Difference between revisions of "Aufgaben:Exercise 3.11: Viterbi Receiver and Trellis Diagram"

From LNTwww
 
(21 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Viterbi–Empfänger}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Viterbi_Receiver}}
  
[[File:P_ID1475__Dig_A_3_11.png|right|frame|Trellisdiagramm für einen Vorläufer]]
+
[[File:P_ID1475__Dig_A_3_11.png|right|frame|Trellis diagram <br>for one precursor]]
Der sog. Viterbi&ndash;Empfänger erlaubt eine aufwandsgünstige Realisierung der Maximum&ndash;Likelihood&ndash;Entscheidungsregel. Er beinhaltet die im Folgenden aufgeführten Systemkomponenten:
+
The Viterbi receiver allows a low-effort realization of the maximum likelihood decision rule.&nbsp; It contains the system components listed below:
* ein an den Sendegrundimpuls angepasse Matched&ndash;Filter mit dem Frequenzgang $H_{\rm HF}(f)$ und dem Ausgangssignal $m(t)$,
+
* A matched filter adapted to the basic transmission pulse with frequency response &nbsp;$H_{\rm MF}(f)$&nbsp; and output signal &nbsp; $m(t)$,
* einen Abtaster im Abstand der Symboldauer (Bitdauer) $T$, der das zeitkontinuierliche Signal $m(t)$ in die zeitdiskrete Folge $&#9001;m_{\rm \nu}&#9002;$ wandelt,
 
* ein Dekorrelationsfilter mit dem Frequenzgang $H_{\rm DF}(f)$ zur Entfernung statistischer Bindungen zwischen den Störanteilen der Folge $&#9001;d_{\rm \nu}&#9002;$,
 
* den Viterbi&ndash;Entscheider, der mit einem trellisbasierten Algorithmus die Sinkensymbolfolge $&#9001;\upsilon_{\rm \nu}&#9002;$ gewinnt.
 
  
 +
* a sampler spaced at the symbol duration&nbsp; $T$,&nbsp; which converts the continuous-time signal &nbsp; $m(t)$&nbsp; into the discrete-time sequence &nbsp; $&#9001;m_{\rm \nu}&#9002;$,&nbsp;
 +
 +
* a decorrelation filter with frequency response &nbsp; $H_{\rm DF}(f)$&nbsp; for removing statistical ties between noise components of the sequence &nbsp; $&#9001;d_{\rm \nu}&#9002;$,
  
Die Grafik zeigt das vereinfachte Trellisdiagramm der beiden Zustände &bdquo;$0$&rdquo; und &bdquo;$1$&rdquo; für die Zeitpunkte $\nu &#8804; 5$. Dieses Diagramm erhält man als Ergebnis der Auswertung der beiden minimalen Gesamtfehlergrößen ${\it \Gamma}_{\rm \nu}(0)$ und ${\it \Gamma}_{\rm \nu}(1)$ entsprechend der [http://en.lntwww.de/index.php?title=Zusatzaufgaben:3.11_Maximum-Likelihood-Fehlergr%C3%B6%C3%9Fen&action=edit&redlink=1| Aufgabe Z3.11].
+
* the Viterbi decision,&nbsp; which uses a trellis-based algorithm to obtain the sink symbol sequence&nbsp; $&#9001;v_{\rm \nu}&#9002;$.&nbsp;
  
Gehen Sie in dieser Aufgabe von unipolaren und gleichwahrscheinlichen Amplitudenkoeffizienten aus:
 
:$${\rm Pr} (a_\nu = 0) = {\rm Pr} (a_\nu = 1)= 0.5
 
\hspace{0.05cm}.$$
 
  
''Hinweise:''
+
The graph shows the simplified trellis diagram of the two states&nbsp; "$0$"&nbsp; and&nbsp; "$1$"&nbsp; for time points &nbsp; $\nu &#8804; 5$.&nbsp; This diagram is obtained as a result of evaluating the two minimum accumulated metrics &nbsp; ${\it \Gamma}_{\rm \nu}(0)$&nbsp; and&nbsp; ${\it \Gamma}_{\rm \nu}(1)$&nbsp; corresponding to &nbsp; [[Aufgaben:Exercise_3.11Z:_Maximum_Likelihood_Error_Variables|Exercise 3.11Z]].
* Die Aufgabe gehört zum Themengebiet Kapitel [[Digitalsignal%C3%BCbertragung/Viterbi%E2%80%93Empf%C3%A4nger|Viterbi&ndash;Empfänger]].
 
