Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 2.3: Binary Signal and Quaternary Signal"

From LNTwww
 
(13 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Redundanzfreie Codierung
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Redundancy-Free_Coding
 
}}
 
}}
  
[[File:P_ID1324__Dig_A_2_3.png|right|frame|AKF und LDS von Binärsignal und Quaternärsignal]]
+
[[File:P_ID1324__Dig_A_2_3.png|right|frame|ACF and PSD of binary signal  (B)  and quaternary signal  (Q)]]
Es sollen zwei redundanzfreie Übertragungssysteme '''B''' und '''Q''' jeweils mit bipolaren Amplitudenkoeffizienten aν vergleichend gegenübergestellt werden. Beide Systeme erfüllen die erste Nyquistbedingung. Gemäß der Wurzel–Wurzel–Aufteilung ist das Spektrum Gd(f) des Detektionsgrundimpulses formgleich mit der spektralen Leistungsdichte Φs(f) des Sendesignals.
+
Two redundancy-free transmission systems  $\rm B  and  \rm Q$  each with bipolar amplitude coefficients  aν  are to be compared.  Both systems satisfy the first Nyquist condition.  According to the root-root splitting,  the spectrum  Gd(f)  of the basic detection pulse  is equal in shape to the power-spectral density  Φs(f)  of the transmitted signal.
Bekannt sind folgende Eigenschaften der beiden Systeme:
 
*Vom binären System '''B''' ist die spektrale Leistungsdichte Φs(f) am Sender bekannt und in der Grafik zusammen mit den Beschreibungsparametern dargestellt.
 
*Das System '''Q''' benutzt ein NRZ–Rechtecksignal mit den vier möglichen Amplitudenwerten ±s0 und ±s0/3, die alle mit gleicher Wahrscheinlichkeit auftreten.
 
*s02 hat die Einheit einer Leistung und gibt die maximale Momentanleistung an, die nur dann auftritt, wenn eines der beiden „äußeren Symbole” gesendet wird.
 
*Die Beschreibungsparameter von System '''Q''' können der dreieckförmigen AKF in nebenstehender Grafik entnommen werden.
 
  
 +
The following properties of the two systems are known:
 +
*From the binary system  B,  the power-spectral density  Φs(f)  at the transmitter is known and shown in the graph together with the description parameters.
  
 +
*The quaternary system  Q  uses a NRZ rectangular signal with the four possible amplitude values  ±s0  and  ±s0/3, all with equal probability.
  
''Hinweise:''
+
*s02  indicates the maximum instantaneous power that occurs only when one of the two  "outer symbols"  is transmitted.  The descriptive parameters of system  Q  can be obtained from the triangular ACF in the adjacent graph.
*Die Aufgabe gehört zum Kapitel  [[Digitalsignalübertragung/Grundlagen_der_codierten_Übertragung|Grundlagen der codierten Übertragung]].
 
*Bezug genommen wird auch auf das Kapitel [[Digitalsignalübertragung/Redundanzfreie_Codierung|Redundanzfreie Codierung]] .
 
*Berücksichtigen Sie, dass Autokorrelationsfunktion (AKF) und Leistungsdichtespektrum (LDS) eines stochastischen Signals stets über die Fouriertransformation zusammenhängen.
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
  
  
  
===Fragebogen===
+
 
 +
Notes:
 +
*The exercise is part of the chapter  [[Digital_Signal_Transmission/Grundlagen_der_codierten_Übertragung|"Basics of Coded Transmission"]].
 +
 
 +
*Reference is also made to the chapter  [[Digital_Signal_Transmission/Redundanzfreie_Codierung|"Redundancy-Free Coding"]].
 +
 
 +
*Consider that auto-correlation function  (ACF)  and power-spectral density  (PSD)  of a stochastic signal are always related via the Fourier transform.
 +
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Welche Symboldauer T hat das Binärsystem ('''B''') mit Nyquisteigenschaft?
+
{What is the symbol duration &nbsp;T&nbsp; of the binary system &nbsp;$\rm B$&nbsp; with Nyquist property?
 
|type="{}"}
 
|type="{}"}
 
T =  { 5 3% }  ns
 
T =  { 5 3% }  ns
  
  
{Wie groß ist die (äquivalente) Bitrate des Binärsystems  '''B'''?
+
{What is the (equivalent) bit rate &nbsp;$R_{\rm B}&nbsp; of the binary system &nbsp;\rm B$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
RB =  { 200 3% }  Mbit/s
 
RB =  { 200 3% }  Mbit/s
  
  
{Welche Leistung besitzt das Sendesignal des Binärsystems  '''B'''?
+
{What is the transmitted power of the binary system &nbsp;$\rm B$?
 
