Difference between revisions of "Aufgaben:Exercise 2.5: Ternary Signal Transmission"

From LNTwww
m (Text replacement - "Komplementäre_Gaußsche_Fehlerfunktionen_(neues_Applet)" to "Komplementäre_Gaußsche_Fehlerfunktionen")
 
(11 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Redundanzfreie Codierung
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Redundancy-Free_Coding
 
}}
 
}}
[[File:P_ID1327__Dig_A_2_5.png|right|frame|Wahrscheinlichkeitsdichtefunktion eines verrauschten Ternärsignals]]
+
[[File:P_ID1327__Dig_A_2_5.png|right|frame|Probability density function  $\rm (PDF)$  of a noisy ternary signal]]
Betrachtet wird ein ternäres Übertragungssystem  $(M = 3)$  mit den möglichen Amplitudenwerten  $-s_0$,  $0$  und  $+s_0$.
+
A ternary transmission system  $(M = 3)$  with the possible amplitude values  $-s_0$,   $0$   and  $+s_0$  is considered.  
*Bei der Übertragung addiert sich dem Signal ein additives Gaußsches Rauschen mit dem Effektivwert  $\sigma_d$.  
+
*During transmission,  additive Gaussian noise with rms value  $\sigma_d$  is added to the signal.  
*Die Rückgewinnung des dreistufigen Digitalsignals beim Empfängers geschieht mit Hilfe von zwei Entscheiderschwellen bei  $E_{–}$  bzw.  $E_{+}$.
 
  
*Zunächst werden die Auftrittswahrscheinlichkeiten der drei Eingangssymbole als gleichwahrscheinlich angenommen:
+
*The recovery of the three-level digital signal at the receiver is done with the help of two decision thresholds at  $E_{–}$  and  $E_{+}$.
 +
 
 +
*First, the occurrence probabilities of the three input symbols are assumed to be equally probable:
 
:$$p_{\rm -} = {\rm Pr}(-s_0) = {1}/{ 3}, \hspace{0.15cm}  p_{\rm 0} = {\rm Pr}(0) = {1}/{ 3},
 
:$$p_{\rm -} = {\rm Pr}(-s_0) = {1}/{ 3}, \hspace{0.15cm}  p_{\rm 0} = {\rm Pr}(0) = {1}/{ 3},
 
\hspace{0.15cm} p_{\rm +} = {\rm Pr}(+s_0) ={1}/{ 3}\hspace{0.05cm}.$$
 
\hspace{0.15cm} p_{\rm +} = {\rm Pr}(+s_0) ={1}/{ 3}\hspace{0.05cm}.$$
  
*Die Entscheiderschwellen liegen vorerst mittig bei  $E_{–} = \, –s_0/2$ und $E_{+} = +s_0/2$.
+
*For the time being,  the decision thresholds are centered at  $E_{–} = \, –s_0/2$ and $E_{+} = +s_0/2$.
  
 +
*From subtask  '''(3)'''  on,  the symbol probabilities are  $p_{–} = p_+ = 1/4$  and  $p_0 = 1/2$,  as shown in the diagram. 
  
Ab der Teilaufgabe '''(3)''' gelten für die Symbolwahrscheinlichkeiten  $p_{–} = p_+ = 1/4$  und  $p_0 = 1/2$, wie in der Grafik dargestellt. Für diese Konstellation soll durch Variation der Entscheiderschwellen  $E_{–}$  und  $E_+$  die Symbolfehlerwahrscheinlichkeit  $p_{\rm S}$  minimiert werden.
+
*For this constellation,  the symbol error probability  $p_{\rm S}$  is to be minimized by varying the decision thresholds  $E_{–}$  and  $E_+$.   
  
  
  
 
   
 
   
 +
Notes:
 +
* The exercise refers to the chapter  [[Digital_Signal_Transmission/Redundancy-Free_Coding|"Redundancy-Free Coding"]].
  
 
+
* For the symbol error probability  $p_{\rm S}$  of a  $M$–level transmission system
 
+
:*with equally probable input symbols
''Hinweise:''
+
:*and threshold values exactly in the middle between two adjacent amplitude levels holds:
* Die Aufgabe bezieht sich auf das Kapitel  [[Digitalsignal%C3%BCbertragung/Redundanzfreie_Codierung| Redundanzfreie Codierung]].
 
