}(f) = - {\rm ln} \hspace{0.10cm}|H_{\rm K}(f)|= - 20 \cdot {\rm lg} \hspace{0.10cm}|H_{\rm K}(f)| \hspace{0.05cm},$$
  • the phase function  $($in  $\rm rad$  or  $\rm degrees)$:
$$b_{\rm K}(f) = - {\rm arc} \hspace{0.10cm}H_{\rm K}(f) \hspace{0.05cm}.$$

In practice one often uses the approximation

$$H_{\rm K}(f) = {\rm e}^{- \alpha_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot \sqrt{f}} \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot \sqrt{f}}$$
$$\Rightarrow \hspace{0.3cm} a_{\rm K}(f) = \alpha_2 \cdot l \cdot \sqrt{f}, \hspace{0.2cm}b_{\rm K}(f) = a_{\rm K}(f) \cdot \frac{\rm rad}{\rm Np}\hspace{0.05cm}.$$

This is allowed because  $\alpha_2$  and  $\beta_2$  have exactly the same numerical value – just different pseudo units. 

Using the definition of the  characteristic cable attenuation  (in Neper or decibels)

$$a_{\rm * (Np)} = a_{\rm K}(f = {R_{\rm B}}/{2}) = 0.1151 \cdot a_{\rm * (dB)}$$

digital systems with different bit rate  $R_{\rm B}$  and cable length  $l$  can be treated uniformly.



Notes:



Questions

1

Which terms of  $H_{\rm K}(f)$  do not lead to distortions?  The

$\alpha_0$–term,
$\alpha_1$–term,
$\alpha_2$–term,
$\beta_1$–term,
$\beta_2$–term.

2

What length  $l_{\rm max}$  could such a cable have to attenuate a DC signal by no more than  $1\%$? 

$l_{\rm max} \ = \ $

$\ {\rm km} $

3

What is the attenuation  $($in  $\rm Np)$  at the frequency  $f = 70\,{\rm MHz}$,  if the cable length is  $l = 2\,{\rm km}$? 

$a_{\rm K}(f = 70\,{\rm MHz})\ = \ $

$\ {\rm Np} $

4

All other things being equal,  what attenuation results when only the  $\alpha_2$–term is considered?

$a_{\rm K}(f = 70\,{\rm MHz})\ = \ $

$\ {\rm Np} $

5

What is the formula for the conversion between  $\rm Np$  and  $\rm dB$?  What is the  $\rm dB$–value for the attenuation calculated in subtask  (4)?

$a_{\rm K}(f = 70\,{\rm MHz})\ = \ $

$\ {\rm dB} $

6

Which of the statements are true provided that one restricts oneself to the  $\alpha_2$–value with respect to the attenuation function?

One can also do without the phase term  $\beta_1$. 
One can also do without the phase term  $\beta_2$. 
$a_* ≈ 40\,{\rm dB}$  is valid for a system with  $R_{\rm B} = 70\,{\rm Mbit/s}$  and  $l = 2\,{\rm km}$.
$a_* ≈ 40\,{\rm dB}$  is valid for a system with  $R_{\rm B} = 140\,{\rm Mbit/s}$  and  $l = 2\,{\rm km}$.
$a_* ≈ 40\,{\rm dB}$  is valid for a system with  $R_{\rm B} = 560\,{\rm Mbit/s}$  and  $l = 1\,{\rm km}$.


Solution

(1)  Solutions 1 and 4  are correct:

  • The  $\alpha_0$–term causes only frequency-independent attenuation and the  $\beta_1$–term  (linear phase)  causes frequency-independent delay.
  • All other terms contribute to the  (linear)  distortions.