* Alle Größen sind hier normiert zu verstehen.
 
* Die hier angesprochene Thematik wird auch im folgenden Interaktionsmodul behandelt: [https://intern.lntwww.de/cgi-bin/extern/uni.pl?uno=hyperlink&due=block&b_id=2010&hyperlink_typ=block_verweis&hyperlink_fenstergroesse=blockverweis_gross| Eigenschaften des Viterbi&ndash;Empfängers].
 
  
  
===Fragebogen===
+
 
 +
 
 +
Notes:
 +
*The exercise belongs to the chapter&nbsp;  [[Digital_Signal_Transmission/Viterbi_Receiver|"Viterbi Receiver"]].
 +
 
 +
*Reference is also made to the section&nbsp; [[Digital_Signal_Transmission/Optimal_Receiver_Strategies#Maximum-a-posteriori_and_maximum.E2.80.93likelihood_decision_rule|"Maximum-a-posteriori and Maximum–Likelihood decision rule"]].
 +
 +
* All quantities here are to be understood normalized. Also assume unipolar and equal probability amplitude coefficients: &nbsp;
 +
:$${\rm Pr} (a_\nu = 0) = {\rm Pr} (a_\nu = 1)= 0.5.$$
 +
 
 +
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Welche der nachfolgenden Aussagen sind zutreffend?
+
{Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
+ Das Matched&ndash;Filter dient vorwiegend der Störleistungsbegrenzung.
+
+ The matched filter &nbsp;$H_{\rm MF}(f)$&nbsp; is mainly used for noise power limitation.
+ Das Dekorrelationsfilter entfernt Bindungen bzgl. Abtastwerten.
+
+ The decorrelation filter removes ties between samples.
- Die Störleistung wird nur von $H_{\rm MF}(f)$, nicht von $H_{\rm DF}(f)$ beeinflusst.
+
- The noise power is only affected by &nbsp;$H_{\rm MF}(f)$,&nbsp; not by &nbsp;$H_{\rm DF}(f)$.&nbsp;
  
{Zu welchen Zeiten $\nu$ kann man das aktuelle Symbol $a_{\rm \nu}$ endgültig entscheiden?
+
{At what times &nbsp;$\nu$&nbsp; can we finally decide the current symbol &nbsp;$a_{\rm \nu}$?&nbsp;
 
|type="[]"}
 
|type="[]"}
 
+ $\nu = 1,$
 
+ $\nu = 1,$
Line 38: Line 43:
 
+ $\nu = 5.$
 
+ $\nu = 5.$
  
{Wie lautet die vom Viterbi&ndash;Empfänger entschiedene Folge?
+
{What is the total sequence decided by the Viterbi receiver?
 
|type="{}"}
 
|type="{}"}
$a_1$ = { 0 3% }
+
$a_1 \ = \ $ { 0. }
$a_2$ = { 0 3% }
+
$a_2 \ = \ ${ 0. }
$a_3$ = { 1 3% }
+
$a_3 \ = \ $ { 1 }
$a_4$ = { 0 3% }
+
$a_4 \ = \ $ { 0. }
$a_5$ = { 0 3% }
+
$a_5 \ = \ $ { 0. }
  
{Welche der folgenden Aussagen treffen zu?
+
{Which of the following statements are true?
 
