Difference between revisions of "Aufgaben:Exercise 3.1Z: Frequency Response of the Coaxial Cable"

From LNTwww
 
(4 intermediate revisions by 2 users not shown)
Line 3: Line 3:
  
 
[[File:P_ID1371__Dig_Z_3_1.png|right|frame|Some coaxial cable types]]
 
[[File:P_ID1371__Dig_Z_3_1.png|right|frame|Some coaxial cable types]]
A so-called standard coaxial cable with core diameter  $2.6 \ \rm mm$, outer diameter  $9.5 \ \rm mm$  and length  $l$  has the following frequency response:
+
A so-called  "standard coaxial cable"
 +
*with core diameter  $2.6 \ \rm mm$,  
 +
*outer diameter  $9.5 \ \rm mm$  and  
 +
*length  $l$   
 +
 
 +
 
 +
has the following frequency response:
 
:$$H_{\rm K}(f)  \ = \ {\rm e}^{- \alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l}  \cdot
 
:$$H_{\rm K}(f)  \ = \ {\rm e}^{- \alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l}  \cdot
 
   {\rm e}^{- \alpha_1  \hspace{0.05cm}\cdot \hspace{0.05cm}l \hspace{0.05cm}\cdot \hspace{0.05cm}f}  \cdot
 
   {\rm e}^{- \alpha_1  \hspace{0.05cm}\cdot \hspace{0.05cm}l \hspace{0.05cm}\cdot \hspace{0.05cm}f}  \cdot
Line 12: Line 18:
 
   \sqrt{f}}  \hspace{0.05cm}.$$
 
   \sqrt{f}}  \hspace{0.05cm}.$$
  
The attenuation parameters  $\alpha_0$,  $\alpha_1$  and  $\alpha_2$  are to be entered in Neper  $(\rm Np)$, the phase parameters  $\beta_1$  and  $\beta_2$  in Radian  $(\rm rad)$. 
+
The attenuation parameters  $\alpha_0$,  $\alpha_1$  and  $\alpha_2$  are to be entered in  "Neper"  $(\rm Np)$,  the phase parameters  $\beta_1$  and  $\beta_2$  in  "radian"  $(\rm rad)$. 
 
The following numerical values apply:
 
The following numerical values apply:
 
:$$\alpha_0 = 0.00162 \hspace{0.15cm}\frac{\rm Np}{\rm km} \hspace{0.05cm},\hspace{0.2cm}
 
:$$\alpha_0 = 0.00162 \hspace{0.15cm}\frac{\rm Np}{\rm km} \hspace{0.05cm},\hspace{0.2cm}
Line 19: Line 25:
 
   \alpha_2 = 0.2722 \hspace{0.15cm}\frac{\rm Np}{\rm km\cdot\sqrt{\rm MHz}} \hspace{0.05cm}.$$
 
   \alpha_2 = 0.2722 \hspace{0.15cm}\frac{\rm Np}{\rm km\cdot\sqrt{\rm MHz}} \hspace{0.05cm}.$$
  
Often, to describe a  [[Linear_and_Time_Invariant_Systems/Systembeschreibung_im_Frequenzbereich|linear time-invariant system]]  (LZI) in terms of system theory, one uses
+
Often,  to describe a  [[Linear_and_Time_Invariant_Systems/Systembeschreibung_im_Frequenzbereich|"linear time-invariant system"]]  $\rm (LTI)$  in terms of system theory,  one uses
* the attenuation function $($in  $\rm Np$  or  $\rm dB)$:  
+
* the attenuation function  $($in  $\rm Np$  or  $\rm dB)$:  
 
:$$a_{\rm K}(f) = - {\rm ln} \hspace{0.10cm}|H_{\rm K}(f)|= - 20 \cdot {\rm lg} \hspace{0.10cm}|H_{\rm K}(f)|
 
:$$a_{\rm K}(f) = - {\rm ln} \hspace{0.10cm}|H_{\rm K}(f)|= - 20 \cdot {\rm lg} \hspace{0.10cm}|H_{\rm K}(f)|
 