* Für die Symbolfehlerwahrscheinlichkeit  $p_{\rm S}$  eines  $M$–stufigen Nachrichtenübertragungssystems mit gleichwahrscheinlichen Eingangssymbolen und Schwellenwerten genau in der Mitte zwischen zwei benachbarten Amplitudenstufen gilt:
 
 
:$$p_{\rm S} =
 
:$$p_{\rm S} =
 
  \frac{ 2  \cdot (M-1)}{M} \cdot {\rm Q} \left( {\frac{s_0}{(M-1) \cdot \sigma_d}}\right)
 
  \frac{ 2  \cdot (M-1)}{M} \cdot {\rm Q} \left( {\frac{s_0}{(M-1) \cdot \sigma_d}}\right)
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
* Die Fehlerwahrscheinlichkeitswerte gemäß der  ${\rm Q}$– bzw. der  ${\rm erfc}$–Funktion können Sie mit dem Interaktionsmodul  [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|Komplementäre Gaußsche Fehlerfunktionen]]  numerisch ermitteln.
+
* You can numerically determine the error probability values according to  our applet  [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|"Complementary Gaussian Error Functions"]].
* Verwenden Sie zur Überprüfung der Ergebnisse das Berechnungsmodul  [[Applets:Fehlerwahrscheinlichkeit|Symbolfehlerwahrscheinlichkeit von Digitalsystemen]]
+
 
 +
* To check your results,  use our  (German language)  SWF applet  [[Applets:Fehlerwahrscheinlichkeit|"Symbol error probability of digital communications systems"]].
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Symbolfehlerwahrscheinlichkeit ergibt sich mit dem (normierten) Rauscheffektivwert &nbsp;$\sigma_d/s_0 = 0.25$&nbsp; bei gleichwahrscheinlichen Symbolen?
+
{What symbol error probability results with the&nbsp; (normalized)&nbsp; noise rms value &nbsp;$\sigma_d/s_0 = 0.25$&nbsp; for equally probable symbols?
 
|type="{}"}
 
|type="{}"}
 
$p_0 = 1/3, \ \sigma_d = 0.25 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ ${ 3 3% } $\ \%$
 
$p_0 = 1/3, \ \sigma_d = 0.25 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ ${ 3 3% } $\ \%$
  
{Wie ändert sich die Symbolfehlerwahrscheinlichkeit mit &nbsp;$\sigma_d/s_0 = 0.5$?
+
{How does the symbol error probability change with &nbsp;$\sigma_d/s_0 = 0.5$?
 
|type="{}"}
 
|type="{}"}
 
$p_0 = 1/3, \ \sigma_d = 0.5 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ ${ 21.2 3% } $\ \%$
 
$p_0 = 1/3, \ \sigma_d = 0.5 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ ${ 21.2 3% } $\ \%$
  
{Welcher Wert ergibt sich mit &nbsp;$p_{&ndash;} = p_+ = 0.25$&nbsp; und &nbsp;$p_0 = 0.5$?
+
{What value results with &nbsp;$p_{&ndash;} = p_+ = 0.25$&nbsp; and &nbsp;$p_0 = 0.5$?
 
|type="{}"}
 
|type="{}"}
 
$p_0 = 1/2, \ \sigma_d = 0.5 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ ${ 23.8 3% } $\ \%$
 
$p_0 = 1/2, \ \sigma_d = 0.5 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ ${ 23.8 3% } $\ \%$
  
{Bestimmen Sie die optimalen Schwellen &nbsp;$E_+$&nbsp; und &nbsp;$E_{&ndash;} = \, &ndash;E_+$&nbsp; für &nbsp;$p_0 = 1/2$.
+
{Determine the optimal thresholds &nbsp;$E_+$&nbsp; and &nbsp;$E_{&ndash;} = \, &ndash;E_+$&nbsp; for &nbsp;$p_0 = 1/2$.
 
|type="{}"}
 
|type="{}"}
 
$p_0 = 1/2, \ \sigma_d = 0.5 \text{:} \hspace{0.4cm} E_{\rm +, \ opt} \ = \ ${ 0.673 3% }  
 
$p_0 = 1/2, \ \sigma_d = 0.5 \text{:} \hspace{0.4cm} E_{\rm +, \ opt} \ = \ ${ 0.673 3% }  
  