|type="[]"}
 
|type="[]"}
- Es ist sicher, dass die erkannte Folge auch gesendet wurde.
+
- It is certain that the detected sequence was also sent.
+ Ein MAP&ndash;Empfänger hätte die gleiche Fehlerwahrscheinlichkeit.
+
+ A MAP receiver would have the same error probability.
- Schwellenwertentscheidung ist gleich gut wie der ML&ndash;Empfänger.
+
- Threshold decision is the same as this maximum likelihood receiver.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind die <u>beiden ersten Lösungsvorschläge</u>. Das Signal $m(t)$ nach dem Matched&ndash;Filter $H_{\rm MF}(f)$ weist das größtmögliche Signal&ndash;zu&ndash;Störleistungsverhältnis auf. Die Störanteile der Folge $&#9001;m_{\rm \nu}&#9002;$ sind aber aufgrund der spektralen Formung (stark) korreliert. Aufgabe des zeitdiskreten Dekorrelationsfilters mit dem Frequenzgang $H_{\rm DF}(f)$ ist es, diese Bindungen aufzulösen, weshalb für $H_{\rm DF}(f)$ auch der Name &bdquo;Whitening&ndash;Filter&rdquo; verwendet wird. Dies ist allerdings nur auf Kosten einer erhöhten Störleistung möglich &#8658; der letzte Lösungsvorschlag trifft nicht zu.
+
'''(1)'''&nbsp; The&nbsp; <u>first two solutions</u>&nbsp; are correct:
 +
*The signal&nbsp; $m(t)$&nbsp; after the matched filter&nbsp; $H_{\rm MF}(f)$&nbsp; has the largest possible signal-to-interference power ratio&nbsp; $\rm (SNR)$.
 +
* However,&nbsp; the noise components of the sequence&nbsp; $&#9001;m_{\rm \nu}&#9002;$&nbsp; are (strongly) correlated due to the spectral shaping.
 +
*The task of the discrete-time decorrelation filter with the frequency response&nbsp; $H_{\rm DF}(f)$&nbsp; is to dissolve these bindings,&nbsp; which is why the name&nbsp; "whitening filter"&nbsp; is also used for&nbsp; $H_{\rm DF}(f)$
 +
*However,&nbsp; this is possible only at the cost of increased noise power &nbsp; &#8658; &nbsp; consequently,&nbsp; the last proposed solution does not apply.
  
  
'''(2)'''&nbsp; Die beiden bei $\underline {\nu = 1}$ ankommenden Pfeile sind jeweils blau gezeichnet und kennzeichnen das Symbol $a_1 = 0$. Somit ist bereits zu diesem Zeitpunkt das Ausgangssymbol $a_1$ festgelegt. Ebenso stehen die Symbole $a_3 = 1$ und $a_5 = 0$ bereits zu den Zeitpunkten $\underline {\nu = 3}$ bzw. $\underline {\nu = 5}$ fest.
 
  
Dagegen ist zum Zeitpunkt $\nu = 2$ eine Entscheidung bezüglich des Symbols $a_2$ nicht möglich. Unter der Hypothese, dass das nachfolgende Symbol $a_3 = 0$ sein wird, würde sich Symbol $a_2 = 1$ ergeben (bei &bdquo;$0$&rdquo; kommt ein roter Pfad an, also von &bdquo;$1$&rdquo; kommend). Dagegen führt die Hypothese $a_3 = 1$ zum Ergebnis $a_2 = 0$ (der bei &bdquo;$1$&rdquo; ankommende Pfad ist blau).
+
'''(2)'''&nbsp; The two arrows arriving at &nbsp; $\underline {\nu = 1}$&nbsp; are each drawn in blue and indicate the symbol&nbsp; $a_1 = 0$.&nbsp; Thus,&nbsp; the initial symbol&nbsp; $a_1$&nbsp; is already fixed at this point.&nbsp; Similarly,&nbsp; the symbols&nbsp; $a_3 = 1$&nbsp; and&nbsp; $a_5 = 0$&nbsp; are already fixed at times&nbsp; $\underline {\nu = 3}$&nbsp; and&nbsp; $\underline {\nu = 5}$,&nbsp; respectively.
  
 +
In contrast,&nbsp; at time $\nu = 2$,&nbsp; a decision regarding symbol&nbsp; $a_2$&nbsp; is not possible.
 +
*Under the hypothesis that the following symbol&nbsp; $a_3 = 0$&nbsp; would result in symbol&nbsp; $a_2 = 1$&nbsp; $($at&nbsp; "$0$"&nbsp; a red path arrives,&nbsp; thus coming from&nbsp; "$1$"$)$.
 +
* In contrast,&nbsp; the hypothesis&nbsp; $a_3 = 1$&nbsp; leads to the result&nbsp; $a_2 = 0$&nbsp; $($the path arriving at&nbsp; "$1$"&nbsp; is blue$)$.
  