     \hspace{0.05cm},$$
 
     \hspace{0.05cm},$$
* the phase function $($in  $\rm rad$ or $\rm degrees)$:
+
* the phase function  $($in  $\rm rad$  or  $\rm degrees)$:
 
:$$b_{\rm K}(f) = - {\rm arc} \hspace{0.10cm}H_{\rm K}(f)
 
:$$b_{\rm K}(f) = - {\rm arc} \hspace{0.10cm}H_{\rm K}(f)
 
     \hspace{0.05cm}.$$
 
     \hspace{0.05cm}.$$
Line 32: Line 38:
 
   \sqrt{f}}  \cdot
 
   \sqrt{f}}  \cdot
 
   {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2  \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot
 
   {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2  \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot
   \sqrt{f}}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} a_{\rm K}(f) = \alpha_2 \cdot l \cdot
+
   \sqrt{f}}$$
 +
:$$\Rightarrow \hspace{0.3cm} a_{\rm K}(f) = \alpha_2 \cdot l \cdot
 
   \sqrt{f}, \hspace{0.2cm}b_{\rm K}(f) = a_{\rm K}(f) \cdot
 
   \sqrt{f}, \hspace{0.2cm}b_{\rm K}(f) = a_{\rm K}(f) \cdot
 
   \frac{\rm rad}{\rm Np}\hspace{0.05cm}.$$
 
   \frac{\rm rad}{\rm Np}\hspace{0.05cm}.$$
  
This is allowed because  $\alpha_2$  and  $\beta_2$  have exactly the same numerical value – just different pseudo units. Using the definition of the  '''characteristic cable attenuation'''  (in Neper or decibels)
+
This is allowed because  $\alpha_2$  and  $\beta_2$  have exactly the same numerical value – just different pseudo units. 
 +
 
 +
Using the definition of the  '''characteristic cable attenuation'''  (in Neper or decibels)
 
:$$a_{\rm * (Np)} = a_{\rm K}(f = {R_{\rm B}}/{2}) = 0.1151 \cdot a_{\rm * (dB)}$$
 
:$$a_{\rm * (Np)} = a_{\rm K}(f = {R_{\rm B}}/{2}) = 0.1151 \cdot a_{\rm * (dB)}$$
  
Line 44: Line 53:
  
  
 
+
Notes:  
 
+
*The exercise belongs to the chapter  [[Digital_Signal_Transmission/Causes_and_Effects_of_Intersymbol_Interference|"Causes and Effects of Intersymbol Interference"]].
''Notes:''
+
*Reference is made in particular to the section  [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces|"Signals, Basis Functions and Vector Spaces"]].
*The exercise belongs to the chapter  [[Digital_Signal_Transmission/Causes_and_Effects_of_Intersymbol_Interference|Causes and Effects of Intersymbol Interference]].
 
*Reference is made in particular to the section  [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces|Signals, Basis Functions and Vector Spaces]].
 
 
   
 
   
  
Line 56: Line 63:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Which terms of &nbsp;$H_{\rm K}(f)$&nbsp; do not lead to distortions? The
+
{Which terms of &nbsp;$H_{\rm K}(f)$&nbsp; do not lead to distortions?&nbsp; The
 
|type="[]"}
 
|type="[]"}
 
+ $\alpha_0$&ndash;term,
 
+ $\alpha_0$&ndash;term,
Line 68: Line 75:
 
$l_{\rm max} \ = \ $  { 6.173 3% } $\ {\rm km} $
 
$l_{\rm max} \ = \ $  { 6.173 3% } $\ {\rm km} $
  
{What is the attenuation $($in &nbsp;$\rm Np)$&nbsp; at the frequency &nbsp;$f = 70\,{\rm MHz}$, if the cable length is &nbsp;$l = 2\,{\rm km}$?&nbsp;  
+
{What is the attenuation&nbsp; $($in &nbsp;$\rm Np)$&nbsp; at the frequency &nbsp;$f = 70\,{\rm MHz}$,&nbsp; if the cable length is &nbsp;$l = 2\,{\rm km}$?&nbsp;  
 
|type="{}"}
 
|type="{}"}
 
$a_{\rm K}(f = 70\,{\rm MHz})\ = \ $ { 4.619 3% } $\ {\rm Np} $
 
$a_{\rm K}(f = 70\,{\rm MHz})\ = \ $ { 4.619 3% } $\ {\rm Np} $
  
{All other things being equal, what attenuation results when only the &nbsp;$\alpha_2$&ndash;term is considered?
+
{All other things being equal,&nbsp; what attenuation results when only the &nbsp;$\alpha_2$&ndash;term is considered?
 
