Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 2.3: Binary Signal and Quaternary Signal"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Digitalsignalübertragung/2.2 Redundanzfreie Codierung [[File:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choice F…“)
 
 
(22 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/2.2 Redundanzfreie Codierung
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Redundancy-Free_Coding
 +
}}
  
[[File:|right|]]
+
[[File:P_ID1324__Dig_A_2_3.png|right|frame|ACF and PSD of binary signal&nbsp; (B)&nbsp; and quaternary signal&nbsp; (Q)]]
 +
Two redundancy-free transmission systems &nbsp;B&nbsp; and &nbsp;Q&nbsp; each with bipolar amplitude coefficients &nbsp;aν&nbsp; are to be compared.&nbsp; Both systems satisfy the first Nyquist condition.&nbsp; According to the root-root splitting,&nbsp; the spectrum &nbsp;Gd(f)&nbsp; of the basic detection pulse  is equal in shape to the power-spectral density &nbsp;Φs(f)&nbsp; of the transmitted signal.
  
 +
The following properties of the two systems are known:
 +
*From the binary system &nbsp;B,&nbsp; the power-spectral density &nbsp;Φs(f)&nbsp; at the transmitter is known and shown in the graph together with the description parameters.
  
===Fragebogen===
+
*The quaternary system &nbsp;Q&nbsp; uses a NRZ rectangular signal with the four possible amplitude values &nbsp;±s0&nbsp; and &nbsp;±s0/3, all with equal probability.
 +
 
 +
*s02&nbsp;  indicates the maximum instantaneous power that occurs only when one of the two&nbsp; "outer symbols"&nbsp; is transmitted.&nbsp; The descriptive parameters of system &nbsp;Q&nbsp; can be obtained from the triangular ACF in the adjacent graph.
 +
 
 +
 
 +
 
 +
 
 +
Notes:
 +
*The exercise is part of the chapter &nbsp;[[Digital_Signal_Transmission/Grundlagen_der_codierten_Übertragung|"Basics of Coded Transmission"]].
 +
 
 +
*Reference is also made to the chapter&nbsp; [[Digital_Signal_Transmission/Redundanzfreie_Codierung|"Redundancy-Free Coding"]].
 +
 
 +
*Consider that auto-correlation function&nbsp; (ACF)&nbsp; and power-spectral density&nbsp; (PSD)&nbsp; of a stochastic signal are always related via the Fourier transform.
 +
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
 
 +
{What is the symbol duration &nbsp;T&nbsp; of the binary system &nbsp;B&nbsp; with Nyquist property?
 +
|type="{}"}
 +
T =  { 5 3% }  ns
 +
 
 +
 
 +
{What is the (equivalent) bit rate &nbsp;RB&nbsp; of the binary system &nbsp;B&nbsp;?
 +
|type="{}"}
 +
RB =  { 200 3% }  Mbit/s
 +
 
 +
 
 +
{What is the transmitted power of the binary system &nbsp;B?
 +
|type="{}"}
 +
PS =  { 200 3% }  mW
 +
 
 +
{Which statements are true regarding the binary system &nbsp;B?&nbsp;
 
|type="[]"}
 
|type="[]"}
- Falsch
+
+ The ACF &nbsp;φs(τ)&nbsp; of the transmitted signal is &nbsp;sinc2–shaped.
+ Richtig
+
+ The energy ACF &nbsp;φgs(τ)&nbsp; of the basic transmission pulse is &nbsp;sinc2–shaped.
 +
- The basic transmission pulse &nbsp;gs(t)&nbsp; itself is &nbsp;sinc2–shaped.
 +
 
 +
{What is the symbol duration &nbsp;T&nbsp; of the quaternary system &nbsp;Q?&nbsp;
 +
|type="{}"}
 +
T =  { 10 3% }  ns
  
  
{Input-Box Frage
+
{What is the equivalent bit rate &nbsp;RB&nbsp; of the quaternary system &nbsp;Q?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$R_{\rm B} \ = \ $ { 200 3% }  Mbit/s
  
