Difference between revisions of "Digital Signal Transmission/Optimal Receiver Strategies"

From LNTwww
 
(43 intermediate revisions by 8 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Impulsinterferenzen und Entzerrungsverfahren
+
|Untermenü=Intersymbol Interfering and Equalization Methods
 
|Vorherige Seite=Entscheidungsrückkopplung
 
|Vorherige Seite=Entscheidungsrückkopplung
 
|Nächste Seite=Viterbi–Empfänger
 
|Nächste Seite=Viterbi–Empfänger
 
}}
 
}}
  
== Betrachtetes Szenario im Kapitel 3.7 ==
+
== Considered scenario and prerequisites==
 
<br>
 
<br>
Alle bisher beschriebenen Digitalempfänger treffen stets symbolweise Entscheidungen. Werden dagegen mehrere Symbole gleichzeitig entschieden, so können bei der Detektion statistische Bindungen zwischen den Empfangssignalabtastwerten berücksichtigt werden, was eine geringere Fehlerwahrscheinlichkeit zur Folge hat &ndash; allerdings auf Kosten einer zusätzlichen Laufzeit.<br>
+
All digital receivers described so far always make symbol-wise decisions.&nbsp; If,&nbsp; on the other hand,&nbsp; several symbols are decided simultaneously,&nbsp; statistical bindings between the received signal samples can be taken into account during detection,&nbsp; which results in a lower error probability &ndash; but at the cost of an additional delay time.<br>
  
In diesem &ndash; teilweise auch im nächsten Kapitel &ndash; wird von folgendem Übertragungsmodell ausgegangen:<br>
+
In this&nbsp; $($partly also in the next chapter$)$&nbsp; the following transmission model is assumed.&nbsp; Compared to the last two chapters,&nbsp; the following differences arise: <br>
  
[[File:P ID1455 Dig T 3 7 S1 version1.png|Übertragungssystem mit optimalem Empfänger|class=fit]]<br>
+
[[File:EN_Dig_T_3_7_S1.png|right|frame|Transmission system with optimal receiver|class=fit]]
  
Gegenüber den letzten Kapiteln 3.5 und 3.6 ergeben sich folgende Unterschiede:
+
*$Q \in \{Q_i\}$&nbsp; with&nbsp; $i = 0$, ... , $M-1$&nbsp; denotes a time-constrained source symbol sequence &nbsp;$\langle q_\nu \rangle$ whose symbols are to be jointly decided by the receiver.<br>
*<i>Q</i> &#8712; {<i>Q<sub>i</sub></i>} mit <i>i</i> = 0, ... , <i>M</i>&ndash;1 bezeichnet eine zeitlich begrenzte Quellensymbolfolge &#9001;<i>q<sub>&nu;</sub></i>&#9002;, deren Symbole vom optimalen Empfänger gemeinsam entschieden werden sollen.<br>
 
  
*Beschreibt <i>Q</i> eine Folge von <i>N</i> redundanzfreien Binärsymbolen, so ist <i>M</i> = 2<sup><i>N</i></sup> zu setzen. Dagegen gibt <i>M</i> bei symbolweiser Entscheidung die Stufenzahl der digitalen Quelle an.<br>
+
*If the source &nbsp;$Q$&nbsp; describes a sequence of &nbsp;$N$&nbsp; redundancy-free binary symbols, set &nbsp;$M = 2^N$.&nbsp; On the other hand,&nbsp; if the decision is symbol-wise, &nbsp;$M$&nbsp; specifies the level number of the digital source.<br>
  
*Im obigen Modell werden eventuelle Kanalverzerrungen dem Sender hinzugefügt und sind somit bereits im Grundimpuls <i>g<sub>s</sub></i>(<i>t</i>) und im Signal <i>s</i>(<i>t</i>) enthalten. Diese Maßnahme dient lediglich einer einfacheren Darstellung und stellt keine Einschränkung dar.<br>
+
*In this model,&nbsp; any channel distortions are added to the transmitter and are thus already included in the basic transmission pulse &nbsp;$g_s(t)$&nbsp; and the signal &nbsp;$s(t)$.&nbsp; This measure is only for a simpler representation and is not a restriction.<br>
  
*Der optimale Empfänger sucht unter Kenntnis des aktuell anliegenden Empfangssignals <i>r</i>(<i>t</i>) aus der Menge {<i>Q</i><sub>0</sub>, ... , <i>Q</i><sub><i>M</i>&ndash;1</sub>} der möglichen Quellensymbolfolgen die am wahrscheinlichsten gesendete Folge {<i>Q<sub>j</sub></i>} und gibt diese als Sinkensymbolfolge <i>V</i> aus.<br>
+
*Knowing the currently applied received signal &nbsp;$r(t)$,&nbsp; the optimal receiver searches from the set &nbsp;$\{Q_0$, ... , $Q_{M-1}\}$&nbsp; of the possible source symbol sequences, the receiver searches for the most likely transmitted sequence &nbsp;$Q_j$&nbsp; and outputs this as a sink symbol sequence &nbsp;$V$.&nbsp; <br>
  