{Welche Fehlerwahrscheinlichkeit ergibt sich bei optimalen Schwellen?
+
{What is the symbol error probability for optimal thresholds?
 
|type="{}"}
 
|type="{}"}
${\rm optimale \ Schwellen} \text{:} \hspace{0.4cm} p_{\rm S} \ = \ ${ 21.7 3% } $\ \%$
+
${\rm optimal \ thresholds} \text{:} \hspace{0.4cm} p_{\rm S} \ = \ ${ 21.7 3% } $\ \%$
  
{Wie lauten die optimalen Schwellenwerte für &nbsp;$p_0 = 0.2$&nbsp; und $&nbsp;p_{&ndash;} = p_+ = 0.4$?
+
{What are the optimal thresholds for &nbsp;$p_0 = 0.2$&nbsp; and $&nbsp;p_{&ndash;} = p_+ = 0.4$?
 
|type="{}"}
 
|type="{}"}
 
$p_0 = 0.2, \ \sigma_d = 0.5 \text{:} \hspace{0.4cm} E_{\rm +, \ opt} \ = \ ${ 0.327 3% }
 
$p_0 = 0.2, \ \sigma_d = 0.5 \text{:} \hspace{0.4cm} E_{\rm +, \ opt} \ = \ ${ 0.327 3% }
  
{Welche Symbolfehlerwahrscheinlichkeit ergibt sich nun? Interpretation.
+
{What is the symbol error probability now? Interpretation.
 
|type="{}"}
 
|type="{}"}
${\rm optimale \ Schwellen} \text{:} \hspace{0.4cm} p_{\rm S} \ = \ ${ 17.4 3% } $\ \%$
+
${\rm optimal \ thresholds} \text{:} \hspace{0.4cm} p_{\rm S} \ = \ ${ 17.4 3% } $\ \%$
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Entsprechend der angegebenen Gleichung gilt mit $M = 3$ und $\sigma_d/s_0 = 0.25$:
+
'''(1)'''&nbsp; According to the given equation,&nbsp; with&nbsp; $M = 3$&nbsp; and&nbsp; $\sigma_d/s_0 = 0.25$:
 
:$$p_{\rm S} =
 
:$$p_{\rm S} =
 
  \frac{ 2  \cdot (M-1)}{M} \cdot {\rm Q} \left( {\frac{s_0}{(M-1) \cdot
 
  \frac{ 2  \cdot (M-1)}{M} \cdot {\rm Q} \left( {\frac{s_0}{(M-1) \cdot
Line 74: Line 77:
  
  
'''(2)'''&nbsp; Bei doppeltem Rauscheffektivwert nimmt auch die Fehlerwahrscheinlichkeit signifikant zu:
+
'''(2)'''&nbsp; When the noise rms value is doubled,&nbsp; the error probability increases significantly:
 
:$$p_{\rm S} = {4}/{ 3}\cdot {\rm Q}(1)= {4}/{ 3}\cdot 0.1587 \hspace{0.15cm}\underline {\approx 21.2 \,\%}
 
:$$p_{\rm S} = {4}/{ 3}\cdot {\rm Q}(1)= {4}/{ 3}\cdot 0.1587 \hspace{0.15cm}\underline {\approx 21.2 \,\%}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; Die beiden äußeren Symbole werden jeweils mit der Wahrscheinlichkeit $p = {\rm Q}(s_0/(2 \cdot \sigma_d)) = 0.1587$ verfälscht.  
+
'''(3)'''&nbsp; The two outer symbols are each falsified with probability&nbsp; $p = {\rm Q}(s_0/(2 \cdot \sigma_d)) = 0.1587$.  
*Die Verfälschungswahrscheinlichkeit des Symbols &nbsp;$0$&nbsp; ist doppelt so groß (es wird durch zwei Schwellen begrenzt).
+
*The falsification probability of the symbol &nbsp;$0$&nbsp; is twice as large&nbsp; (it is limited by two thresholds).
* Unter Berücksichtigung der einzelnen Symbolwahrscheinlichkeiten erhält man:
+
* Considering the individual symbol probabilities,&nbsp; we obtain:
 
:$$p_{\rm S} = {1}/{ 4}\cdot p + {1}/{ 2}\cdot 2p +{1}/{ 4}\cdot p = 1.5 \cdot p  = 1.5 \cdot 0.1587
 