  
 +
{What is the transmitted  power &nbsp;PS&nbsp; of the quaternary system  &nbsp;Q?
 +
|type="{}"}
 +
PS =  { 100 3% }  mW
 +
 +
 +
{What is the maximum instantaneous transmitted power of the quaternary system &nbsp;Q?&nbsp;
 +
|type="{}"}
 +
s02 =  { 180 3% }  mW
  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;
+
'''(1)'''&nbsp; The Nyquist frequency&nbsp; fNyq=100 MHz&nbsp; can be read from the diagram.&nbsp; From this follows according to the properties of Nyquist systems:
'''(2)'''&nbsp;
+
:fNyq=12TT=12fNyq=5ns_.
'''(3)'''&nbsp;
+
 
'''(4)'''&nbsp;
+
 
'''(5)'''&nbsp;
+
'''(2)'''&nbsp; In the binary system,&nbsp; the bit rate is also the information flow and it holds:
'''(6)'''&nbsp;
+
:RB=1/T=200Mbit/s_=2fNyqbit/Hz.
 +
 
 +
 
 +
'''(3)'''&nbsp; The transmitted power is equal to the integral over&nbsp; Φs(f)&nbsp; and can be calculated as a triangular area:
 +
:PS= +Φs(f)df=109WHz200MHz=200mW_.
 +
 
 +
 
 +
'''(4)'''&nbsp; The&nbsp; <u>first two statements</u>&nbsp; are correct:
 +
*The Fourier inverse transform of the power-spectral density&nbsp; Φs(f)&nbsp; gives the sinc2–shaped ACF&nbsp; φs(τ).&nbsp; In general,&nbsp; the following relationship also holds:
 +
:φs(τ)=+λ=1/Tφa(λ)φgs(τλT).
 +
*However,&nbsp; for a redundancy-free binary system, &nbsp;φa(λ=0)=1,&nbsp; while all other discrete ACF values &nbsp;φa(λ0)&nbsp; are equal to 0.&nbsp; Thus,&nbsp; the energy ACF also has a&nbsp; sinc2–shaped curve &nbsp; (note: &nbsp; energy ACF and energy PSD are each dotted in this tutorial):
 +
:φgs(τ)=Tφs(τ).
 +
*The last statement is not true.&nbsp; For the following reasoning,&nbsp; we assume for simplicity that&nbsp; gs(t)&nbsp; is symmetric and thus&nbsp; Gs(f)&nbsp; is real.&nbsp; Then holds:
 +
:Φs(f)=1/T|Gs(f)|2Gs(f)=TΦs(f)gs(t).
 +
*Due to the square root in the above equation,&nbsp; the basic transmission pulse&nbsp; gs(t)&nbsp; is not&nbsp; sinc2–shaped in contrast to the basic detection pulse gd(t),&nbsp; which is equal in shape to the energy ACF&nbsp; φgs(τ)&nbsp; and thus&nbsp; sinc2–shaped.&nbsp; At the same time,&nbsp; \varphi^{^{\bullet}}_{gs}(\tau) = g_{s}(\tau) ∗ g_{s}(–\tau)&nbsp; holds.
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; The ACF&nbsp; \varphi_{s}(\tau)&nbsp; is limited to the range&nbsp; |\tau| ≤ T&nbsp; when the basic transmission pulse is an NRZ rectangle.&nbsp; From the graph,&nbsp; the symbol duration&nbsp; T \underline{= 10 \ \rm ns}.
 +
 
 +
 
 +
'''(6)'''&nbsp; For the quaternary signal,&nbsp; the information flow is the same as for the binary signal above because of the double symbol duration:
 +
:R_{\rm B} = {{\rm log_2(4)} }/ { T} \hspace{0.15cm}\underline {= 200\,\,{\rm Mbit/s}}\hspace{0.05cm}.
 +
 
 +
 
 +
'''(7)'''&nbsp; The transmitted power is equal to the ACF value at&nbsp; \tau = 0&nbsp; and can be read from the graph:
 +
:P_{\rm S} = \hspace{0.15cm}\underline {100\,\,{\rm mW}}.
 +
 
