Difference between revisions of "Aufgaben:Exercise 2.5: Ternary Signal Transmission"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Digitalsignalübertragung/Redundanzfreie Codierung }} ===Fragebogen=== <quiz display=simple> {Welche Symboldauer $T$ hat das Bin…“)
 
 
(27 intermediate revisions by 6 users not shown)
Line 1: Line 1:
  
 +
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Redundancy-Free_Coding
 +
}}
 +
[[File:P_ID1327__Dig_A_2_5.png|right|frame|Probability density function&nbsp; $\rm (PDF)$&nbsp; of a noisy ternary signal]]
 +
A ternary transmission system &nbsp;$(M = 3)$&nbsp; with the possible amplitude values &nbsp;$-s_0$, &nbsp; $0$ &nbsp; and &nbsp;$+s_0$&nbsp; is considered.
 +
*During transmission,&nbsp; additive Gaussian noise with rms value &nbsp;$\sigma_d$&nbsp; is added to the signal.
 +
 +
*The recovery of the three-level digital signal at the receiver is done with the help of two decision thresholds at &nbsp;$E_{&ndash;}$&nbsp; and &nbsp;$E_{+}$.
 +
 +
*First, the occurrence probabilities of the three input symbols are assumed to be equally probable:
 +
:$$p_{\rm -} = {\rm Pr}(-s_0) = {1}/{ 3}, \hspace{0.15cm}  p_{\rm 0} = {\rm Pr}(0) = {1}/{ 3},
 +
\hspace{0.15cm} p_{\rm +} = {\rm Pr}(+s_0) ={1}/{ 3}\hspace{0.05cm}.$$
 +
 +
*For the time being,&nbsp; the decision thresholds are centered at &nbsp;$E_{&ndash;} = \, &ndash;s_0/2$ and $E_{+} = +s_0/2$.
 +
 +
*From subtask&nbsp; '''(3)'''&nbsp; on,&nbsp; the symbol probabilities are &nbsp;$p_{&ndash;} = p_+ = 1/4$&nbsp; and &nbsp;$p_0 = 1/2$,&nbsp; as shown in the diagram.&nbsp;
 +
 +
*For this constellation,&nbsp; the symbol error probability &nbsp;$p_{\rm S}$&nbsp; is to be minimized by varying the decision thresholds &nbsp;$E_{&ndash;}$&nbsp; and &nbsp;$E_+$.&nbsp;
  
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Redundanzfreie Codierung
+
 
}}
+
 +
Notes:
 +
* The exercise refers to the chapter&nbsp; [[Digital_Signal_Transmission/Redundancy-Free_Coding|"Redundancy-Free Coding"]].
 +
 
 +
* For the symbol error probability &nbsp;$p_{\rm S}$&nbsp; of a &nbsp;$M$&ndash;level transmission system
 +
:*with equally probable input symbols
 +
:*and threshold values exactly in the middle between two adjacent amplitude levels holds:
 +
:$$p_{\rm S} =
 +
\frac{ 2  \cdot (M-1)}{M} \cdot {\rm Q} \left( {\frac{s_0}{(M-1) \cdot \sigma_d}}\right)
 +
\hspace{0.05cm}.$$
 +
* You can numerically determine the error probability values according to  our applet &nbsp;[[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|"Complementary Gaussian Error Functions"]].
 +
 
 +
* To check your results,&nbsp; use our&nbsp; (German language)&nbsp; SWF applet &nbsp;[[Applets:Fehlerwahrscheinlichkeit|"Symbol error probability of digital communications systems"]].
 +
  
  
===Fragebogen===
 
  
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
 +
{What symbol error probability results with the&nbsp; (normalized)&nbsp; noise rms value &nbsp;$\sigma_d/s_0 = 0.25$&nbsp; for equally probable symbols?
 +
|type="{}"}
 +
$p_0 = 1/3, \ \sigma_d = 0.25 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ ${ 3 3% } $\ \%$
  
{Welche Symboldauer $T$ hat das Binärsystem ('''B''') mit Nyquisteigenschaft?
+
{How does the symbol error probability change with &nbsp;$\sigma_d/s_0 = 0.5$?
 
|type="{}"}
 
|type="{}"}
$T \ = \ $ { 5 3% } $\ \rm ns$
+
$p_0 = 1/3, \ \sigma_d = 0.5 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ ${ 21.2 3% } $\ \%$
  
