Difference between revisions of "Aufgaben:Exercise 2.3: Binary Signal and Quaternary Signal"

From LNTwww
 
(4 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1324__Dig_A_2_3.png|right|frame|ACF and PSD of <br>binary signal and quaternary signal]]
+
[[File:P_ID1324__Dig_A_2_3.png|right|frame|ACF and PSD of binary signal&nbsp; $\rm (B)$&nbsp; and quaternary signal&nbsp; $\rm (Q)$]]
Two redundancy-free transmission systems &nbsp;$\rm B$&nbsp; and &nbsp;$\rm Q$&nbsp; each with bipolar amplitude coefficients &nbsp;$a_{\nu}$&nbsp; are to be compared. Both systems satisfy the first Nyquist condition. According to the root-root splitting, the spectrum &nbsp;$G_{d}(f)$&nbsp; of the basic transmitter pulse is equal in shape to the power-spectral density &nbsp;${\it \Phi}_{s}(f)$&nbsp; of the transmitted signal.
+
Two redundancy-free transmission systems &nbsp;$\rm B$&nbsp; and &nbsp;$\rm Q$&nbsp; each with bipolar amplitude coefficients &nbsp;$a_{\nu}$&nbsp; are to be compared.&nbsp; Both systems satisfy the first Nyquist condition.&nbsp; According to the root-root splitting,&nbsp; the spectrum &nbsp;$G_{d}(f)$&nbsp; of the basic detection pulse is equal in shape to the power-spectral density &nbsp;${\it \Phi}_{s}(f)$&nbsp; of the transmitted signal.
 +
 
 
The following properties of the two systems are known:
 
The following properties of the two systems are known:
 
*From the binary system &nbsp;$\rm B$,&nbsp; the power-spectral density &nbsp;${\it \Phi}_{s}(f)$&nbsp; at the transmitter is known and shown in the graph together with the description parameters.
 
*From the binary system &nbsp;$\rm B$,&nbsp; the power-spectral density &nbsp;${\it \Phi}_{s}(f)$&nbsp; at the transmitter is known and shown in the graph together with the description parameters.
*The system &nbsp;$\rm Q$&nbsp; uses a NRZ rectangular signal with the four possible amplitude values &nbsp;$±s_{0}$&nbsp; and &nbsp;$±s_{0}/3$, all with equal probability.
 
*${s_{0}}^{2}$&nbsp; has the unit of one power and indicates the maximum instantaneous power that occurs only when one of the two "outer symbols" is transmitted.
 
*The descriptive parameters of system &nbsp;$\rm Q$&nbsp; can be obtained from the triangular ACF in the adjacent graph.
 
  
 +
*The quaternary system &nbsp;$\rm Q$&nbsp; uses a NRZ rectangular signal with the four possible amplitude values &nbsp;$±s_{0}$&nbsp; and &nbsp;$±s_{0}/3$, all with equal probability.
 +
 +
*${s_{0}}^{2}$&nbsp;  indicates the maximum instantaneous power that occurs only when one of the two&nbsp; "outer symbols"&nbsp; is transmitted.&nbsp; The descriptive parameters of system &nbsp;$\rm Q$&nbsp; can be obtained from the triangular ACF in the adjacent graph.
  
  
  
  
 +
Notes:
 +
*The exercise is part of the chapter &nbsp;[[Digital_Signal_Transmission/Grundlagen_der_codierten_Übertragung|"Basics of Coded Transmission"]].
  
 +
*Reference is also made to the chapter&nbsp; [[Digital_Signal_Transmission/Redundanzfreie_Codierung|"Redundancy-Free Coding"]].
  
''Notes:''
+
*Consider that auto-correlation function&nbsp; $\rm (ACF)$&nbsp; and power-spectral density&nbsp; $\rm (PSD)$&nbsp; of a stochastic signal are always related via the Fourier transform.
*The exercise is part of the chapter &nbsp;[[Digital_Signal_Transmission/Grundlagen_der_codierten_Übertragung|Basics of Coded Transmission]].
 
*Reference is also made to the chapter&nbsp; [[Digital_Signal_Transmission/Redundanzfreie_Codierung|Redundancy-Free Coding]].
 