 +
 
 +
'''(8)'''&nbsp; For the redundancy-free quaternary signal with NRZ rectangular pulses,&nbsp; the average transmitted power is:
 +
:P_{\rm S} = {1}/ { 4} \cdot \left [ (-s_0)^2 + (-s_0/3)^2 + (+s_0/3)^2 +(+s_0)^2 \right ] = {5}/ { 9} \cdot s_0^2
 +
:\Rightarrow \hspace{0.3cm}s_0^2 = {9}/ {5} \cdot P_{\rm S} = {9}/ {5} \cdot 100\,\,{\rm mW}\hspace{0.15cm}\underline { = 180\,\,{\rm mW}}\hspace{0.05cm}.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 35: Line 115:
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^2.2 Redundanzfreie Codierung^]]
+
[[Category:Digital Signal Transmission: Exercises|^2.2 Redundancy-Free Coding^]]

Latest revision as of 17:16, 3 June 2022

ACF and PSD of binary signal  \rm (B)  and quaternary signal  \rm (Q)

Two redundancy-free transmission systems  \rm B  and  \rm Q  each with bipolar amplitude coefficients  a_{\nu}  are to be compared.  Both systems satisfy the first Nyquist condition.  According to the root-root splitting,  the spectrum  G_{d}(f)  of the basic detection pulse is equal in shape to the power-spectral density  {\it \Phi}_{s}(f)  of the transmitted signal.

The following properties of the two systems are known:

  • From the binary system  \rm B,  the power-spectral density  {\it \Phi}_{s}(f)  at the transmitter is known and shown in the graph together with the description parameters.
  • The quaternary system  \rm Q  uses a NRZ rectangular signal with the four possible amplitude values  ±s_{0}  and  ±s_{0}/3, all with equal probability.
  • {s_{0}}^{2}  indicates the maximum instantaneous power that occurs only when one of the two  "outer symbols"  is transmitted.  The descriptive parameters of system  \rm Q  can be obtained from the triangular ACF in the adjacent graph.



Notes:

  • Consider that auto-correlation function  \rm (ACF)  and power-spectral density  \rm (PSD)  of a stochastic signal are always related via the Fourier transform.



Questions

1

What is the symbol duration  T  of the binary system  \rm B  with Nyquist property?

T \ = \

\ \rm ns

2

What is the (equivalent) bit rate  R_{\rm B}  of the binary system  \rm B ?

R_{\rm B} \ = \

\ \rm Mbit/s

3

What is the transmitted power of the binary system  \rm B?

P_{\rm S} \ = \

\ \rm mW

4

Which statements are true regarding the binary system  \rm B

The ACF  \varphi_{s}(\tau)  of the transmitted signal is  \rm sinc^{2}–shaped.
The energy ACF  \varphi^{^{\bullet}}_{gs}(\tau)  of the basic transmission pulse is  \rm sinc^{2}–shaped.
The basic transmission pulse  g_{s}(t)  itself is  \rm sinc^{2}–shaped.

5

What is the symbol duration  T  of the quaternary system  \rm Q

T \ = \

\ \rm ns

6

What is the equivalent bit rate  R_{\rm B}  of the quaternary system  \rm Q?

R_{\rm B} \ = \

\ \rm Mbit/s

7

What is the transmitted power  P_{\rm S}  of the quaternary system  \rm Q?

P_{\rm S} \ = \

\ \rm mW

8

What is the maximum instantaneous transmitted power of the quaternary system  \rm Q

{s_{0}}^{2} \ = \

\ \rm mW


Solution

(1)  The Nyquist frequency  f_{\rm Nyq} = 100 \ \rm MHz  can be read from the diagram.  From this follows according to the properties of Nyquist systems:

f_{\rm Nyq} = \frac{1 } {2 \cdot T} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} T = \frac{1 } {2 \cdot f_{\rm Nyq}} \hspace{0.15cm}\underline{ =5\,{\rm ns}}\hspace{0.05cm}.