'''(3)'''&nbsp; Aus den durchgehenden Pfaden bei $\nu = 5$ ist ersichtlich:
+
The situation is similar at time&nbsp; $\nu = 4$.
 +
 
 +
 
 +
'''(3)'''&nbsp; From the continuous paths at&nbsp; $\nu = 5$&nbsp; it can be seen:
 
:$$a_{1}\hspace{0.15cm}\underline {=0} \hspace{0.05cm},\hspace{0.2cm}
 
:$$a_{1}\hspace{0.15cm}\underline {=0} \hspace{0.05cm},\hspace{0.2cm}
 
a_{2}\hspace{0.15cm}\underline { =0} \hspace{0.05cm},\hspace{0.2cm}a_{3}\hspace{0.15cm}\underline {=1}
 
a_{2}\hspace{0.15cm}\underline { =0} \hspace{0.05cm},\hspace{0.2cm}a_{3}\hspace{0.15cm}\underline {=1}
Line 70: Line 84:
  
  
'''(4)'''&nbsp; Richtig ist nur die <u>zweite Aussage</u>: Da die Quellensymbole &bdquo;$0$&rdquo; und &bdquo;$1$&rdquo; als gleichwahrscheinlich vorausgesetzt wurden, ist der ML&ndash;Empfänger (Viterbi) identisch mit dem MAP&ndash;Empfänger.  
+
'''(4)'''&nbsp; Only the&nbsp; <u>second statement</u>&nbsp; is correct:  
 
+
*Since the source symbols&nbsp; "$0$"&nbsp; and&nbsp; "$1$"&nbsp; were assumed to be equally probable,&nbsp; the ML receiver&nbsp; (Viterbi)&nbsp; is identical to the MAP receiver.
Ein Schwellenwertentscheider &ndash; der zu jedem Takt eine symbolweise Entscheidung trifft &ndash; hat nur dann die gleiche Fehlerwahrscheinlichkeit wie der Viterbi&ndash;Empfänger, wenn es keine Impulsinterferenzen gibt. Dies ist hier offensichtlich nicht der Fall, sonst müsste zu jedem Zeitpunkt $\nu$ eine endgültige Entscheidung getroffen werden können.  
+
*A threshold decision&nbsp; $($which makes a symbol-by-symbol decision at each clock$)$&nbsp; has the same BER as the Viterbi receiver only if there is no intersymbol interference.
 
+
*This is obviously not the case here,&nbsp; otherwise it should be possible to make a final decision at every time&nbsp; $\nu$.  
Die erste Aussage trifft ebenfalls nicht zu. Das würde nämlich bedeuten, dass der Viterbi&ndash;Empfänger die Fehlerwahrscheinlichkeit $0$ haben kann. Dies ist aus der informationstheoretischen Gründen nicht möglich.
+
*The first statement is also false.&nbsp; Indeed,&nbsp; this would mean that the Viterbi receiver can have error probability&nbsp; $0$&nbsp; in the presence of AWGN noise.&nbsp; <br>This is not possible for information-theoretic reasons.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^3.8 Viterbi-Empfänger^]]
+
[[Category:Digital Signal Transmission: Exercises|^3.8 Viterbi Receiver^]]

Latest revision as of 14:00, 5 July 2022

Trellis diagram
for one precursor

The Viterbi receiver allows a low-effort realization of the maximum likelihood decision rule.  It contains the system components listed below:

  • A matched filter adapted to the basic transmission pulse with frequency response  $H_{\rm MF}(f)$  and output signal   $m(t)$,
  • a sampler spaced at the symbol duration  $T$,  which converts the continuous-time signal   $m(t)$  into the discrete-time sequence   $〈m_{\rm \nu}〉$, 
  • a decorrelation filter with frequency response   $H_{\rm DF}(f)$  for removing statistical ties between noise components of the sequence   $〈d_{\rm \nu}〉$,
  • the Viterbi decision,  which uses a trellis-based algorithm to obtain the sink symbol sequence  $〈v_{\rm \nu}〉$. 