*Consider that auto-correlation function (ACF) and power-spectral density (PSD) of a stochastic signal are always related via the Fourier transform.
 
 
   
 
   
  
Line 39: Line 40:
  
  
{What is the power of the transmitted signal of binary system &nbsp;$\rm B$&nbsp;?
+
{What is the transmitted power of the binary system &nbsp;$\rm B$?
 
|type="{}"}
 
|type="{}"}
 
$P_{\rm S} \ = \ $ { 200 3% } $\ \rm mW$
 
$P_{\rm S} \ = \ $ { 200 3% } $\ \rm mW$
Line 46: Line 47:
 
|type="[]"}
 
|type="[]"}
 
+ The ACF &nbsp;$\varphi_{s}(\tau)$&nbsp; of the transmitted signal is &nbsp;$\rm sinc^{2}$–shaped.
 
+ The ACF &nbsp;$\varphi_{s}(\tau)$&nbsp; of the transmitted signal is &nbsp;$\rm sinc^{2}$–shaped.
+ The energy ACF &nbsp;$\varphi^{^{\bullet}}_{gs}(\tau)$&nbsp; of the basic pulse is &nbsp;$\rm si^{2}$–shaped.
+
+ The energy ACF &nbsp;$\varphi^{^{\bullet}}_{gs}(\tau)$&nbsp; of the basic transmission pulse is &nbsp;$\rm sinc^{2}$–shaped.
 
- The basic transmission pulse &nbsp;$g_{s}(t)$&nbsp; itself is &nbsp;$\rm sinc^{2}$–shaped.
 
- The basic transmission pulse &nbsp;$g_{s}(t)$&nbsp; itself is &nbsp;$\rm sinc^{2}$–shaped.
  
Line 54: Line 55:
  
  
{What is the equivalent bit rate &nbsp;$R_{\rm B}$&nbsp; of the quaternary system &nbsp;$\rm Q$&nbsp;?
+
{What is the equivalent bit rate &nbsp;$R_{\rm B}$&nbsp; of the quaternary system &nbsp;$\rm Q$?
 
|type="{}"}
 
|type="{}"}
 
$R_{\rm B} \ = \ $ { 200 3% } $\ \rm Mbit/s$  
 
$R_{\rm B} \ = \ $ { 200 3% } $\ \rm Mbit/s$  
  
  
{What is the power &nbsp;$P_{\rm S}$&nbsp; of the transmitted signal of the quaternary system  &nbsp;$\rm Q$&nbsp;?
+
{What is the transmitted  power &nbsp;$P_{\rm S}$&nbsp; of the quaternary system  &nbsp;$\rm Q$?
 
|type="{}"}
 
|type="{}"}
 
$P_{\rm S} \ = \ $ { 100 3% } $\ \rm mW$  
 
$P_{\rm S} \ = \ $ { 100 3% } $\ \rm mW$  
Line 72: Line 73:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; The Nyquist frequency $f_{\rm Nyq} = 100 \ \rm MHz$ can be read from the diagram. From this follows according to the properties of Nyquist systems:
+
'''(1)'''&nbsp; The Nyquist frequency&nbsp; $f_{\rm Nyq} = 100 \ \rm MHz$&nbsp; can be read from the diagram.&nbsp; From this follows according to the properties of Nyquist systems:
 
:$$f_{\rm Nyq} = \frac{1 } {2 \cdot T} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} T = \frac{1 } {2 \cdot f_{\rm Nyq}} \hspace{0.15cm}\underline{ =5\,{\rm ns}}\hspace{0.05cm}.$$
 
:$$f_{\rm Nyq} = \frac{1 } {2 \cdot T} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} T = \frac{1 } {2 \cdot f_{\rm Nyq}} \hspace{0.15cm}\underline{ =5\,{\rm ns}}\hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; In the binary system, the bit rate is also the information flow and it holds:
+
'''(2)'''&nbsp; In the binary system,&nbsp; the bit rate is also the information flow and it holds:
 
:$$R_{\rm B} = {1 }/ { T} \hspace{0.15cm}\underline {= 200\,{\rm Mbit/s}}= 2 \cdot f_{\rm Nyq} \cdot{\rm bit}/{\rm Hz}\hspace{0.05cm}.$$
 