|type="{}"}
 
|type="{}"}
 
PS =  { 200 3% }  mW
 
PS =  { 200 3% }  mW
  
{Welche Aussagen sind bezüglich des Binärsystems  ('''B''') zutreffend?
+
{Which statements are true regarding the binary system &nbsp;$\rm B$?&nbsp;
 
|type="[]"}
 
|type="[]"}
+ Die AKF φs(τ) des Sendesignals ist $\rm si^{2}$–förmig.
+
+ The ACF &nbsp;φs(τ)&nbsp; of the transmitted signal is &nbsp;$\rm sinc^{2}$–shaped.
+ Die Energie–AKF φgs(τ) des Grundimpulses ist $\rm si^{2}$–förmig.
+
+ The energy ACF &nbsp;φgs(τ)&nbsp; of the basic transmission pulse is &nbsp;$\rm sinc^{2}$–shaped.
- Der Sendegrundimpuls gs(t) selbst ist $\rm si^{2}$–förmig.
+
- The basic transmission pulse &nbsp;gs(t)&nbsp; itself is &nbsp;$\rm sinc^{2}$–shaped.
  
{Welche Symboldauer weist das Quaternärsystem ('''Q''') auf?
+
{What is the symbol duration &nbsp;T&nbsp; of the quaternary system &nbsp;$\rm Q$?&nbsp;
 
|type="{}"}
 
|type="{}"}
 
T =  { 10 3% }  ns
 
T =  { 10 3% }  ns
  
  
{Wie groß ist die äquivalente Bitrate des Quaternärsystems  '''Q'''?
+
{What is the equivalent bit rate &nbsp;RB&nbsp; of the quaternary system &nbsp;$\rm Q$?
 
|type="{}"}
 
|type="{}"}
 
RB =  { 200 3% }  Mbit/s  
 
RB =  { 200 3% }  Mbit/s  
  
  
{Welche Leistung besitzt das Sendesignal des Quaternärsystems '''Q'''?
+
{What is the transmitted power &nbsp;PS&nbsp; of the quaternary system  &nbsp;$\rm Q$?
 
|type="{}"}
 
|type="{}"}
 
PS =  { 100 3% }  mW  
 
PS =  { 100 3% }  mW  
  
  
{Welche maximale momentane Sendeleistung tritt beim Quaternärsystems  '''Q''' auf?
+
{What is the maximum instantaneous transmitted power of the quaternary system &nbsp;$\rm Q$?&nbsp;
 
|type="{}"}
 
|type="{}"}
 
s02 =  { 180 3% }  mW  
 
s02 =  { 180 3% }  mW  
Line 66: Line 71:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die Nyquistfrequenz fNyq=100 MHz kann aus der Grafik abgelesen werden. Daraus folgt entsprechend den Eigenschaften von Nyquistsystemen:
+
'''(1)'''&nbsp; The Nyquist frequency&nbsp; fNyq=100 MHz&nbsp; can be read from the diagram.&nbsp; From this follows according to the properties of Nyquist systems:
 
:fNyq=12TT=12fNyq=5ns_.
 
:fNyq=12TT=12fNyq=5ns_.
  
'''(2)'''&nbsp; Beim Binärsystem ist die Bitrate gleichzeitig der Informationsfluss und es gilt:
+
 
 +
'''(2)'''&nbsp; In the binary system,&nbsp; the bit rate is also the information flow and it holds:
 
:RB=1/T=200Mbit/s_=2fNyqbit/Hz.
 
:RB=1/T=200Mbit/s_=2fNyqbit/Hz.
  
'''(3)'''&nbsp; Die Sendeleistung ist gleich dem Integral über $\it \Phi_{s}(f)$ und kann als Dreiecksfläche berechnet werden:
+
 
 +
'''(3)'''&nbsp; The transmitted power is equal to the integral over&nbsp; ${\it \Phi}_{s}(f)$&nbsp; and can be calculated as a triangular area:
 
:PS= +Φs(f)df=109WHz200MHz=200mW_.
 
:PS= +Φs(f)df=109WHz200MHz=200mW_.
  
'''(4)'''&nbsp; Richtig sind die <u>beiden ersten Aussagen</u>:  
+
 
*Die Fourierrücktransformierte des Leistungsdichtespektrums $\it \Phi_{s}(f)$ ergibt die $\rm si^{2}$–förmige AKF φs(τ). Allgemein gilt zudem folgender Zusammenhang:
+
'''(4)'''&nbsp; The&nbsp; <u>first two statements</u>&nbsp; are correct:  
 +
*The Fourier inverse transform of the power-spectral density&nbsp; ${\it \Phi}_{s}(f)$&nbsp; gives the $\rm sinc^{2}$–shaped ACF&nbsp; φs(τ).&nbsp; In general,&nbsp; the following relationship also holds:
 
:φs(τ)=+λ=1/Tφa(λ)φgs(τλT).
 