 +
{What value results with &nbsp;$p_{&ndash;} = p_+ = 0.25$&nbsp; and &nbsp;$p_0 = 0.5$?
 +
|type="{}"}
 +
$p_0 = 1/2, \ \sigma_d = 0.5 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ ${ 23.8 3% } $\ \%$
  
 +
{Determine the optimal thresholds &nbsp;$E_+$&nbsp; and &nbsp;$E_{&ndash;} = \, &ndash;E_+$&nbsp; for &nbsp;$p_0 = 1/2$.
 +
|type="{}"}
 +
$p_0 = 1/2, \ \sigma_d = 0.5 \text{:} \hspace{0.4cm} E_{\rm +, \ opt} \ = \ ${ 0.673 3% }
  
 +
{What is the symbol error probability for optimal thresholds?
 +
|type="{}"}
 +
${\rm optimal \ thresholds} \text{:} \hspace{0.4cm} p_{\rm S} \ = \ ${ 21.7 3% } $\ \%$
  
 +
{What are the optimal thresholds for &nbsp;$p_0 = 0.2$&nbsp; and $&nbsp;p_{&ndash;} = p_+ = 0.4$?
 +
|type="{}"}
 +
$p_0 = 0.2, \ \sigma_d = 0.5 \text{:} \hspace{0.4cm} E_{\rm +, \ opt} \ = \ ${ 0.327 3% }
 +
 +
{What is the symbol error probability now? Interpretation.
 +
|type="{}"}
 +
${\rm optimal \ thresholds} \text{:} \hspace{0.4cm} p_{\rm S} \ = \ ${ 17.4 3% } $\ \%$
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  
+
'''(1)'''&nbsp; According to the given equation,&nbsp; with&nbsp; $M = 3$&nbsp; and&nbsp; $\sigma_d/s_0 = 0.25$:
 +
:$$p_{\rm S} =
 +
\frac{ 2  \cdot (M-1)}{M} \cdot {\rm Q} \left( {\frac{s_0}{(M-1) \cdot
 +
\sigma_d}}\right)= {4}/{ 3}\cdot {\rm Q}(2) ={4}/{ 3}\cdot 0.0228\hspace{0.15cm}\underline {\approx 3 \,\%}
 +
\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(2)'''&nbsp; When the noise rms value is doubled,&nbsp; the error probability increases significantly:
 +
:$$p_{\rm S} = {4}/{ 3}\cdot {\rm Q}(1)= {4}/{ 3}\cdot 0.1587 \hspace{0.15cm}\underline {\approx 21.2 \,\%}
 +
\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(3)'''&nbsp; The two outer symbols are each falsified with probability&nbsp; $p = {\rm Q}(s_0/(2 \cdot \sigma_d)) = 0.1587$.
 +
*The falsification probability of the symbol &nbsp;$0$&nbsp; is twice as large&nbsp; (it is limited by two thresholds).
 +
* Considering the individual symbol probabilities,&nbsp; we obtain:
 +
:$$p_{\rm S} = {1}/{ 4}\cdot p + {1}/{ 2}\cdot 2p +{1}/{ 4}\cdot p = 1.5 \cdot p  = 1.5 \cdot 0.1587
 +
\hspace{0.15cm}\underline {\approx
 +
23.8 \,\%}
 +
\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(4)'''&nbsp; Since the symbol &nbsp;$0$&nbsp; occurs more frequently and can also be falsified in both directions,&nbsp; the thresholds should be shifted outward.
 +
*The optimal decision threshold&nbsp; $E_{\rm +, \ opt}$&nbsp; is obtained from the intersection of the two Gaussian functions shown in the graph.&nbsp; It must hold:
 +
 
 +
[[File:P_ID1328__Dig_A_2_5e.png|right|frame|Optimal thresholds for subtask&nbsp; '''(4)''']]
 +
 