*Vor dem eigentlichen Entscheidungsalgorithmus muss durch eine geeignete Signalvorverarbeitung aus dem Empfangssignal <i>r</i>(<i>t</i>) für jede mögliche Folge <i>Q<sub>i</sub></i> ein Zahlenwert <i>W<sub>i</sub></i> abgeleitet werden. Je größer <i>W<sub>i</sub></i> ist, desto größer ist die Rückschlusswahrscheinlichkeit, dass <i>Q<sub>i</sub></i> gesendet wurde.<br>
+
*Before the actual decision algorithm,&nbsp; a numerical value &nbsp;$W_i$&nbsp; must be derived from the received signal &nbsp;$r(t)$&nbsp; for each possible sequence &nbsp;$Q_i$&nbsp; by suitable signal preprocessing.&nbsp; The larger &nbsp;$W_i$&nbsp; is,&nbsp; the greater the inference probability that &nbsp;$Q_i$&nbsp; was transmitted.<br>
  
*Die Signalvorverarbeitung muss für die erforderliche Rauschleistungsbegrenzung und &ndash; bei starken Kanalverzerrungen &ndash; für eine ausreichende Vorentzerrung der entstandenen Impulsinterferenzen sorgen. Außerdem beinhaltet die Vorverarbeitung auch die Abtastung zur Zeitdiskretisierung.<br>
+
*Signal preprocessing must provide for the necessary noise power limitation and &ndash; in the case of strong channel distortions &ndash; for sufficient pre-equalization of the resulting intersymbol interferences.&nbsp; In addition,&nbsp; preprocessing also includes sampling for time discretization.<br>
  
== MAP– und Maximum–Likelihood–Entscheidungsregel (1) ==
+
== Maximum-a-posteriori and maximum–likelihood decision rule==
 
<br>
 
<br>
Man bezeichnet den (uneingeschränkt) optimalen Empfänger als MAP&ndash;Empfänger, wobei &bdquo;MAP&rdquo; für &bdquo;Maximum&ndash;a&ndash;posteriori&rdquo; steht.<br>
+
The&nbsp; (unconstrained)&nbsp; optimal receiver is called the&nbsp; "MAP receiver",&nbsp; where&nbsp; "MAP"&nbsp; stands for&nbsp; "maximum&ndash;a&ndash;posteriori".<br>
  
{{Definition}}''':''' Der MAP&ndash;Empfänger ermittelt die <i>M</i> Rückschlusswahrscheinlichkeiten Pr(<i>Q<sub>i</sub></i>|<i>r</i>(<i>t</i>)) und setzt seine Ausgangsfolge <i>V</i> gemäß der Entscheidungsregel (<i>i</i> = 0, ..., <i>M</i> &ndash; 1, <i>i</i> &ne; <i>j</i>):
+
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; The&nbsp; '''maximum&ndash;a&ndash;posteriori receiver'''&nbsp; $($abbreviated&nbsp; $\rm MAP)$&nbsp; determines the &nbsp;$M$&nbsp; inference probabilities &nbsp;${\rm Pr}\big[Q_i \hspace{0.05cm}\vert \hspace{0.05cm}r(t)\big]$,&nbsp; and sets the output sequence &nbsp;$V$&nbsp; according to the decision rule,&nbsp; where the index is &nbsp; $i = 0$, ... , $M-1$&nbsp; as well as &nbsp;$i \ne j$:
 +
:$${\rm Pr}\big[Q_j \hspace{0.05cm}\vert \hspace{0.05cm} r(t)\big] > {\rm Pr}\big[Q_i \hspace{0.05cm}\vert \hspace{0.05cm} r(t)\big]
 +
\hspace{0.05cm}.$$}}<br>
  