|type="{}"}
 
|type="{}"}
 
$a_{\rm K}(f = 70\,{\rm MHz})\ = \ $ { 4.555 3% } $\ {\rm Np} $
 
$a_{\rm K}(f = 70\,{\rm MHz})\ = \ $ { 4.555 3% } $\ {\rm Np} $
  
{What is the formula for the conversion between &nbsp;$\rm Np$&nbsp; and &nbsp;$\rm dB$? What is the &nbsp;$\rm dB$ value for the attenuation calculated in '''(4)'''?
+
{What is the formula for the conversion between &nbsp;$\rm Np$&nbsp; and &nbsp;$\rm dB$?&nbsp; What is the &nbsp;$\rm dB$&ndash;value for the attenuation calculated in subtask&nbsp; '''(4)'''?
 
|type="{}"}
 
|type="{}"}
 
$a_{\rm K}(f = 70\,{\rm MHz})\ = \ $ { 39.57 3% } $\ {\rm dB} $
 
$a_{\rm K}(f = 70\,{\rm MHz})\ = \ $ { 39.57 3% } $\ {\rm dB} $
Line 82: Line 89:
 
{Which of the statements are true provided that one restricts oneself to the &nbsp;$\alpha_2$&ndash;value with respect to the attenuation function?
 
{Which of the statements are true provided that one restricts oneself to the &nbsp;$\alpha_2$&ndash;value with respect to the attenuation function?
 
|type="[]"}
 
|type="[]"}
+ One can also do without the phase term &nbsp;$\beta_1$&nbsp;
+
+ One can also do without the phase term &nbsp;$\beta_1$.&nbsp;
- One can also do without the phase term &nbsp;$\beta_2$&nbsp;  
+
- One can also do without the phase term &nbsp;$\beta_2$.&nbsp;  
 
- $a_* &asymp; 40\,{\rm dB}$&nbsp; is valid for a system with &nbsp;$R_{\rm B} = 70\,{\rm Mbit/s}$&nbsp; and &nbsp;$l = 2\,{\rm km}$.
 
- $a_* &asymp; 40\,{\rm dB}$&nbsp; is valid for a system with &nbsp;$R_{\rm B} = 70\,{\rm Mbit/s}$&nbsp; and &nbsp;$l = 2\,{\rm km}$.
 
+ $a_* &asymp; 40\,{\rm dB}$&nbsp; is valid for a system with &nbsp;$R_{\rm B} = 140\,{\rm Mbit/s}$&nbsp; and &nbsp;$l = 2\,{\rm km}$.
 
+ $a_* &asymp; 40\,{\rm dB}$&nbsp; is valid for a system with &nbsp;$R_{\rm B} = 140\,{\rm Mbit/s}$&nbsp; and &nbsp;$l = 2\,{\rm km}$.
Line 91: Line 98:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; <u>Solutions 1 and 4</u> are correct:
+
'''(1)'''&nbsp; <u>Solutions 1 and 4</u>&nbsp; are correct:
*The $\alpha_0$&ndash;term causes only frequency-independent attenuation and the $\beta_1$&ndash;term (linear phase) causes frequency-independent delay.
+
*The&nbsp; $\alpha_0$&ndash;term causes only frequency-independent attenuation and the&nbsp; $\beta_1$&ndash;term&nbsp; (linear phase)&nbsp; causes frequency-independent delay.
*All other terms contribute to the (linear) distortions.
+
*All other terms contribute to the&nbsp; (linear)&nbsp; distortions.
  