 +
:$$\frac{ 1/2}{ \sqrt{2\pi} \cdot \sigma_d} \cdot  {\rm exp} \left[ - \frac{ E_{\rm +}^2}{2 \cdot \sigma_d^2}\right]
 +
  = \frac{ 1/4}{ \sqrt{2\pi} \cdot \sigma_d} \cdot  {\rm exp} \left[ - \frac{ (s_0 -E_{\rm +})^2}{2 \cdot \sigma_d^2}\right]$$
 +
:$$\Rightarrow \hspace{0.3cm}  {\rm exp} \left[  \frac{ (s_0 -E_{\rm +})^2 - E_{\rm +}^2}{2 \cdot
 +
  \sigma_d^2}\right]= {1}/{ 2}
 +
\Rightarrow \hspace{0.3cm}  {\rm exp} \left[  \frac{ 1 -2 \cdot E_{\rm +}/s_0}{2 \cdot
 +
  \sigma_d^2/s_0^2}\right]= {1}/{ 2}$$
 +
:$$\Rightarrow \hspace{0.3cm}\frac{ E_{\rm +}}{s_0}= \frac{1}
 +
{ 2}+ \frac{\sigma_d^2} {s_0^2} \cdot {\rm ln}(2)\hspace{0.15cm}\underline {=0.673}\hspace{0.15cm}\approx
 +
{2}/ {3} \hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(5)'''&nbsp; Using the approximate result from subtask&nbsp; '''(4)''',&nbsp; we obtain:
 +
:$$p_{\rm S} \ = \
 +
{ 1}/{4} \cdot {\rm Q} \left( {\frac{s_0/3}{
 +
\sigma_d}}\right)+ 2 \cdot { 1}/{2} \cdot {\rm Q} \left( {\frac{2s_0/3}{
 +
\sigma_d}}\right) +{ 1}/{4} \cdot {\rm Q} \left( {\frac{s_0/3}{
 +
\sigma_d}}\right)$$
 +
[[File:P_ID1329__Dig_A_2_5g.png|right|frame|Optimal thresholds for subtask&nbsp; '''(6)''']]
 +
 
 +
 
 +
:$$\Rightarrow \hspace{0.3cm}p_{\rm S} \ = \ =  { 1}/{2}  \cdot {\rm Q} \left( 2/3 \right)+ {\rm Q} \left( 4/3
 +
\right)=
 +
{ 1}/{2} \cdot 0.251 + 0.092 \hspace{0.15cm}\underline {\approx 21.7 \,\%}
 +
\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(6)'''&nbsp;  After a similar calculation as in subtask&nbsp; '''(4)'''&nbsp; we get
 +
*$E_+ = 1 \, &ndash;0.0673 \ \underline{= 0.327} \approx 1/3$.
 +
*$E_{&ndash;} = \, &ndash;E_+$ is still valid.
 +
 
 +
 
 +
 
 +
'''(7)'''&nbsp; Similar to the solution for subtask&nbsp; '''(5)''',&nbsp; we now obtain:
 +
:$$p_{\rm S} \ = \ 0.4 \cdot {\rm Q} \left( 4/3 \right)+ 2 \cdot 0.2 \cdot{\rm Q} \left( 2/3
 +
\right)+0.4 \cdot {\rm Q} \left( 4/3 \right)$$
 +
:$$\Rightarrow \hspace{0.3cm}p_{\rm S} \ = \
 +
0.4 \cdot (0.092 + 0.251 + 0.092)
 +
  \hspace{0.15cm}\underline {\approx 17.4 \,\%}
 +
\hspace{0.05cm}.$$
 +
 
 +
$\text{Discussion of the result:}$
 +
*Accordingly,&nbsp; there is a smaller symbol error probability&nbsp; $(17.4 \ \%$ versus $21.2 \ \%)$&nbsp; than with equal probability amplitude coefficients.
 +
 
 +
*However,&nbsp; redundancy-free coding is no longer present,&nbsp; even if the amplitude coefficients are statistically independent of each other.
 +
 
 +
*While for equally probable ternary symbols
 +
:*the entropy is&nbsp; $H = {\rm log}_2(3) = 1.585 \ {\rm bit/ternary \ symbol}$
 +
:*from which the equivalent bit rate can be calculated according to&nbsp; $R_{\rm B} = H/T$,&nbsp;
 +
:*here applies with probabilities&nbsp; $p_0 = 0.2$&nbsp; and&nbsp; $p_{&ndash;} = p_+ = 0.4$:
 +
::$$H  \ = \ 0.2 \cdot {\rm log_2} (5) + 2 \cdot 0.4 \cdot {\rm log_2} (2.5)=  0.2 \cdot 2.322 + 0.8 \cdot 1.322 \hspace{0.15cm}\underline {\approx 1.522\,\, {\rm
 +
bit/ternary \ symbol}}
 +
\hspace{0.05cm}.$$
  
 +
*Thus,&nbsp; the equivalent bit rate here is&nbsp; $\approx 4 \ \%$&nbsp; smaller than the maximum possible equivalent bit rate for&nbsp; $M = 3$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^2.2 Redundanzfreie Codierung^]]
+
[[Category:Digital Signal Transmission: Exercises|^2.2 Redundancy-Free Coding^]]

Latest revision as of 16:19, 3 June 2022

Probability density function  $\rm (PDF)$  of a noisy ternary signal

A ternary transmission system  $(M = 3)$  with the possible amplitude values  $-s_0$,   $0$   and  $+s_0$  is considered.