The graph shows the simplified trellis diagram of the two states  "$0$"  and  "$1$"  for time points   $\nu ≤ 5$.  This diagram is obtained as a result of evaluating the two minimum accumulated metrics   ${\it \Gamma}_{\rm \nu}(0)$  and  ${\it \Gamma}_{\rm \nu}(1)$  corresponding to   Exercise 3.11Z.



Notes:

  • All quantities here are to be understood normalized. Also assume unipolar and equal probability amplitude coefficients:  
$${\rm Pr} (a_\nu = 0) = {\rm Pr} (a_\nu = 1)= 0.5.$$


Questions

1

Which of the following statements are true?

The matched filter  $H_{\rm MF}(f)$  is mainly used for noise power limitation.
The decorrelation filter removes ties between samples.
The noise power is only affected by  $H_{\rm MF}(f)$,  not by  $H_{\rm DF}(f)$. 

2

At what times  $\nu$  can we finally decide the current symbol  $a_{\rm \nu}$? 

$\nu = 1,$
$\nu = 2,$
$\nu = 3,$
$\nu = 4,$
$\nu = 5.$

3

What is the total sequence decided by the Viterbi receiver?

$a_1 \ = \ $

$a_2 \ = \ $

$a_3 \ = \ $

$a_4 \ = \ $

$a_5 \ = \ $

4

Which of the following statements are true?

It is certain that the detected sequence was also sent.
A MAP receiver would have the same error probability.
Threshold decision is the same as this maximum likelihood receiver.


Solution

(1)  The  first two solutions  are correct:

  • The signal  $m(t)$  after the matched filter  $H_{\rm MF}(f)$  has the largest possible signal-to-interference power ratio  $\rm (SNR)$.
  • However,  the noise components of the sequence  $〈m_{\rm \nu}〉$  are (strongly) correlated due to the spectral shaping.
  • The task of the discrete-time decorrelation filter with the frequency response  $H_{\rm DF}(f)$  is to dissolve these bindings,  which is why the name  "whitening filter"  is also used for  $H_{\rm DF}(f)$.
  • However,  this is possible only at the cost of increased noise power   ⇒   consequently,  the last proposed solution does not apply.


(2)  The two arrows arriving at   $\underline {\nu = 1}$  are each drawn in blue and indicate the symbol  $a_1 = 0$.  Thus,  the initial symbol  $a_1$  is already fixed at this point.  Similarly,  the symbols  $a_3 = 1$  and  $a_5 = 0$  are already fixed at times  $\underline {\nu = 3}$  and  $\underline {\nu = 5}$,  respectively.

In contrast,  at time $\nu = 2$,  a decision regarding symbol  $a_2$  is not possible.

  • Under the hypothesis that the following symbol  $a_3 = 0$  would result in symbol  $a_2 = 1$  $($at  "$0$"  a red path arrives,  thus coming from  "$1$"$)$.
  • In contrast,  the hypothesis  $a_3 = 1$  leads to the result  $a_2 = 0$  $($the path arriving at  "$1$"  is blue$)$.

The situation is similar at time  $\nu = 4$.


(3)  From the continuous paths at  $\nu = 5$  it can be seen:

$$a_{1}\hspace{0.15cm}\underline {=0} \hspace{0.05cm},\hspace{0.2cm} a_{2}\hspace{0.15cm}\underline { =0} \hspace{0.05cm},\hspace{0.2cm}a_{3}\hspace{0.15cm}\underline {=1} \hspace{0.05cm},\hspace{0.2cm} a_{4}\hspace{0.15cm}\underline {=0} \hspace{0.05cm},\hspace{0.2cm} a_{5}\hspace{0.15cm}\underline {=0} \hspace{0.05cm}.$$


(4)  Only the  second statement  is correct:

  • Since the source symbols  "$0$"  and  "$1$"  were assumed to be equally probable,  the ML receiver  (Viterbi)  is identical to the MAP receiver.
  • A threshold decision  $($which makes a symbol-by-symbol decision at each clock$)$  has the same BER as the Viterbi receiver only if there is no intersymbol interference.
  • This is obviously not the case here,  otherwise it should be possible to make a final decision at every time  $\nu$.
  • The first statement is also false.  Indeed,  this would mean that the Viterbi receiver can have error probability  $0$  in the presence of AWGN noise. 
    This is not possible for information-theoretic reasons.