  
  
'''(2)'''&nbsp; With $a_0 = \alpha_0 \cdot l$, the following equation must be satisfied:
+
'''(2)'''&nbsp; With&nbsp; $a_0 = \alpha_0 \cdot l$,&nbsp; the following equation must be satisfied:
 
:$${\rm e}^{- a_0 }  \ge 0.99
 
:$${\rm e}^{- a_0 }  \ge 0.99
 
   \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_0 < {\rm ln}
 
   \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_0 < {\rm ln}
Line 103: Line 110:
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
This gives the following for the maximum cable length
+
*This gives the following for the maximum cable length:
 
:$$l_{\rm max} = \frac{a_0 }{\alpha_0 }  = \frac{0.01\,\,{\rm Np}}{0.00162\,\,{\rm Np/km}}\hspace{0.15cm}\underline {\approx 6.173\,\,{\rm km}}
 
:$$l_{\rm max} = \frac{a_0 }{\alpha_0 }  = \frac{0.01\,\,{\rm Np}}{0.00162\,\,{\rm Np/km}}\hspace{0.15cm}\underline {\approx 6.173\,\,{\rm km}}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; For the attenuation curve, considering all terms:
+
'''(3)'''&nbsp; For the attenuation curve,&nbsp; considering all terms:
 
:$$a_{\rm K}(f) \ = \ \big[\alpha_0 + \alpha_1  \cdot f + \alpha_2  \cdot
 
:$$a_{\rm K}(f) \ = \ \big[\alpha_0 + \alpha_1  \cdot f + \alpha_2  \cdot
 
   \sqrt{f}\hspace{0.05cm}\big] \cdot l = \big [0.00162 + 0.000435  \cdot 70 + 0.2722  \cdot \sqrt{70}\hspace{0.05cm}\big]\, \frac{\rm Np}{\rm km} \cdot 2\,{\rm km} = \hspace{0.15cm}\underline {= 4.619\, {\rm Np}}\hspace{0.05cm}.$$
 
   \sqrt{f}\hspace{0.05cm}\big] \cdot l = \big [0.00162 + 0.000435  \cdot 70 + 0.2722  \cdot \sqrt{70}\hspace{0.05cm}\big]\, \frac{\rm Np}{\rm km} \cdot 2\,{\rm km} = \hspace{0.15cm}\underline {= 4.619\, {\rm Np}}\hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; According to the calculation at point (3), the attenuation value $\underline {4.555\,{\rm Np}}$ is obtained here.
+
'''(4)'''&nbsp; According to the calculation at point&nbsp; '''(3)''',&nbsp; the attenuation value&nbsp; $\underline {4.555\,{\rm Np}}$&nbsp; is obtained here.
  
  
'''(5)'''&nbsp; For any positive quantity $x$ holds:
+
'''(5)'''&nbsp; For any positive quantity&nbsp; $x$&nbsp; holds:
 
:$$x_{\rm Np} = {\rm ln} \hspace{0.10cm} x =  \frac{{\rm lg} \hspace{0.10cm} x}{{\rm lg} \hspace{0.10cm} {\rm e}}
 
:$$x_{\rm Np} = {\rm ln} \hspace{0.10cm} x =  \frac{{\rm lg} \hspace{0.10cm} x}{{\rm lg} \hspace{0.10cm} {\rm e}}
 
   =  \frac{1}{{20 \cdot \rm lg} \hspace{0.10cm} {\rm e}} \cdot
 
   =  \frac{1}{{20 \cdot \rm lg} \hspace{0.10cm} {\rm e}} \cdot
 
   (20 \cdot {\rm lg} \hspace{0.10cm} x) = 0.1151 \cdot x_{\rm dB}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} x_{\rm dB} = 8.686 \cdot x_{\rm
 
   (20 \cdot {\rm lg} \hspace{0.10cm} x) = 0.1151 \cdot x_{\rm dB}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} x_{\rm dB} = 8.686 \cdot x_{\rm
 
  Np}\hspace{0.05cm}.$$
 
  Np}\hspace{0.05cm}.$$
Thus, the attenuation value $4.555\,{\rm Np}$ is identical to $\underline{39.57\,{\rm dB} }$.
+
*Thus,&nbsp; the attenuation value&nbsp; $4.555\,{\rm Np}$&nbsp; is identical to&nbsp; $\underline{39.57\,{\rm dB} }$.
  