  • During transmission,  additive Gaussian noise with rms value  $\sigma_d$  is added to the signal.
  • The recovery of the three-level digital signal at the receiver is done with the help of two decision thresholds at  $E_{–}$  and  $E_{+}$.
  • First, the occurrence probabilities of the three input symbols are assumed to be equally probable:
$$p_{\rm -} = {\rm Pr}(-s_0) = {1}/{ 3}, \hspace{0.15cm} p_{\rm 0} = {\rm Pr}(0) = {1}/{ 3}, \hspace{0.15cm} p_{\rm +} = {\rm Pr}(+s_0) ={1}/{ 3}\hspace{0.05cm}.$$
  • For the time being,  the decision thresholds are centered at  $E_{–} = \, –s_0/2$ and $E_{+} = +s_0/2$.
  • From subtask  (3)  on,  the symbol probabilities are  $p_{–} = p_+ = 1/4$  and  $p_0 = 1/2$,  as shown in the diagram. 
  • For this constellation,  the symbol error probability  $p_{\rm S}$  is to be minimized by varying the decision thresholds  $E_{–}$  and  $E_+$. 



Notes:

  • For the symbol error probability  $p_{\rm S}$  of a  $M$–level transmission system
  • with equally probable input symbols
  • and threshold values exactly in the middle between two adjacent amplitude levels holds:
$$p_{\rm S} = \frac{ 2 \cdot (M-1)}{M} \cdot {\rm Q} \left( {\frac{s_0}{(M-1) \cdot \sigma_d}}\right) \hspace{0.05cm}.$$



Questions

1

What symbol error probability results with the  (normalized)  noise rms value  $\sigma_d/s_0 = 0.25$  for equally probable symbols?

$p_0 = 1/3, \ \sigma_d = 0.25 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $

$\ \%$

2

How does the symbol error probability change with  $\sigma_d/s_0 = 0.5$?

$p_0 = 1/3, \ \sigma_d = 0.5 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $

$\ \%$

3

What value results with  $p_{–} = p_+ = 0.25$  and  $p_0 = 0.5$?

$p_0 = 1/2, \ \sigma_d = 0.5 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $

$\ \%$

4

Determine the optimal thresholds  $E_+$  and  $E_{–} = \, –E_+$  for  $p_0 = 1/2$.

$p_0 = 1/2, \ \sigma_d = 0.5 \text{:} \hspace{0.4cm} E_{\rm +, \ opt} \ = \ $

5

What is the symbol error probability for optimal thresholds?

${\rm optimal \ thresholds} \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $

$\ \%$

6

What are the optimal thresholds for  $p_0 = 0.2$  and $ p_{–} = p_+ = 0.4$?

$p_0 = 0.2, \ \sigma_d = 0.5 \text{:} \hspace{0.4cm} E_{\rm +, \ opt} \ = \ $

7

What is the symbol error probability now? Interpretation.

${\rm optimal \ thresholds} \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $

$\ \%$


Solution

(1)  According to the given equation,  with  $M = 3$  and  $\sigma_d/s_0 = 0.25$:

$$p_{\rm S} = \frac{ 2 \cdot (M-1)}{M} \cdot {\rm Q} \left( {\frac{s_0}{(M-1) \cdot \sigma_d}}\right)= {4}/{ 3}\cdot {\rm Q}(2) ={4}/{ 3}\cdot 0.0228\hspace{0.15cm}\underline {\approx 3 \,\%} \hspace{0.05cm}.$$


(2)  When the noise rms value is doubled,  the error probability increases significantly:

$$p_{\rm S} = {4}/{ 3}\cdot {\rm Q}(1)= {4}/{ 3}\cdot 0.1587 \hspace{0.15cm}\underline {\approx 21.2 \,\%} \hspace{0.05cm}.$$


(3)  The two outer symbols are each falsified with probability  $p = {\rm Q}(s_0/(2 \cdot \sigma_d)) = 0.1587$.

  • The falsification probability of the symbol  $0$  is twice as large  (it is limited by two thresholds).
  • Considering the individual symbol probabilities,  we obtain:
$$p_{\rm S} = {1}/{ 4}\cdot p + {1}/{ 2}\cdot 2p +{1}/{ 4}\cdot p = 1.5 \cdot p = 1.5 \cdot 0.1587 \hspace{0.15cm}\underline {\approx 23.8 \,\%} \hspace{0.05cm}.$$


(4)  Since the symbol  $0$  occurs more frequently and can also be falsified in both directions,  the thresholds should be shifted outward.