:$$p_{\rm S} = {1}/{ 4}\cdot p + {1}/{ 2}\cdot 2p +{1}/{ 4}\cdot p = 1.5 \cdot p  = 1.5 \cdot 0.1587
 
\hspace{0.15cm}\underline {\approx
 
\hspace{0.15cm}\underline {\approx
Line 88: Line 91:
  
  
'''(4)'''&nbsp; Da das Symbol &nbsp;$0$&nbsp; häufiger auftritt und zudem in beiden Richtungen verfälscht werden kann, sollten die Schwellen nach außen verschoben werden.  
+
'''(4)'''&nbsp; Since the symbol &nbsp;$0$&nbsp; occurs more frequently and can also be falsified in both directions,&nbsp; the thresholds should be shifted outward.
*Die optimale Entscheiderschwelle $E_{\rm +, \ opt}$ ergibt sich aus dem Schnittpunkt der beiden in der Grafik gezeigten Gaußfunktionen. Es muss gelten:
+
*The optimal decision threshold&nbsp; $E_{\rm +, \ opt}$&nbsp; is obtained from the intersection of the two Gaussian functions shown in the graph.&nbsp; It must hold:
  
[[File:P_ID1328__Dig_A_2_5e.png|right|frame|Optimale Schwellen zu '''(4)''']]
+
[[File:P_ID1328__Dig_A_2_5e.png|right|frame|Optimal thresholds for subtask&nbsp; '''(4)''']]
  
 
:$$\frac{ 1/2}{ \sqrt{2\pi} \cdot \sigma_d} \cdot  {\rm exp} \left[ - \frac{ E_{\rm +}^2}{2 \cdot \sigma_d^2}\right]
 
:$$\frac{ 1/2}{ \sqrt{2\pi} \cdot \sigma_d} \cdot  {\rm exp} \left[ - \frac{ E_{\rm +}^2}{2 \cdot \sigma_d^2}\right]
Line 104: Line 107:
  
  
'''(5)'''&nbsp; Mit dem näherungsweisen Ergebnis aus '''(4)''' erhält man:
+
'''(5)'''&nbsp; Using the approximate result from subtask&nbsp; '''(4)''',&nbsp; we obtain:
 
:$$p_{\rm S} \ = \
 
:$$p_{\rm S} \ = \
 
  { 1}/{4} \cdot {\rm Q} \left( {\frac{s_0/3}{
 
  { 1}/{4} \cdot {\rm Q} \left( {\frac{s_0/3}{
Line 110: Line 113:
 
  \sigma_d}}\right) +{ 1}/{4} \cdot {\rm Q} \left( {\frac{s_0/3}{
 
  \sigma_d}}\right) +{ 1}/{4} \cdot {\rm Q} \left( {\frac{s_0/3}{
 
  \sigma_d}}\right)$$
 
  \sigma_d}}\right)$$
 +
[[File:P_ID1329__Dig_A_2_5g.png|right|frame|Optimal thresholds for subtask&nbsp; '''(6)''']]
 +
 +
 
:$$\Rightarrow \hspace{0.3cm}p_{\rm S} \ = \ =  { 1}/{2}  \cdot {\rm Q} \left( 2/3 \right)+ {\rm Q} \left( 4/3
 
:$$\Rightarrow \hspace{0.3cm}p_{\rm S} \ = \ =  { 1}/{2}  \cdot {\rm Q} \left( 2/3 \right)+ {\rm Q} \left( 4/3
 
  \right)=
 
  \right)=
Line 116: Line 122:
  
  
[[File:P_ID1329__Dig_A_2_5g.png|right|frame|Optimale Schwellen zu '''(6)''']]
+
'''(6)'''&nbsp;  After a similar calculation as in subtask&nbsp; '''(4)'''&nbsp; we get
'''(6)'''&nbsp;  Nach ähnlicher Rechnung wie unter Punkt '''(4)''' erhält man
 
 
*$E_+ = 1 \, &ndash;0.0673 \ \underline{= 0.327} \approx 1/3$.  
 
*$E_+ = 1 \, &ndash;0.0673 \ \underline{= 0.327} \approx 1/3$.  
*Es gilt weiterhin $E_{&ndash;} = \, &ndash;E_+$.
+
*$E_{&ndash;} = \, &ndash;E_+$ is still valid.
  