  
'''(6)'''&nbsp; <u>Solutions 1, 4 and 5</u> are correct:
+
'''(6)'''&nbsp; <u>Solutions 1, 4 and 5</u>&nbsp; are correct:
*With the restriction to the attenuation term with $\alpha_2$, the following holds for the frequency response:
+
*With the restriction to the attenuation term with&nbsp; $\alpha_2$,&nbsp; the following holds for the frequency response:
 
:$$H_{\rm K}(f)  =
 
:$$H_{\rm K}(f)  =
 
   {\rm e}^{- \alpha_2  \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot
 
   {\rm e}^{- \alpha_2  \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot
Line 132: Line 139:
 
   {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2  \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot
 
   {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2  \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot
 
   \sqrt{f}}  \hspace{0.05cm}.$$
 
   \sqrt{f}}  \hspace{0.05cm}.$$
*If we omit the $\beta_1$ phase term, nothing changes with respect to the distortions. Only the phase and group delay would become smaller (both equal) by the value $\tau_1 = (\beta_1 \cdot l)/2\pi$.
+
*If we omit the&nbsp; $\beta_1$&nbsp; phase term,&nbsp; nothing changes with respect to the distortions.&nbsp; Only the phase and group delay would become smaller&nbsp; (both equal)&nbsp; by the value&nbsp; $\tau_1 = (\beta_1 \cdot l)/2\pi$.
*On the other hand, if the $\beta_2$&ndash;term is omitted, completely different ratios result:
+
*On the other hand,&nbsp; if the&nbsp; $\beta_2$&ndash;term is omitted,&nbsp; completely different ratios result:
:: The frequency response $H_{\rm K}(f)$ now no longer satisfies the requirement of a causal system; for such a system $H_{\rm K}(f)$ must be minimum-phase.
+
# The frequency response&nbsp; $H_{\rm K}(f)$&nbsp; now no longer satisfies the requirement of a causal system;&nbsp; for such a system&nbsp; $H_{\rm K}(f)$&nbsp; must be minimum-phase.
:: The impulse response $h_{\rm K}(t)$ is symmetrical about $t = 0$ with real frequency response, which does not correspond to the conditions.
+
# The impulse response&nbsp; $h_{\rm K}(t)$&nbsp; is symmetrical about&nbsp; $t = 0$&nbsp; with real frequency response,&nbsp; which does not correspond to the conditions.
 
*Therefore as an approximation for the coaxial cable frequency response is allowed:
 
*Therefore as an approximation for the coaxial cable frequency response is allowed:
 
:$$a_{\rm K}(f) = \alpha_2  \cdot l \cdot
 
:$$a_{\rm K}(f) = \alpha_2  \cdot l \cdot
 
   \sqrt{f}, \hspace{0.2cm}b_{\rm K}(f) = a_{\rm K}(f) \cdot
 
   \sqrt{f}, \hspace{0.2cm}b_{\rm K}(f) = a_{\rm K}(f) \cdot
 
   \frac{\rm rad}{\rm Np}\hspace{0.05cm}.$$
 
   \frac{\rm rad}{\rm Np}\hspace{0.05cm}.$$
*That means: $a_{\rm K}(f)$ and $b_{\rm K}(f)$ of a coaxial cable are identical in form and differ only in their units.
+
*That means:&nbsp; $a_{\rm K}(f)$&nbsp; and&nbsp; $b_{\rm K}(f)$&nbsp; of a coaxial cable are identical in form and differ only in their units.
*For a digital system with bit rate $R_{\rm B} = 140\,{\rm Mbit/s}$ &#8658; $R_{\rm B}/2 = 70\,{\rm Mbit/s}$ and cable length $l = 2\,{\rm km}$, $a_* &asymp; 40\,{\rm dB}$ is indeed valid &ndash; see solution to '''(5)'''.  
+
*For a digital system with bit rate&nbsp; $R_{\rm B} = 140\,{\rm Mbit/s}$ &nbsp; &#8658; &nbsp; $R_{\rm B}/2 = 70\,{\rm Mbit/s}$&nbsp; and cable length&nbsp; $l = 2\,{\rm km}$:&nbsp; <br> &nbsp; &nbsp; &nbsp; $a_* &asymp; 40\,{\rm dB}$ is indeed valid &ndash; see solution to subtask&nbsp; '''(5)'''.  
*A system with four times the bit rate ($R_{\rm B}/2 = 280\,{\rm Mbit/s}$) and half the length ($l = 1\,{\rm km}$) results in the same characteristic cable attenuation.
+
*A system with four times the bit rate&nbsp; $(R_{\rm B}/2 = 280\,{\rm Mbit/s})$&nbsp; and half the length&nbsp; $(l = 1\,{\rm km})$&nbsp; results in the same characteristic cable attenuation.
*In contrast, for a system with $R_{\rm B}/2 = 35\,{\rm Mbit/s}$ and $l = 2\,{\rm km}$ to
+
*In contrast,&nbsp; for a system with&nbsp; $R_{\rm B}/2 = 35\,{\rm Mbit/s}$&nbsp; and&nbsp; $l = 2\,{\rm km}$&nbsp; holds:
 