  • The optimal decision threshold  $E_{\rm +, \ opt}$  is obtained from the intersection of the two Gaussian functions shown in the graph.  It must hold:
Optimal thresholds for subtask  (4)
$$\frac{ 1/2}{ \sqrt{2\pi} \cdot \sigma_d} \cdot {\rm exp} \left[ - \frac{ E_{\rm +}^2}{2 \cdot \sigma_d^2}\right] = \frac{ 1/4}{ \sqrt{2\pi} \cdot \sigma_d} \cdot {\rm exp} \left[ - \frac{ (s_0 -E_{\rm +})^2}{2 \cdot \sigma_d^2}\right]$$
$$\Rightarrow \hspace{0.3cm} {\rm exp} \left[ \frac{ (s_0 -E_{\rm +})^2 - E_{\rm +}^2}{2 \cdot \sigma_d^2}\right]= {1}/{ 2} \Rightarrow \hspace{0.3cm} {\rm exp} \left[ \frac{ 1 -2 \cdot E_{\rm +}/s_0}{2 \cdot \sigma_d^2/s_0^2}\right]= {1}/{ 2}$$
$$\Rightarrow \hspace{0.3cm}\frac{ E_{\rm +}}{s_0}= \frac{1} { 2}+ \frac{\sigma_d^2} {s_0^2} \cdot {\rm ln}(2)\hspace{0.15cm}\underline {=0.673}\hspace{0.15cm}\approx {2}/ {3} \hspace{0.05cm}.$$


(5)  Using the approximate result from subtask  (4),  we obtain:

$$p_{\rm S} \ = \ { 1}/{4} \cdot {\rm Q} \left( {\frac{s_0/3}{ \sigma_d}}\right)+ 2 \cdot { 1}/{2} \cdot {\rm Q} \left( {\frac{2s_0/3}{ \sigma_d}}\right) +{ 1}/{4} \cdot {\rm Q} \left( {\frac{s_0/3}{ \sigma_d}}\right)$$
Optimal thresholds for subtask  (6)


$$\Rightarrow \hspace{0.3cm}p_{\rm S} \ = \ = { 1}/{2} \cdot {\rm Q} \left( 2/3 \right)+ {\rm Q} \left( 4/3 \right)= { 1}/{2} \cdot 0.251 + 0.092 \hspace{0.15cm}\underline {\approx 21.7 \,\%} \hspace{0.05cm}.$$


(6)  After a similar calculation as in subtask  (4)  we get

  • $E_+ = 1 \, –0.0673 \ \underline{= 0.327} \approx 1/3$.
  • $E_{–} = \, –E_+$ is still valid.


(7)  Similar to the solution for subtask  (5),  we now obtain:

$$p_{\rm S} \ = \ 0.4 \cdot {\rm Q} \left( 4/3 \right)+ 2 \cdot 0.2 \cdot{\rm Q} \left( 2/3 \right)+0.4 \cdot {\rm Q} \left( 4/3 \right)$$
$$\Rightarrow \hspace{0.3cm}p_{\rm S} \ = \ 0.4 \cdot (0.092 + 0.251 + 0.092) \hspace{0.15cm}\underline {\approx 17.4 \,\%} \hspace{0.05cm}.$$

$\text{Discussion of the result:}$

  • Accordingly,  there is a smaller symbol error probability  $(17.4 \ \%$ versus $21.2 \ \%)$  than with equal probability amplitude coefficients.
  • However,  redundancy-free coding is no longer present,  even if the amplitude coefficients are statistically independent of each other.
  • While for equally probable ternary symbols
  • the entropy is  $H = {\rm log}_2(3) = 1.585 \ {\rm bit/ternary \ symbol}$
  • from which the equivalent bit rate can be calculated according to  $R_{\rm B} = H/T$, 
  • here applies with probabilities  $p_0 = 0.2$  and  $p_{–} = p_+ = 0.4$:
$$H \ = \ 0.2 \cdot {\rm log_2} (5) + 2 \cdot 0.4 \cdot {\rm log_2} (2.5)= 0.2 \cdot 2.322 + 0.8 \cdot 1.322 \hspace{0.15cm}\underline {\approx 1.522\,\, {\rm bit/ternary \ symbol}} \hspace{0.05cm}.$$
  • Thus,  the equivalent bit rate here is  $\approx 4 \ \%$  smaller than the maximum possible equivalent bit rate for  $M = 3$.