  
  
'''(7)'''&nbsp; Ähnlich wie in der Musterlösung zur Teilaufgabe '''(5)''' erhält man nun:
+
'''(7)'''&nbsp; Similar to the solution for subtask&nbsp; '''(5)''',&nbsp; we now obtain:
 
:$$p_{\rm S} \ = \ 0.4 \cdot {\rm Q} \left( 4/3 \right)+ 2 \cdot 0.2 \cdot{\rm Q} \left( 2/3
 
:$$p_{\rm S} \ = \ 0.4 \cdot {\rm Q} \left( 4/3 \right)+ 2 \cdot 0.2 \cdot{\rm Q} \left( 2/3
 
  \right)+0.4 \cdot {\rm Q} \left( 4/3 \right)$$
 
  \right)+0.4 \cdot {\rm Q} \left( 4/3 \right)$$
Line 131: Line 136:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Diskussion des Ergebnisses:
+
$\text{Discussion of the result:}$
*Es ergibt sich demnach eine kleinere Symbolfehlerwahrscheinlichkeit ($17.4 \ \%$ gegenüber $21.2 \ \%$) als bei gleichwahrscheinlichen Amplitudenkoeffizienten.  
+
*Accordingly,&nbsp; there is a smaller symbol error probability&nbsp; $(17.4 \ \%$ versus $21.2 \ \%)$&nbsp; than with equal probability amplitude coefficients.
*Allerdings liegt nun keine redundanzfreie Codierung mehr vor, auch wenn die Amplitudenkoefiizienten statistisch voneinander unabhängig sind.
+
 
*Während bei gleichwahrscheinlichen Ternärsymbolen die Entropie $H = {\rm log}_2(3) = 1.585 \ {\rm bit/Ternärsymbol}$ beträgt &nbsp; &rArr; &nbsp; äquivalente Bitrate (der Informationsfluss) $R_{\rm B} = H/T$, gilt mit den Wahrscheinlichkeiten $p_0 = 0.2$ und $p_{&ndash;} = p_+ = 0.4$:
+
*However,&nbsp; redundancy-free coding is no longer present,&nbsp; even if the amplitude coefficients are statistically independent of each other.
:$$H  \ = \ 0.2 \cdot {\rm log_2} (5) + 2 \cdot 0.4 \cdot {\rm log_2} (2.5)=  0.2 \cdot 2.322 + 0.8 \cdot 1.322 \hspace{0.15cm}\underline {\approx 1.522\,\, {\rm
+
 
bit/Tern\ddot{a}rsymbol}}
+
*While for equally probable ternary symbols
 +
:*the entropy is&nbsp; $H = {\rm log}_2(3) = 1.585 \ {\rm bit/ternary \ symbol}$  
 +
:*from which the equivalent bit rate can be calculated according to&nbsp; $R_{\rm B} = H/T$,&nbsp;
 +
:*here applies with probabilities&nbsp; $p_0 = 0.2$&nbsp; and&nbsp; $p_{&ndash;} = p_+ = 0.4$:
 +
::$$H  \ = \ 0.2 \cdot {\rm log_2} (5) + 2 \cdot 0.4 \cdot {\rm log_2} (2.5)=  0.2 \cdot 2.322 + 0.8 \cdot 1.322 \hspace{0.15cm}\underline {\approx 1.522\,\, {\rm
 +
bit/ternary \ symbol}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*Die äquivalente Bitrate ist also um $4 \ \%$ kleiner, als sie für $M = 3$ maximal möglich wäre.
+
*Thus,&nbsp; the equivalent bit rate here is&nbsp; $\approx 4 \ \%$&nbsp; smaller than the maximum possible equivalent bit rate for&nbsp; $M = 3$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^2.2 Redundanzfreie Codierung^]]
+
[[Category:Digital Signal Transmission: Exercises|^2.2 Redundancy-Free Coding^]]

Latest revision as of 16:19, 3 June 2022

Probability density function  $\rm (PDF)$  of a noisy ternary signal

A ternary transmission system  $(M = 3)$  with the possible amplitude values  $-s_0$,   $0$   and  $+s_0$  is considered.