:$$a_{\rm dB} = 0.2722 \frac{\rm Np}{\rm km\cdot \sqrt{\rm MHz}}  \cdot 2 \ \rm km \cdot \sqrt{35 \ \rm MHz} \cdot 8.6859 \frac{\rm dB}{\rm Np} &asymp; 28 \ \rm dB.$$
 
:$$a_{\rm dB} = 0.2722 \frac{\rm Np}{\rm km\cdot \sqrt{\rm MHz}}  \cdot 2 \ \rm km \cdot \sqrt{35 \ \rm MHz} \cdot 8.6859 \frac{\rm dB}{\rm Np} &asymp; 28 \ \rm dB.$$
  
Line 150: Line 157:
 
{{Display}}
 
{{Display}}
  
[[Category:Digital Signal Transmission: Exercises|^3.1 Impulsinterferenzen^]]
+
[[Category:Digital Signal Transmission: Exercises|^3.1 Intersymbol Interference^]]

Latest revision as of 15:14, 31 May 2022

Some coaxial cable types

A so-called  "standard coaxial cable"

  • with core diameter  $2.6 \ \rm mm$,
  • outer diameter  $9.5 \ \rm mm$  and
  • length  $l$ 


has the following frequency response:

$$H_{\rm K}(f) \ = \ {\rm e}^{- \alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l} \cdot {\rm e}^{- \alpha_1 \hspace{0.05cm}\cdot \hspace{0.05cm}l \hspace{0.05cm}\cdot \hspace{0.05cm}f} \cdot {\rm e}^{- \alpha_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot \sqrt{f}} \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_1 \hspace{0.05cm}\cdot \hspace{0.05cm} l \hspace{0.05cm}\cdot \hspace{0.05cm}f} \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot \sqrt{f}} \hspace{0.05cm}.$$

The attenuation parameters  $\alpha_0$,  $\alpha_1$  and  $\alpha_2$  are to be entered in  "Neper"  $(\rm Np)$,  the phase parameters  $\beta_1$  and  $\beta_2$  in  "radian"  $(\rm rad)$.  The following numerical values apply:

$$\alpha_0 = 0.00162 \hspace{0.15cm}\frac{\rm Np}{\rm km} \hspace{0.05cm},\hspace{0.2cm} \alpha_1 = 0.000435 \hspace{0.15cm}\frac{\rm Np}{\rm km\cdot{\rm MHz}} \hspace{0.05cm}, \hspace{0.2cm} \alpha_2 = 0.2722 \hspace{0.15cm}\frac{\rm Np}{\rm km\cdot\sqrt{\rm MHz}} \hspace{0.05cm}.$$

Often,  to describe a  "linear time-invariant system"  $\rm (LTI)$  in terms of system theory,  one uses

  • the attenuation function  $($in  $\rm Np$  or  $\rm dB)$:
$$a_{\rm K}(f) = - {\rm ln} \hspace{0.10cm}|H_{\rm K}(f)|= - 20 \cdot {\rm lg} \hspace{0.10cm}|H_{\rm K}(f)| \hspace{0.05cm},$$
  • the phase function  $($in  $\rm rad$  or  $\rm degrees)$:
$$b_{\rm K}(f) = - {\rm arc} \hspace{0.10cm}H_{\rm K}(f) \hspace{0.05cm}.$$