:<math>{\rm Pr}(Q_j \hspace{0.05cm}|\hspace{0.05cm} r(t)) > {\rm Pr}(Q_i \hspace{0.05cm}|\hspace{0.05cm} r(t))
+
*The &nbsp;[[Theory_of_Stochastic_Signals/Statistical_Dependence_and_Independence#Inference_probability|"inference probability"]]&nbsp; ${\rm Pr}\big[Q_i \hspace{0.05cm}\vert \hspace{0.05cm} r(t)\big]$&nbsp; indicates the probability with which the sequence &nbsp;$Q_i$&nbsp; was sent when the received signal &nbsp;$r(t)$&nbsp; is present at the decision.&nbsp; Using &nbsp;[[Theory_of_Stochastic_Signals/Statistical_Dependence_and_Independence#Conditional_Probability|"Bayes' theorem"]],&nbsp; this probability can be calculated as follows:
\hspace{0.05cm}.</math>{{end}}<br>
+
:$${\rm Pr}\big[Q_i \hspace{0.05cm}|\hspace{0.05cm} r(t)\big] = \frac{ {\rm Pr}\big[ r(t)\hspace{0.05cm}|\hspace{0.05cm}
 +
Q_i \big] \cdot {\rm Pr}\big[Q_i]}{{\rm Pr}[r(t)\big]}
 +
\hspace{0.05cm}.$$
  
Die Rückschlusswahrscheinlichkeit Pr(<i>Q<sub>i</sub></i>|<i>r</i>(<i>t</i>)) gibt an, mit welcher Wahrscheinlichkeit die Folge <i>Q<sub>i</sub></i> gesendet wurde, wenn das Empfangssignal <i>r</i>(<i>t</i>) am Entscheider anliegt. Mit dem Satz von Bayes kann diese Wahrscheinlichkeit wie folgt berechnet werden:
+
*The MAP decision rule can thus be reformulated or simplified as follows: &nbsp; Let the sink symbol sequence &nbsp;$V = Q_j$,&nbsp; if for all &nbsp;$i \ne j$&nbsp; holds:
 +
:$$\frac{ {\rm Pr}\big[ r(t)\hspace{0.05cm}|\hspace{0.05cm}
 +
Q_j \big] \cdot {\rm Pr}\big[Q_j)}{{\rm Pr}\big[r(t)\big]} > \frac{ {\rm Pr}\big[ r(t)\hspace{0.05cm}|\hspace{0.05cm}
 +
Q_i\big] \cdot {\rm Pr}\big[Q_i\big]}{{\rm Pr}\big[r(t)\big]}\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm}  {\rm Pr}\big[ r(t)\hspace{0.05cm}|\hspace{0.05cm}
 +
Q_j\big] \cdot {\rm Pr}\big[Q_j\big]> {\rm Pr}\big[ r(t)\hspace{0.05cm}|\hspace{0.05cm}
 +
Q_i \big] \cdot {\rm Pr}\big[Q_i\big] \hspace{0.05cm}.$$
  
:<math>{\rm Pr}(Q_i \hspace{0.05cm}|\hspace{0.05cm} r(t)) = \frac{ {\rm Pr}( r(t)\hspace{0.05cm}|\hspace{0.05cm}
+
A further simplification of this MAP decision rule leads to the&nbsp; "ML receiver",&nbsp; where&nbsp; "ML"&nbsp; stands for&nbsp; "maximum likelihood".<br>
Q_i) \cdot {\rm Pr}(Q_i)}{{\rm Pr}(r(t))}
 
\hspace{0.05cm}.</math>
 
  
Die MAP&ndash;Entscheidungsregel lässt sich somit wie folgt umformulieren bzw. vereinfachen. Man setze die Sinkensymbolfolge <i>V</i> = <i>Q<sub>j</sub></i>, falls für alle <i>i</i> &ne; <i>j</i> gilt:
+
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; The &nbsp;'''maximum likelihood receiver'''&nbsp; $($abbreviated&nbsp; $\rm ML)$ &nbsp; decides according to the conditional forward probabilities &nbsp;${\rm Pr}\big[r(t)\hspace{0.05cm} \vert \hspace{0.05cm}Q_i \big]$,&nbsp; and sets the output sequence &nbsp;$V = Q_j$,&nbsp; if for all &nbsp;$i \ne j$&nbsp; holds:
 +
:$${\rm Pr}\big[ r(t)\hspace{0.05cm} \vert\hspace{0.05cm}
 +
Q_j \big] > {\rm Pr}\big[ r(t)\hspace{0.05cm} \vert \hspace{0.05cm}
 +
Q_i\big]  \hspace{0.05cm}.$$}}<br>
  
:<math>\frac{ {\rm Pr}( r(t)\hspace{0.05cm}|\hspace{0.05cm}
+
A comparison of these two definitions shows:
Q_j) \cdot {\rm Pr}(Q_j)}{{\rm Pr}(r(t))} > \frac{ {\rm Pr}( r(t)\hspace{0.05cm}|\hspace{0.05cm}
+
* For equally probable source symbols,&nbsp; the&nbsp; "ML receiver"&nbsp; and the&nbsp; "MAP receiver"&nbsp; use the same decision rules.&nbsp; Thus,&nbsp; they are equivalent.
Q_i) \cdot {\rm Pr}(Q_i)}{{\rm Pr}(r(t))}</math>
 