(2)  With  $a_0 = \alpha_0 \cdot l$,  the following equation must be satisfied:

$${\rm e}^{- a_0 } \ge 0.99 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_0 < {\rm ln} \hspace{0.10cm}\frac{1}{0.99}\approx 0.01\,\,{\rm (Np)} \hspace{0.05cm}.$$
  • This gives the following for the maximum cable length:
$$l_{\rm max} = \frac{a_0 }{\alpha_0 } = \frac{0.01\,\,{\rm Np}}{0.00162\,\,{\rm Np/km}}\hspace{0.15cm}\underline {\approx 6.173\,\,{\rm km}} \hspace{0.05cm}.$$


(3)  For the attenuation curve,  considering all terms:

$$a_{\rm K}(f) \ = \ \big[\alpha_0 + \alpha_1 \cdot f + \alpha_2 \cdot \sqrt{f}\hspace{0.05cm}\big] \cdot l = \big [0.00162 + 0.000435 \cdot 70 + 0.2722 \cdot \sqrt{70}\hspace{0.05cm}\big]\, \frac{\rm Np}{\rm km} \cdot 2\,{\rm km} = \hspace{0.15cm}\underline {= 4.619\, {\rm Np}}\hspace{0.05cm}.$$


(4)  According to the calculation at point  (3),  the attenuation value  $\underline {4.555\,{\rm Np}}$  is obtained here.


(5)  For any positive quantity  $x$  holds:

$$x_{\rm Np} = {\rm ln} \hspace{0.10cm} x = \frac{{\rm lg} \hspace{0.10cm} x}{{\rm lg} \hspace{0.10cm} {\rm e}} = \frac{1}{{20 \cdot \rm lg} \hspace{0.10cm} {\rm e}} \cdot (20 \cdot {\rm lg} \hspace{0.10cm} x) = 0.1151 \cdot x_{\rm dB}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} x_{\rm dB} = 8.686 \cdot x_{\rm Np}\hspace{0.05cm}.$$
  • Thus,  the attenuation value  $4.555\,{\rm Np}$  is identical to  $\underline{39.57\,{\rm dB} }$.


(6)  Solutions 1, 4 and 5  are correct:

  • With the restriction to the attenuation term with  $\alpha_2$,  the following holds for the frequency response:
$$H_{\rm K}(f) = {\rm e}^{- \alpha_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot \sqrt{f}} \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_1 \hspace{0.05cm}\cdot \hspace{0.05cm} l \hspace{0.05cm}\cdot f} \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot \sqrt{f}} \hspace{0.05cm}.$$
  • If we omit the  $\beta_1$  phase term,  nothing changes with respect to the distortions.  Only the phase and group delay would become smaller  (both equal)  by the value  $\tau_1 = (\beta_1 \cdot l)/2\pi$.
  • On the other hand,  if the  $\beta_2$–term is omitted,  completely different ratios result:
  1. The frequency response  $H_{\rm K}(f)$  now no longer satisfies the requirement of a causal system;  for such a system  $H_{\rm K}(f)$  must be minimum-phase.
  2. The impulse response  $h_{\rm K}(t)$  is symmetrical about  $t = 0$  with real frequency response,  which does not correspond to the conditions.
  • Therefore as an approximation for the coaxial cable frequency response is allowed:
$$a_{\rm K}(f) = \alpha_2 \cdot l \cdot \sqrt{f}, \hspace{0.2cm}b_{\rm K}(f) = a_{\rm K}(f) \cdot \frac{\rm rad}{\rm Np}\hspace{0.05cm}.$$
  • That means:  $a_{\rm K}(f)$  and  $b_{\rm K}(f)$  of a coaxial cable are identical in form and differ only in their units.
  • For a digital system with bit rate  $R_{\rm B} = 140\,{\rm Mbit/s}$   ⇒   $R_{\rm B}/2 = 70\,{\rm Mbit/s}$  and cable length  $l = 2\,{\rm km}$: 
          $a_* ≈ 40\,{\rm dB}$ is indeed valid – see solution to subtask  (5).
  • A system with four times the bit rate  $(R_{\rm B}/2 = 280\,{\rm Mbit/s})$  and half the length  $(l = 1\,{\rm km})$  results in the same characteristic cable attenuation.
  • In contrast,  for a system with  $R_{\rm B}/2 = 35\,{\rm Mbit/s}$  and  $l = 2\,{\rm km}$  holds:
$$a_{\rm dB} = 0.2722 \frac{\rm Np}{\rm km\cdot \sqrt{\rm MHz}} \cdot 2 \ \rm km \cdot \sqrt{35 \ \rm MHz} \cdot 8.6859 \frac{\rm dB}{\rm Np} ≈ 28 \ \rm dB.$$