:φs(τ)=+λ=1/Tφa(λ)φgs(τλT).
*Bei einem redundanzfreien Binärsystem gilt jedoch φa(λ=0)=1, während alle anderen diskreten AKF–Werte φa(λ0) gleich 0 sind. Somit hat auch die Energie–AKF einen $\rm si^{2}$–förmigen Verlauf (''Hinweis:'' Energie–AKF und Energie–LDS werden in diesem Tutorial jeweils mit Punkt versehen):
+
*However,&nbsp; for a redundancy-free binary system, &nbsp;φa(λ=0)=1,&nbsp; while all other discrete ACF values &nbsp;φa(λ0)&nbsp; are equal to 0.&nbsp; Thus,&nbsp; the energy ACF also has a&nbsp; $\rm sinc^{2}$–shaped curve &nbsp; (note: &nbsp; energy ACF and energy PSD are each dotted in this tutorial):
 
:φgs(τ)=Tφs(τ).
 
:φgs(τ)=Tφs(τ).
*Dagegen trifft die letzte Aussage nicht zu. Für die folgende Begründung nehmen wir vereinfachend an, dass gs(t) symmetrisch sei und somit Gs(f) reell ist. Dann gilt:
+
*The last statement is not true.&nbsp; For the following reasoning,&nbsp; we assume for simplicity that&nbsp; gs(t)&nbsp; is symmetric and thus&nbsp; Gs(f)&nbsp; is real.&nbsp; Then holds:
 
:Φs(f)=1/T|Gs(f)|2Gs(f)=TΦs(f)gs(t).
 
:Φs(f)=1/T|Gs(f)|2Gs(f)=TΦs(f)gs(t).
*Aufgrund der Quadratwurzel in der obigen Gleichung ist der Sendegrundimpuls gs(t) nicht $\rm si^{2}$–förmig im Gegensatz zum Detektionsgrundimpuls gd(t), der formgleich mit der Energie–AKF φgs(τ) und damit $\rm si^{2}$–förmig ist. Gleichzeitig gilt \varphi^{^{\bullet}}_{gs}(\tau) = g_{s}(\tau) ∗ g_{s}(–\tau).
+
*Due to the square root in the above equation,&nbsp; the basic transmission pulse&nbsp; g_{s}(t)&nbsp; is not&nbsp; $\rm sinc^{2}$–shaped in contrast to the basic detection pulse g_{d}(t),&nbsp; which is equal in shape to the energy ACF&nbsp; \varphi^{^{\bullet}}_{gs}(\tau)&nbsp; and thus&nbsp; $\rm sinc^{2}$–shaped.&nbsp; At the same time,&nbsp; \varphi^{^{\bullet}}_{gs}(\tau) = g_{s}(\tau) ∗ g_{s}(–\tau)&nbsp; holds.
 +
 
 +
 
  
 +
'''(5)'''&nbsp; The ACF&nbsp; \varphi_{s}(\tau)&nbsp; is limited to the range&nbsp; |\tau| ≤ T&nbsp; when the basic transmission pulse is an NRZ rectangle.&nbsp; From the graph,&nbsp; the symbol duration&nbsp; T \underline{= 10 \ \rm ns}.
  
'''(5)'''&nbsp; Die AKF \varphi_{s}(\tau) ist auf den Bereich |\tau| ≤ T begrenzt, wenn der Sendegrundimpuls ein NRZ–Rechteck ist. Somit ergibt sich aus der Grafik die Symboldauer T \underline{= 10 \ \rm ns}.
 
  
'''(6)'''&nbsp; Beim Quaternärsignal ergibt sich wegen der doppelten Symboldauer der gleiche Informationsfluss wie beim obigen Binärsignal:
+
'''(6)'''&nbsp; For the quaternary signal,&nbsp; the information flow is the same as for the binary signal above because of the double symbol duration:
 
:R_{\rm B} = {{\rm log_2(4)} }/ { T} \hspace{0.15cm}\underline {= 200\,\,{\rm Mbit/s}}\hspace{0.05cm}.
 
:R_{\rm B} = {{\rm log_2(4)} }/ { T} \hspace{0.15cm}\underline {= 200\,\,{\rm Mbit/s}}\hspace{0.05cm}.
  