In practice one often uses the approximation

$$H_{\rm K}(f) = {\rm e}^{- \alpha_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot \sqrt{f}} \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot \sqrt{f}}$$
$$\Rightarrow \hspace{0.3cm} a_{\rm K}(f) = \alpha_2 \cdot l \cdot \sqrt{f}, \hspace{0.2cm}b_{\rm K}(f) = a_{\rm K}(f) \cdot \frac{\rm rad}{\rm Np}\hspace{0.05cm}.$$

This is allowed because  $\alpha_2$  and  $\beta_2$  have exactly the same numerical value – just different pseudo units. 

Using the definition of the  characteristic cable attenuation  (in Neper or decibels)

$$a_{\rm * (Np)} = a_{\rm K}(f = {R_{\rm B}}/{2}) = 0.1151 \cdot a_{\rm * (dB)}$$

digital systems with different bit rate  $R_{\rm B}$  and cable length  $l$  can be treated uniformly.



Notes:



Questions

1

Which terms of  $H_{\rm K}(f)$  do not lead to distortions?  The

$\alpha_0$–term,
$\alpha_1$–term,
$\alpha_2$–term,
$\beta_1$–term,
$\beta_2$–term.

2

What length  $l_{\rm max}$  could such a cable have to attenuate a DC signal by no more than  $1\%$? 

$l_{\rm max} \ = \ $

$\ {\rm km} $

3

What is the attenuation  $($in  $\rm Np)$  at the frequency  $f = 70\,{\rm MHz}$,  if the cable length is  $l = 2\,{\rm km}$? 

$a_{\rm K}(f = 70\,{\rm MHz})\ = \ $

$\ {\rm Np} $

4

All other things being equal,  what attenuation results when only the  $\alpha_2$–term is considered?

$a_{\rm K}(f = 70\,{\rm MHz})\ = \ $

$\ {\rm Np} $

5

What is the formula for the conversion between  $\rm Np$  and  $\rm dB$?  What is the  $\rm dB$–value for the attenuation calculated in subtask  (4)?

$a_{\rm K}(f = 70\,{\rm MHz})\ = \ $

$\ {\rm dB} $

6

Which of the statements are true provided that one restricts oneself to the  $\alpha_2$–value with respect to the attenuation function?

One can also do without the phase term  $\beta_1$. 
One can also do without the phase term  $\beta_2$. 
$a_* ≈ 40\,{\rm dB}$  is valid for a system with  $R_{\rm B} = 70\,{\rm Mbit/s}$  and  $l = 2\,{\rm km}$.
$a_* ≈ 40\,{\rm dB}$  is valid for a system with  $R_{\rm B} = 140\,{\rm Mbit/s}$  and  $l = 2\,{\rm km}$.
$a_* ≈ 40\,{\rm dB}$  is valid for a system with  $R_{\rm B} = 560\,{\rm Mbit/s}$  and  $l = 1\,{\rm km}$.


Solution

(1)  Solutions 1 and 4  are correct:

  • The  $\alpha_0$–term causes only frequency-independent attenuation and the  $\beta_1$–term  (linear phase)  causes frequency-independent delay.
  • All other terms contribute to the  (linear)  distortions.


(2)  With  $a_0 = \alpha_0 \cdot l$,  the following equation must be satisfied:

$${\rm e}^{- a_0 } \ge 0.99 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_0 < {\rm ln} \hspace{0.10cm}\frac{1}{0.99}\approx 0.01\,\,{\rm (Np)} \hspace{0.05cm}.$$
  • This gives the following for the maximum cable length:
$$l_{\rm max} = \frac{a_0 }{\alpha_0 } = \frac{0.01\,\,{\rm Np}}{0.00162\,\,{\rm Np/km}}\hspace{0.15cm}\underline {\approx 6.173\,\,{\rm km}} \hspace{0.05cm}.$$