:$$R_{\rm B} = {1 }/ { T} \hspace{0.15cm}\underline {= 200\,{\rm Mbit/s}}= 2 \cdot f_{\rm Nyq} \cdot{\rm bit}/{\rm Hz}\hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; The transmitted power is equal to the integral over $\it \Phi_{s}(f)$ and can be calculated as a triangular area:
+
'''(3)'''&nbsp; The transmitted power is equal to the integral over&nbsp; ${\it \Phi}_{s}(f)$&nbsp; and can be calculated as a triangular area:
 
:$$P_{\rm S} = \ \int_{-\infty}^{+\infty} {\it \Phi}_s(f) \,{\rm d} f = 10^{-9} \frac{\rm W}{\rm Hz} \cdot 200\,\,{\rm MHz} \hspace{0.15cm}\underline { = 200\,\,{\rm mW}}.$$
 
:$$P_{\rm S} = \ \int_{-\infty}^{+\infty} {\it \Phi}_s(f) \,{\rm d} f = 10^{-9} \frac{\rm W}{\rm Hz} \cdot 200\,\,{\rm MHz} \hspace{0.15cm}\underline { = 200\,\,{\rm mW}}.$$
  
  
'''(4)'''&nbsp; The <u>first two statements</u> are correct:  
+
'''(4)'''&nbsp; The&nbsp; <u>first two statements</u>&nbsp; are correct:  
*The Fourier inverse transform of the power-spectral density ${\it \Phi}_{s}(f)$ gives the $\rm sinc^{2}$–shaped ACF $\varphi_{s}(\tau)$. In general, the following relationship also holds:
+
*The Fourier inverse transform of the power-spectral density&nbsp; ${\it \Phi}_{s}(f)$&nbsp; gives the $\rm sinc^{2}$–shaped ACF&nbsp; $\varphi_{s}(\tau)$.&nbsp; In general,&nbsp; the following relationship also holds:
 
:$$ \varphi_s(\tau) = \sum_{\lambda = -\infty}^{+\infty}{1}/{T} \cdot \varphi_a(\lambda)\cdot \varphi^{^{\bullet}}_{gs}(\tau - \lambda \cdot T)\hspace{0.05cm}.$$
 
:$$ \varphi_s(\tau) = \sum_{\lambda = -\infty}^{+\infty}{1}/{T} \cdot \varphi_a(\lambda)\cdot \varphi^{^{\bullet}}_{gs}(\tau - \lambda \cdot T)\hspace{0.05cm}.$$
*However, for a redundancy-free binary system, &nbsp;$\varphi_{a}(\lambda = 0) = 1$, while all other discrete ACF values &nbsp;$\varphi_{a}(\lambda \neq 0)$&nbsp; are equal to $0$. Thus, the energy ACF also has a $\rm sinc^{2}$–shaped curve (''note:'' &nbsp; energy ACF and energy PSD are each dotted in this tutorial):
+
*However,&nbsp; for a redundancy-free binary system, &nbsp;$\varphi_{a}(\lambda = 0) = 1$,&nbsp; while all other discrete ACF values &nbsp;$\varphi_{a}(\lambda \neq 0)$&nbsp; are equal to $0$.&nbsp; Thus,&nbsp; the energy ACF also has a&nbsp; $\rm sinc^{2}$–shaped curve &nbsp; (note: &nbsp; energy ACF and energy PSD are each dotted in this tutorial):
 
:$$\varphi^{^{\bullet}}_{gs}(\tau ) = T \cdot \varphi_s(\tau) \hspace{0.05cm}.$$
 
:$$\varphi^{^{\bullet}}_{gs}(\tau ) = T \cdot \varphi_s(\tau) \hspace{0.05cm}.$$
*The last statement is not true. For the following reasoning, we assume for simplicity that $g_{s}(t)$ is symmetric and thus $G_{s}(f)$ is real. Then holds:
+
*The last statement is not true.&nbsp; For the following reasoning,&nbsp; we assume for simplicity that&nbsp; $g_{s}(t)$&nbsp; is symmetric and thus&nbsp; $G_{s}(f)$&nbsp; is real.&nbsp; Then holds:
 