'''(7)'''&nbsp; Die Sendeleistung ist gleich dem AKF–Wert bei \tau = 0 und kann aus der Grafik abgelesen werden:
+
 
 +
'''(7)'''&nbsp; The transmitted power is equal to the ACF value at&nbsp; \tau = 0&nbsp; and can be read from the graph:
 
:P_{\rm S} = \hspace{0.15cm}\underline {100\,\,{\rm mW}}.
 
:P_{\rm S} = \hspace{0.15cm}\underline {100\,\,{\rm mW}}.
  
'''(8)'''&nbsp; Beim redundanzfreien Quaternärsignal mit NRZ–Rechteckimpulsen gilt für die mittlere Sendeleistung:
+
 
 +
'''(8)'''&nbsp; For the redundancy-free quaternary signal with NRZ rectangular pulses,&nbsp; the average transmitted power is:
 
:P_{\rm S} = {1}/ { 4} \cdot \left [ (-s_0)^2 + (-s_0/3)^2 + (+s_0/3)^2 +(+s_0)^2 \right ] = {5}/ { 9} \cdot s_0^2
 
:P_{\rm S} = {1}/ { 4} \cdot \left [ (-s_0)^2 + (-s_0/3)^2 + (+s_0/3)^2 +(+s_0)^2 \right ] = {5}/ { 9} \cdot s_0^2
 
:\Rightarrow \hspace{0.3cm}s_0^2 = {9}/ {5} \cdot P_{\rm S} = {9}/ {5} \cdot 100\,\,{\rm mW}\hspace{0.15cm}\underline { = 180\,\,{\rm mW}}\hspace{0.05cm}.
 
:\Rightarrow \hspace{0.3cm}s_0^2 = {9}/ {5} \cdot P_{\rm S} = {9}/ {5} \cdot 100\,\,{\rm mW}\hspace{0.15cm}\underline { = 180\,\,{\rm mW}}\hspace{0.05cm}.
Line 103: Line 115:
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^2.2 Redundanzfreie Codierung^]]
+
[[Category:Digital Signal Transmission: Exercises|^2.2 Redundancy-Free Coding^]]

Latest revision as of 17:16, 3 June 2022

ACF and PSD of binary signal  \rm (B)  and quaternary signal  \rm (Q)

Two redundancy-free transmission systems  \rm B  and  \rm Q  each with bipolar amplitude coefficients  a_{\nu}  are to be compared.  Both systems satisfy the first Nyquist condition.  According to the root-root splitting,  the spectrum  G_{d}(f)  of the basic detection pulse is equal in shape to the power-spectral density  {\it \Phi}_{s}(f)  of the transmitted signal.

The following properties of the two systems are known:

  • From the binary system  \rm B,  the power-spectral density  {\it \Phi}_{s}(f)  at the transmitter is known and shown in the graph together with the description parameters.
  • The quaternary system  \rm Q  uses a NRZ rectangular signal with the four possible amplitude values  ±s_{0}  and  ±s_{0}/3, all with equal probability.
  • {s_{0}}^{2}  indicates the maximum instantaneous power that occurs only when one of the two  "outer symbols"  is transmitted.  The descriptive parameters of system  \rm Q  can be obtained from the triangular ACF in the adjacent graph.



Notes:

  • Consider that auto-correlation function  \rm (ACF)  and power-spectral density  \rm (PSD)  of a stochastic signal are always related via the Fourier transform.



Questions

1

What is the symbol duration  T  of the binary system  \rm B  with Nyquist property?

T \ = \

\ \rm ns

2

What is the (equivalent) bit rate  R_{\rm B}  of the binary system  \rm B ?

R_{\rm B} \ = \

\ \rm Mbit/s

3

What is the transmitted power of the binary system  \rm B?

P_{\rm S} \ = \

\ \rm mW

4

Which statements are true regarding the binary system  \rm B

The ACF  \varphi_{s}(\tau)  of the transmitted signal is  \rm sinc^{2}–shaped.
The energy ACF  \varphi^{^{\bullet}}_{gs}(\tau)  of the basic transmission pulse is  \rm sinc^{2}–shaped.
The basic transmission pulse  g_{s}(t)  itself is  \rm sinc^{2}–shaped.

5

What is the symbol duration  T  of the quaternary system  \rm Q

T \ = \

\ \rm ns

6

What is the equivalent bit rate  R_{\rm B}  of the quaternary system  \rm Q?

R_{\rm B} \ = \

\ \rm Mbit/s

7

What is the transmitted power  P_{\rm S}  of the quaternary system  \rm Q?