  • During transmission,  additive Gaussian noise with rms value  $\sigma_d$  is added to the signal.
  • The recovery of the three-level digital signal at the receiver is done with the help of two decision thresholds at  $E_{–}$  and  $E_{+}$.
  • First, the occurrence probabilities of the three input symbols are assumed to be equally probable:
$$p_{\rm -} = {\rm Pr}(-s_0) = {1}/{ 3}, \hspace{0.15cm} p_{\rm 0} = {\rm Pr}(0) = {1}/{ 3}, \hspace{0.15cm} p_{\rm +} = {\rm Pr}(+s_0) ={1}/{ 3}\hspace{0.05cm}.$$
  • For the time being,  the decision thresholds are centered at  $E_{–} = \, –s_0/2$ and $E_{+} = +s_0/2$.
  • From subtask  (3)  on,  the symbol probabilities are  $p_{–} = p_+ = 1/4$  and  $p_0 = 1/2$,  as shown in the diagram. 
  • For this constellation,  the symbol error probability  $p_{\rm S}$  is to be minimized by varying the decision thresholds  $E_{–}$  and  $E_+$. 



Notes:

  • For the symbol error probability  $p_{\rm S}$  of a  $M$–level transmission system
  • with equally probable input symbols
  • and threshold values exactly in the middle between two adjacent amplitude levels holds:
$$p_{\rm S} = \frac{ 2 \cdot (M-1)}{M} \cdot {\rm Q} \left( {\frac{s_0}{(M-1) \cdot \sigma_d}}\right) \hspace{0.05cm}.$$



Questions

1

What symbol error probability results with the  (normalized)  noise rms value  $\sigma_d/s_0 = 0.25$  for equally probable symbols?

$p_0 = 1/3, \ \sigma_d = 0.25 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $

$\ \%$

2

How does the symbol error probability change with  $\sigma_d/s_0 = 0.5$?

$p_0 = 1/3, \ \sigma_d = 0.5 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $

$\ \%$

3

What value results with  $p_{–} = p_+ = 0.25$  and  $p_0 = 0.5$?

$p_0 = 1/2, \ \sigma_d = 0.5 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $

$\ \%$

4

Determine the optimal thresholds  $E_+$  and  $E_{–} = \, –E_+$  for  $p_0 = 1/2$.

$p_0 = 1/2, \ \sigma_d = 0.5 \text{:} \hspace{0.4cm} E_{\rm +, \ opt} \ = \ $

5

What is the symbol error probability for optimal thresholds?

${\rm optimal \ thresholds} \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $

$\ \%$

6

What are the optimal thresholds for  $p_0 = 0.2$  and $ p_{–} = p_+ = 0.4$?

$p_0 = 0.2, \ \sigma_d = 0.5 \text{:} \hspace{0.4cm} E_{\rm +, \ opt} \ = \ $

7

What is the symbol error probability now? Interpretation.

${\rm optimal \ thresholds} \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $

$\ \%$


Solution

(1)  According to the given equation,  with  $M = 3$  and  $\sigma_d/s_0 = 0.25$:

$$p_{\rm S} = \frac{ 2 \cdot (M-1)}{M} \cdot {\rm Q} \left( {\frac{s_0}{(M-1) \cdot \sigma_d}}\right)= {4}/{ 3}\cdot {\rm Q}(2) ={4}/{ 3}\cdot 0.0228\hspace{0.15cm}\underline {\approx 3 \,\%} \hspace{0.05cm}.$$


(2)  When the noise rms value is doubled,  the error probability increases significantly:

$$p_{\rm S} = {4}/{ 3}\cdot {\rm Q}(1)= {4}/{ 3}\cdot 0.1587 \hspace{0.15cm}\underline {\approx 21.2 \,\%} \hspace{0.05cm}.$$


(3)  The two outer symbols are each falsified with probability  $p = {\rm Q}(s_0/(2 \cdot \sigma_d)) = 0.1587$.

  • The falsification probability of the symbol  $0$  is twice as large  (it is limited by two thresholds).
  • Considering the individual symbol probabilities,  we obtain:
$$p_{\rm S} = {1}/{ 4}\cdot p + {1}/{ 2}\cdot 2p +{1}/{ 4}\cdot p = 1.5 \cdot p = 1.5 \cdot 0.1587 \hspace{0.15cm}\underline {\approx 23.8 \,\%} \hspace{0.05cm}.$$


(4)  Since the symbol  $0$  occurs more frequently and can also be falsified in both directions,  the thresholds should be shifted outward.