:$${\it \Phi}_{s}(f) = {1 }/ { T} \cdot |G_s(f)|^2\hspace{0.3cm}\Rightarrow \hspace{0.3cm}G_s(f) = \sqrt{{ T} \cdot {\it \Phi}_{s}(f)}\hspace{0.4cm} \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ \hspace{0.4cm}g_s(t) \hspace{0.05cm}.$$
 
:$${\it \Phi}_{s}(f) = {1 }/ { T} \cdot |G_s(f)|^2\hspace{0.3cm}\Rightarrow \hspace{0.3cm}G_s(f) = \sqrt{{ T} \cdot {\it \Phi}_{s}(f)}\hspace{0.4cm} \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ \hspace{0.4cm}g_s(t) \hspace{0.05cm}.$$
*Due to the square root in the above equation, the basic transmission pulse $g_{s}(t)$ is not $\rm sinc^{2}$–shaped in contrast to the basic transmitter pulse $g_{d}(t)$, which is equal in shape to the energy ACF $\varphi^{^{\bullet}}_{gs}(\tau)$ and thus $\rm sinc^{2}$–shaped. At the same time, $\varphi^{^{\bullet}}_{gs}(\tau) = g_{s}(\tau) ∗ g_{s}(–\tau)$ holds.
+
*Due to the square root in the above equation,&nbsp; the basic transmission pulse&nbsp; $g_{s}(t)$&nbsp; is not&nbsp; $\rm sinc^{2}$–shaped in contrast to the basic detection pulse $g_{d}(t)$,&nbsp; which is equal in shape to the energy ACF&nbsp; $\varphi^{^{\bullet}}_{gs}(\tau)$&nbsp; and thus&nbsp; $\rm sinc^{2}$–shaped.&nbsp; At the same time,&nbsp; $\varphi^{^{\bullet}}_{gs}(\tau) = g_{s}(\tau) ∗ g_{s}(–\tau)$&nbsp; holds.
  
  
  
'''(5)'''&nbsp; The ACF $\varphi_{s}(\tau)$ is limited to the range $|\tau| ≤ T$ when the basic transmission pulse is an NRZ rectangle. From the graph, the symbol duration $T \underline{= 10 \ \rm ns}$.
+
'''(5)'''&nbsp; The ACF&nbsp; $\varphi_{s}(\tau)$&nbsp; is limited to the range&nbsp; $|\tau| ≤ T$&nbsp; when the basic transmission pulse is an NRZ rectangle.&nbsp; From the graph,&nbsp; the symbol duration&nbsp; $T \underline{= 10 \ \rm ns}$.
  
  
'''(6)'''&nbsp; For the quaternary signal, the information flow is the same as for the binary signal above because of the double symbol duration:
+
'''(6)'''&nbsp; For the quaternary signal,&nbsp; the information flow is the same as for the binary signal above because of the double symbol duration:
 
:$$R_{\rm B} = {{\rm log_2(4)} }/ { T} \hspace{0.15cm}\underline {= 200\,\,{\rm Mbit/s}}\hspace{0.05cm}.$$
 
:$$R_{\rm B} = {{\rm log_2(4)} }/ { T} \hspace{0.15cm}\underline {= 200\,\,{\rm Mbit/s}}\hspace{0.05cm}.$$
  
  
'''(7)'''&nbsp; The transmitted power is equal to the ACF value at $\tau = 0$ and can be read from the graph:
+
'''(7)'''&nbsp; The transmitted power is equal to the ACF value at&nbsp; $\tau = 0$&nbsp; and can be read from the graph:
 
:$$P_{\rm S} = \hspace{0.15cm}\underline {100\,\,{\rm mW}}.$$
 
:$$P_{\rm S} = \hspace{0.15cm}\underline {100\,\,{\rm mW}}.$$
  
  
'''(8)'''&nbsp; For the redundancy-free quaternary signal with NRZ rectangular pulses, the average transmitted power is:
+
'''(8)'''&nbsp; For the redundancy-free quaternary signal with NRZ rectangular pulses,&nbsp; the average transmitted power is:
 
:$$P_{\rm S} = {1}/ { 4} \cdot \left [ (-s_0)^2 + (-s_0/3)^2 + (+s_0/3)^2 +(+s_0)^2 \right ] = {5}/ { 9} \cdot s_0^2$$
 