P_{\rm S} \ = \

\ \rm mW

8

What is the maximum instantaneous transmitted power of the quaternary system  \rm Q

{s_{0}}^{2} \ = \

\ \rm mW


Solution

(1)  The Nyquist frequency  f_{\rm Nyq} = 100 \ \rm MHz  can be read from the diagram.  From this follows according to the properties of Nyquist systems:

f_{\rm Nyq} = \frac{1 } {2 \cdot T} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} T = \frac{1 } {2 \cdot f_{\rm Nyq}} \hspace{0.15cm}\underline{ =5\,{\rm ns}}\hspace{0.05cm}.


(2)  In the binary system,  the bit rate is also the information flow and it holds:

R_{\rm B} = {1 }/ { T} \hspace{0.15cm}\underline {= 200\,{\rm Mbit/s}}= 2 \cdot f_{\rm Nyq} \cdot{\rm bit}/{\rm Hz}\hspace{0.05cm}.


(3)  The transmitted power is equal to the integral over  {\it \Phi}_{s}(f)  and can be calculated as a triangular area:

P_{\rm S} = \ \int_{-\infty}^{+\infty} {\it \Phi}_s(f) \,{\rm d} f = 10^{-9} \frac{\rm W}{\rm Hz} \cdot 200\,\,{\rm MHz} \hspace{0.15cm}\underline { = 200\,\,{\rm mW}}.


(4)  The  first two statements  are correct:

  • The Fourier inverse transform of the power-spectral density  {\it \Phi}_{s}(f)  gives the \rm sinc^{2}–shaped ACF  \varphi_{s}(\tau).  In general,  the following relationship also holds:
\varphi_s(\tau) = \sum_{\lambda = -\infty}^{+\infty}{1}/{T} \cdot \varphi_a(\lambda)\cdot \varphi^{^{\bullet}}_{gs}(\tau - \lambda \cdot T)\hspace{0.05cm}.
  • However,  for a redundancy-free binary system,  \varphi_{a}(\lambda = 0) = 1,  while all other discrete ACF values  \varphi_{a}(\lambda \neq 0)  are equal to 0.  Thus,  the energy ACF also has a  \rm sinc^{2}–shaped curve   (note:   energy ACF and energy PSD are each dotted in this tutorial):
\varphi^{^{\bullet}}_{gs}(\tau ) = T \cdot \varphi_s(\tau) \hspace{0.05cm}.
  • The last statement is not true.  For the following reasoning,  we assume for simplicity that  g_{s}(t)  is symmetric and thus  G_{s}(f)  is real.  Then holds:
{\it \Phi}_{s}(f) = {1 }/ { T} \cdot |G_s(f)|^2\hspace{0.3cm}\Rightarrow \hspace{0.3cm}G_s(f) = \sqrt{{ T} \cdot {\it \Phi}_{s}(f)}\hspace{0.4cm} \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ \hspace{0.4cm}g_s(t) \hspace{0.05cm}.
  • Due to the square root in the above equation,  the basic transmission pulse  g_{s}(t)  is not  \rm sinc^{2}–shaped in contrast to the basic detection pulse g_{d}(t),  which is equal in shape to the energy ACF  \varphi^{^{\bullet}}_{gs}(\tau)  and thus  \rm sinc^{2}–shaped.  At the same time,  \varphi^{^{\bullet}}_{gs}(\tau) = g_{s}(\tau) ∗ g_{s}(–\tau)  holds.


(5)  The ACF  \varphi_{s}(\tau)  is limited to the range  |\tau| ≤ T  when the basic transmission pulse is an NRZ rectangle.  From the graph,  the symbol duration  T \underline{= 10 \ \rm ns}.


(6)  For the quaternary signal,  the information flow is the same as for the binary signal above because of the double symbol duration:

R_{\rm B} = {{\rm log_2(4)} }/ { T} \hspace{0.15cm}\underline {= 200\,\,{\rm Mbit/s}}\hspace{0.05cm}.


(7)  The transmitted power is equal to the ACF value at  \tau = 0  and can be read from the graph:

P_{\rm S} = \hspace{0.15cm}\underline {100\,\,{\rm mW}}.


(8)  For the redundancy-free quaternary signal with NRZ rectangular pulses,  the average transmitted power is:

P_{\rm S} = {1}/ { 4} \cdot \left [ (-s_0)^2 + (-s_0/3)^2 + (+s_0/3)^2 +(+s_0)^2 \right ] = {5}/ { 9} \cdot s_0^2
\Rightarrow \hspace{0.3cm}s_0^2 = {9}/ {5} \cdot P_{\rm S} = {9}/ {5} \cdot 100\,\,{\rm mW}\hspace{0.15cm}\underline { = 180\,\,{\rm mW}}\hspace{0.05cm}.