(2)  In the binary system,  the bit rate is also the information flow and it holds:

R_{\rm B} = {1 }/ { T} \hspace{0.15cm}\underline {= 200\,{\rm Mbit/s}}= 2 \cdot f_{\rm Nyq} \cdot{\rm bit}/{\rm Hz}\hspace{0.05cm}.


(3)  The transmitted power is equal to the integral over  {\it \Phi}_{s}(f)  and can be calculated as a triangular area:

P_{\rm S} = \ \int_{-\infty}^{+\infty} {\it \Phi}_s(f) \,{\rm d} f = 10^{-9} \frac{\rm W}{\rm Hz} \cdot 200\,\,{\rm MHz} \hspace{0.15cm}\underline { = 200\,\,{\rm mW}}.


(4)  The  first two statements  are correct:

  • The Fourier inverse transform of the power-spectral density  {\it \Phi}_{s}(f)  gives the \rm sinc^{2}–shaped ACF  \varphi_{s}(\tau).  In general,  the following relationship also holds:
\varphi_s(\tau) = \sum_{\lambda = -\infty}^{+\infty}{1}/{T} \cdot \varphi_a(\lambda)\cdot \varphi^{^{\bullet}}_{gs}(\tau - \lambda \cdot T)\hspace{0.05cm}.
  • However,  for a redundancy-free binary system,  \varphi_{a}(\lambda = 0) = 1,  while all other discrete ACF values  \varphi_{a}(\lambda \neq 0)  are equal to 0.  Thus,  the energy ACF also has a  \rm sinc^{2}–shaped curve   (note:   energy ACF and energy PSD are each dotted in this tutorial):
\varphi^{^{\bullet}}_{gs}(\tau ) = T \cdot \varphi_s(\tau) \hspace{0.05cm}.
  • The last statement is not true.  For the following reasoning,  we assume for simplicity that  g_{s}(t)  is symmetric and thus  G_{s}(f)  is real.  Then holds:
{\it \Phi}_{s}(f) = {1 }/ { T} \cdot |G_s(f)|^2\hspace{0.3cm}\Rightarrow \hspace{0.3cm}G_s(f) = \sqrt{{ T} \cdot {\it \Phi}_{s}(f)}\hspace{0.4cm} \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ \hspace{0.4cm}g_s(t) \hspace{0.05cm}.
  • Due to the square root in the above equation,  the basic transmission pulse  g_{s}(t)  is not  \rm sinc^{2}–shaped in contrast to the basic detection pulse g_{d}(t),  which is equal in shape to the energy ACF  \varphi^{^{\bullet}}_{gs}(\tau)  and thus  \rm sinc^{2}–shaped.  At the same time,  \varphi^{^{\bullet}}_{gs}(\tau) = g_{s}(\tau) ∗ g_{s}(–\tau)  holds.


(5)  The ACF  \varphi_{s}(\tau)  is limited to the range  |\tau| ≤ T  when the basic transmission pulse is an NRZ rectangle.  From the graph,  the symbol duration  T \underline{= 10 \ \rm ns}.


(6)  For the quaternary signal,  the information flow is the same as for the binary signal above because of the double symbol duration:

R_{\rm B} = {{\rm log_2(4)} }/ { T} \hspace{0.15cm}\underline {= 200\,\,{\rm Mbit/s}}\hspace{0.05cm}.


(7)  The transmitted power is equal to the ACF value at  \tau = 0  and can be read from the graph:

P_{\rm S} = \hspace{0.15cm}\underline {100\,\,{\rm mW}}.


(8)  For the redundancy-free quaternary signal with NRZ rectangular pulses,  the average transmitted power is:

P_{\rm S} = {1}/ { 4} \cdot \left [ (-s_0)^2 + (-s_0/3)^2 + (+s_0/3)^2 +(+s_0)^2 \right ] = {5}/ { 9} \cdot s_0^2
\Rightarrow \hspace{0.3cm}s_0^2 = {9}/ {5} \cdot P_{\rm S} = {9}/ {5} \cdot 100\,\,{\rm mW}\hspace{0.15cm}\underline { = 180\,\,{\rm mW}}\hspace{0.05cm}.