(3)  For the attenuation curve,  considering all terms:

$$a_{\rm K}(f) \ = \ \big[\alpha_0 + \alpha_1 \cdot f + \alpha_2 \cdot \sqrt{f}\hspace{0.05cm}\big] \cdot l = \big [0.00162 + 0.000435 \cdot 70 + 0.2722 \cdot \sqrt{70}\hspace{0.05cm}\big]\, \frac{\rm Np}{\rm km} \cdot 2\,{\rm km} = \hspace{0.15cm}\underline {= 4.619\, {\rm Np}}\hspace{0.05cm}.$$


(4)  According to the calculation at point  (3),  the attenuation value  $\underline {4.555\,{\rm Np}}$  is obtained here.


(5)  For any positive quantity  $x$  holds:

$$x_{\rm Np} = {\rm ln} \hspace{0.10cm} x = \frac{{\rm lg} \hspace{0.10cm} x}{{\rm lg} \hspace{0.10cm} {\rm e}} = \frac{1}{{20 \cdot \rm lg} \hspace{0.10cm} {\rm e}} \cdot (20 \cdot {\rm lg} \hspace{0.10cm} x) = 0.1151 \cdot x_{\rm dB}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} x_{\rm dB} = 8.686 \cdot x_{\rm Np}\hspace{0.05cm}.$$
  • Thus,  the attenuation value  $4.555\,{\rm Np}$  is identical to  $\underline{39.57\,{\rm dB} }$.


(6)  Solutions 1, 4 and 5  are correct:

  • With the restriction to the attenuation term with  $\alpha_2$,  the following holds for the frequency response:
$$H_{\rm K}(f) = {\rm e}^{- \alpha_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot \sqrt{f}} \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_1 \hspace{0.05cm}\cdot \hspace{0.05cm} l \hspace{0.05cm}\cdot f} \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2 \hspace{0.05cm}\cdot \hspace{0.05cm}l\hspace{0.05cm}\hspace{0.05cm}\cdot \sqrt{f}} \hspace{0.05cm}.$$
  • If we omit the  $\beta_1$  phase term,  nothing changes with respect to the distortions.  Only the phase and group delay would become smaller  (both equal)  by the value  $\tau_1 = (\beta_1 \cdot l)/2\pi$.
  • On the other hand,  if the  $\beta_2$–term is omitted,  completely different ratios result:
  1. The frequency response  $H_{\rm K}(f)$  now no longer satisfies the requirement of a causal system;  for such a system  $H_{\rm K}(f)$  must be minimum-phase.
  2. The impulse response  $h_{\rm K}(t)$  is symmetrical about  $t = 0$  with real frequency response,  which does not correspond to the conditions.
  • Therefore as an approximation for the coaxial cable frequency response is allowed:
$$a_{\rm K}(f) = \alpha_2 \cdot l \cdot \sqrt{f}, \hspace{0.2cm}b_{\rm K}(f) = a_{\rm K}(f) \cdot \frac{\rm rad}{\rm Np}\hspace{0.05cm}.$$
  • That means:  $a_{\rm K}(f)$  and  $b_{\rm K}(f)$  of a coaxial cable are identical in form and differ only in their units.
  • For a digital system with bit rate  $R_{\rm B} = 140\,{\rm Mbit/s}$   ⇒   $R_{\rm B}/2 = 70\,{\rm Mbit/s}$  and cable length  $l = 2\,{\rm km}$: 
          $a_* ≈ 40\,{\rm dB}$ is indeed valid – see solution to subtask  (5).
  • A system with four times the bit rate  $(R_{\rm B}/2 = 280\,{\rm Mbit/s})$  and half the length  $(l = 1\,{\rm km})$  results in the same characteristic cable attenuation.
  • In contrast,  for a system with  $R_{\rm B}/2 = 35\,{\rm Mbit/s}$  and  $l = 2\,{\rm km}$  holds:
$$a_{\rm dB} = 0.2722 \frac{\rm Np}{\rm km\cdot \sqrt{\rm MHz}} \cdot 2 \ \rm km \cdot \sqrt{35 \ \rm MHz} \cdot 8.6859 \frac{\rm dB}{\rm Np} ≈ 28 \ \rm dB.$$