  • The optimal decision threshold  $E_{\rm +, \ opt}$  is obtained from the intersection of the two Gaussian functions shown in the graph.  It must hold:
Optimal thresholds for subtask  (4)
$$\frac{ 1/2}{ \sqrt{2\pi} \cdot \sigma_d} \cdot {\rm exp} \left[ - \frac{ E_{\rm +}^2}{2 \cdot \sigma_d^2}\right] = \frac{ 1/4}{ \sqrt{2\pi} \cdot \sigma_d} \cdot {\rm exp} \left[ - \frac{ (s_0 -E_{\rm +})^2}{2 \cdot \sigma_d^2}\right]$$
$$\Rightarrow \hspace{0.3cm} {\rm exp} \left[ \frac{ (s_0 -E_{\rm +})^2 - E_{\rm +}^2}{2 \cdot \sigma_d^2}\right]= {1}/{ 2} \Rightarrow \hspace{0.3cm} {\rm exp} \left[ \frac{ 1 -2 \cdot E_{\rm +}/s_0}{2 \cdot \sigma_d^2/s_0^2}\right]= {1}/{ 2}$$
$$\Rightarrow \hspace{0.3cm}\frac{ E_{\rm +}}{s_0}= \frac{1} { 2}+ \frac{\sigma_d^2} {s_0^2} \cdot {\rm ln}(2)\hspace{0.15cm}\underline {=0.673}\hspace{0.15cm}\approx {2}/ {3} \hspace{0.05cm}.$$


(5)  Using the approximate result from subtask  (4),  we obtain:

$$p_{\rm S} \ = \ { 1}/{4} \cdot {\rm Q} \left( {\frac{s_0/3}{ \sigma_d}}\right)+ 2 \cdot { 1}/{2} \cdot {\rm Q} \left( {\frac{2s_0/3}{ \sigma_d}}\right) +{ 1}/{4} \cdot {\rm Q} \left( {\frac{s_0/3}{ \sigma_d}}\right)$$
Optimal thresholds for subtask  (6)


$$\Rightarrow \hspace{0.3cm}p_{\rm S} \ = \ = { 1}/{2} \cdot {\rm Q} \left( 2/3 \right)+ {\rm Q} \left( 4/3 \right)= { 1}/{2} \cdot 0.251 + 0.092 \hspace{0.15cm}\underline {\approx 21.7 \,\%} \hspace{0.05cm}.$$


(6)  After a similar calculation as in subtask  (4)  we get

  • $E_+ = 1 \, –0.0673 \ \underline{= 0.327} \approx 1/3$.
  • $E_{–} = \, –E_+$ is still valid.


(7)  Similar to the solution for subtask  (5),  we now obtain:

$$p_{\rm S} \ = \ 0.4 \cdot {\rm Q} \left( 4/3 \right)+ 2 \cdot 0.2 \cdot{\rm Q} \left( 2/3 \right)+0.4 \cdot {\rm Q} \left( 4/3 \right)$$
$$\Rightarrow \hspace{0.3cm}p_{\rm S} \ = \ 0.4 \cdot (0.092 + 0.251 + 0.092) \hspace{0.15cm}\underline {\approx 17.4 \,\%} \hspace{0.05cm}.$$

$\text{Discussion of the result:}$

  • Accordingly,  there is a smaller symbol error probability  $(17.4 \ \%$ versus $21.2 \ \%)$  than with equal probability amplitude coefficients.
  • However,  redundancy-free coding is no longer present,  even if the amplitude coefficients are statistically independent of each other.
  • While for equally probable ternary symbols
  • the entropy is  $H = {\rm log}_2(3) = 1.585 \ {\rm bit/ternary \ symbol}$
  • from which the equivalent bit rate can be calculated according to  $R_{\rm B} = H/T$, 
  • here applies with probabilities  $p_0 = 0.2$  and  $p_{–} = p_+ = 0.4$:
$$H \ = \ 0.2 \cdot {\rm log_2} (5) + 2 \cdot 0.4 \cdot {\rm log_2} (2.5)= 0.2 \cdot 2.322 + 0.8 \cdot 1.322 \hspace{0.15cm}\underline {\approx 1.522\,\, {\rm bit/ternary \ symbol}} \hspace{0.05cm}.$$
  • Thus,  the equivalent bit rate here is  $\approx 4 \ \%$  smaller than the maximum possible equivalent bit rate for  $M = 3$.