:$$P_{\rm S} = {1}/ { 4} \cdot \left [ (-s_0)^2 + (-s_0/3)^2 + (+s_0/3)^2 +(+s_0)^2 \right ] = {5}/ { 9} \cdot s_0^2$$
 
:$$\Rightarrow \hspace{0.3cm}s_0^2 = {9}/ {5} \cdot P_{\rm S} = {9}/ {5} \cdot 100\,\,{\rm mW}\hspace{0.15cm}\underline { = 180\,\,{\rm mW}}\hspace{0.05cm}.$$
 
:$$\Rightarrow \hspace{0.3cm}s_0^2 = {9}/ {5} \cdot P_{\rm S} = {9}/ {5} \cdot 100\,\,{\rm mW}\hspace{0.15cm}\underline { = 180\,\,{\rm mW}}\hspace{0.05cm}.$$

Latest revision as of 16:16, 3 June 2022

ACF and PSD of binary signal  $\rm (B)$  and quaternary signal  $\rm (Q)$

Two redundancy-free transmission systems  $\rm B$  and  $\rm Q$  each with bipolar amplitude coefficients  $a_{\nu}$  are to be compared.  Both systems satisfy the first Nyquist condition.  According to the root-root splitting,  the spectrum  $G_{d}(f)$  of the basic detection pulse is equal in shape to the power-spectral density  ${\it \Phi}_{s}(f)$  of the transmitted signal.

The following properties of the two systems are known:

  • From the binary system  $\rm B$,  the power-spectral density  ${\it \Phi}_{s}(f)$  at the transmitter is known and shown in the graph together with the description parameters.
  • The quaternary system  $\rm Q$  uses a NRZ rectangular signal with the four possible amplitude values  $±s_{0}$  and  $±s_{0}/3$, all with equal probability.
  • ${s_{0}}^{2}$  indicates the maximum instantaneous power that occurs only when one of the two  "outer symbols"  is transmitted.  The descriptive parameters of system  $\rm Q$  can be obtained from the triangular ACF in the adjacent graph.



Notes:

  • Consider that auto-correlation function  $\rm (ACF)$  and power-spectral density  $\rm (PSD)$  of a stochastic signal are always related via the Fourier transform.



Questions

1

What is the symbol duration  $T$  of the binary system  $\rm B$  with Nyquist property?

$T \ = \ $

$\ \rm ns$

2

What is the (equivalent) bit rate  $R_{\rm B}$  of the binary system  $\rm B$ ?

$R_{\rm B} \ = \ $

$\ \rm Mbit/s$

3

What is the transmitted power of the binary system  $\rm B$?

$P_{\rm S} \ = \ $

$\ \rm mW$

4

Which statements are true regarding the binary system  $\rm B$? 

The ACF  $\varphi_{s}(\tau)$  of the transmitted signal is  $\rm sinc^{2}$–shaped.
The energy ACF  $\varphi^{^{\bullet}}_{gs}(\tau)$  of the basic transmission pulse is  $\rm sinc^{2}$–shaped.
The basic transmission pulse  $g_{s}(t)$  itself is  $\rm sinc^{2}$–shaped.

5

What is the symbol duration  $T$  of the quaternary system  $\rm Q$? 

$T \ = \ $

$\ \rm ns$

6

What is the equivalent bit rate  $R_{\rm B}$  of the quaternary system  $\rm Q$?

$R_{\rm B} \ = \ $

$\ \rm Mbit/s$

7

What is the transmitted power  $P_{\rm S}$  of the quaternary system  $\rm Q$?

$P_{\rm S} \ = \ $

$\ \rm mW$

8

What is the maximum instantaneous transmitted power of the quaternary system  $\rm Q$? 

${s_{0}}^{2} \ = \ $

$\ \rm mW$


Solution

(1)  The Nyquist frequency  $f_{\rm Nyq} = 100 \ \rm MHz$  can be read from the diagram.  From this follows according to the properties of Nyquist systems:

$$f_{\rm Nyq} = \frac{1 } {2 \cdot T} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} T = \frac{1 } {2 \cdot f_{\rm Nyq}} \hspace{0.15cm}\underline{ =5\,{\rm ns}}\hspace{0.05cm}.$$


(2)  In the binary system,  the bit rate is also the information flow and it holds:

$$R_{\rm B} = {1 }/ { T} \hspace{0.15cm}\underline {= 200\,{\rm Mbit/s}}= 2 \cdot f_{\rm Nyq} \cdot{\rm bit}/{\rm Hz}\hspace{0.05cm}.$$


(3)  The transmitted power is equal to the integral over  ${\it \Phi}_{s}(f)$  and can be calculated as a triangular area:

$$P_{\rm S} = \ \int_{-\infty}^{+\infty} {\it \Phi}_s(f) \,{\rm d} f = 10^{-9} \frac{\rm W}{\rm Hz} \cdot 200\,\,{\rm MHz} \hspace{0.15cm}\underline { = 200\,\,{\rm mW}}.$$


(4)  The  first two statements  are correct:

  • The Fourier inverse transform of the power-spectral density  ${\it \Phi}_{s}(f)$  gives the $\rm sinc^{2}$–shaped ACF  $\varphi_{s}(\tau)$.  In general,  the following relationship also holds:
$$ \varphi_s(\tau) = \sum_{\lambda = -\infty}^{+\infty}{1}/{T} \cdot \varphi_a(\lambda)\cdot \varphi^{^{\bullet}}_{gs}(\tau - \lambda \cdot T)\hspace{0.05cm}.$$
  • However,  for a redundancy-free binary system,  $\varphi_{a}(\lambda = 0) = 1$,  while all other discrete ACF values  $\varphi_{a}(\lambda \neq 0)$  are equal to $0$.  Thus,  the energy ACF also has a  $\rm sinc^{2}$–shaped curve   (note:   energy ACF and energy PSD are each dotted in this tutorial):
$$\varphi^{^{\bullet}}_{gs}(\tau ) = T \cdot \varphi_s(\tau) \hspace{0.05cm}.$$
  • The last statement is not true.  For the following reasoning,  we assume for simplicity that  $g_{s}(t)$  is symmetric and thus  $G_{s}(f)$  is real.  Then holds:
$${\it \Phi}_{s}(f) = {1 }/ { T} \cdot |G_s(f)|^2\hspace{0.3cm}\Rightarrow \hspace{0.3cm}G_s(f) = \sqrt{{ T} \cdot {\it \Phi}_{s}(f)}\hspace{0.4cm} \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ \hspace{0.4cm}g_s(t) \hspace{0.05cm}.$$
  • Due to the square root in the above equation,  the basic transmission pulse  $g_{s}(t)$  is not  $\rm sinc^{2}$–shaped in contrast to the basic detection pulse $g_{d}(t)$,  which is equal in shape to the energy ACF  $\varphi^{^{\bullet}}_{gs}(\tau)$  and thus  $\rm sinc^{2}$–shaped.  At the same time,  $\varphi^{^{\bullet}}_{gs}(\tau) = g_{s}(\tau) ∗ g_{s}(–\tau)$  holds.


(5)  The ACF  $\varphi_{s}(\tau)$  is limited to the range  $|\tau| ≤ T$  when the basic transmission pulse is an NRZ rectangle.  From the graph,  the symbol duration  $T \underline{= 10 \ \rm ns}$.


(6)  For the quaternary signal,  the information flow is the same as for the binary signal above because of the double symbol duration:

$$R_{\rm B} = {{\rm log_2(4)} }/ { T} \hspace{0.15cm}\underline {= 200\,\,{\rm Mbit/s}}\hspace{0.05cm}.$$


(7)  The transmitted power is equal to the ACF value at  $\tau = 0$  and can be read from the graph:

$$P_{\rm S} = \hspace{0.15cm}\underline {100\,\,{\rm mW}}.$$


(8)  For the redundancy-free quaternary signal with NRZ rectangular pulses,  the average transmitted power is:

$$P_{\rm S} = {1}/ { 4} \cdot \left [ (-s_0)^2 + (-s_0/3)^2 + (+s_0/3)^2 +(+s_0)^2 \right ] = {5}/ { 9} \cdot s_0^2$$
$$\Rightarrow \hspace{0.3cm}s_0^2 = {9}/ {5} \cdot P_{\rm S} = {9}/ {5} \cdot 100\,\,{\rm mW}\hspace{0.15cm}\underline { = 180\,\,{\rm mW}}\hspace{0.05cm}.$$