  
:<math>\Rightarrow \hspace{0.3cm}  {\rm Pr}( r(t)\hspace{0.05cm}|\hspace{0.05cm}
+
*For symbols that are not equally probable,&nbsp; the&nbsp; "ML receiver"&nbsp; is inferior to the&nbsp; "MAP receiver"&nbsp; because it does not use all the available information for detection.<br>
Q_j) \cdot {\rm Pr}(Q_j)> {\rm Pr}( r(t)\hspace{0.05cm}|\hspace{0.05cm}
 
Q_i) \cdot {\rm Pr}(Q_i) \hspace{0.05cm}.</math>
 
  
Eine weitere Vereinfachung dieser MAP&ndash;Entscheidungsregel führt zum ML&ndash;Empfänger, wobei &bdquo;ML&rdquo; für &bdquo;Maximum&ndash;Likelihood&rdquo; steht.<br>
 
  
{{Definition}}''':''' Der Maximum&ndash;Likelihood&ndash;Empfänger &ndash; abgekürzt ML &ndash; entscheidet nach den bedingten Vorwärtswahrscheinlichkeiten Pr(<i>r</i>(<i>t</i>)|<i>Q<sub>i</sub></i>) und setzt die Folge <i>V</i> = <i>Q<sub>j</sub></i>, falls für alle <i>i</i> &ne; <i>j</i> gilt:
+
{{GraueBox|TEXT= 
 +
$\text{Example 1:}$&nbsp; To illustrate the&nbsp; "ML"&nbsp; and the&nbsp; "MAP"&nbsp; decision rule,&nbsp; we now construct a very simple example with only two source symbols &nbsp;$(M = 2)$.
 +
[[File:EN_Dig_T_3_7_S2.png|right|frame|For clarification of MAP and ML receiver|class=fit]]
 +
<br><br>&rArr; &nbsp; The two possible symbols &nbsp;$Q_0$&nbsp; and &nbsp;$Q_1$&nbsp; are represented by the transmitted signals &nbsp;$s = 0$&nbsp; and &nbsp;$s = 1$.
 +
<br><br>
 +
&rArr; &nbsp; The received signal can &ndash; for whatever reason &ndash; take three different values, namely &nbsp;$r = 0$, &nbsp;$r = 1$&nbsp; and additionally &nbsp;$r = 0.5$.
 +
<br><br>
 +
<u>Note:</u>
 +
*The received values &nbsp;$r = 0$&nbsp; and &nbsp;$r = 1$&nbsp; will be assigned to the transmitter values &nbsp;$s = 0 \ (Q_0)$&nbsp; resp. &nbsp;$s = 1 \ (Q_1)$,&nbsp;  by both,&nbsp; the ML and MAP decisions.
  
:<math>{\rm Pr}( r(t)\hspace{0.05cm}|\hspace{0.05cm}
+
*In contrast, the decisions will give a different result with respect to the received value &nbsp;$r = 0.5$:&nbsp;
Q_j) > {\rm Pr}( r(t)\hspace{0.05cm}|\hspace{0.05cm}
 
Q_i)  \hspace{0.05cm}.</math>
 
{{end}}<br>
 
  
Ein Vergleich dieser beiden Definitionen zeigt, dass bei gleichwahrscheinlichen Quellensymbolen  der ML&ndash; und der MAP&ndash;Empfänger gleiche Entscheidungsregeln befolgen und somit vollkommen äquivalent sind. Bei nicht gleichwahrscheinlichen Symbolen ist der ML&ndash; dem MAP&ndash;Empfänger unterlegen, da er für die Detektion nicht alle zur Verfügung stehenden Informationen nutzt.<br>
+
:*The maximum likelihood&nbsp; $\rm (ML)$&nbsp; decision rule leads to the source symbol &nbsp;$Q_0$,&nbsp; because of:
 +
::$${\rm Pr}\big [ r= 0.5\hspace{0.05cm}\vert\hspace{0.05cm}
 +
Q_0\big ] = 0.4 > {\rm Pr}\big [ r= 0.5\hspace{0.05cm} \vert \hspace{0.05cm}
 +
Q_1\big ] = 0.2 \hspace{0.05cm}.$$
  
== MAP– und Maximum–Likelihood–Entscheidungsregel (2) ==
+
:*The maximum&ndash;a&ndash;posteriori&nbsp; $\rm (MAP)$&nbsp; decision rule leads to the source symbol &nbsp;$Q_1$,&nbsp; since according to the incidental calculation in the graph:
 +
::$${\rm Pr}\big [Q_1 \hspace{0.05cm}\vert\hspace{0.05cm}
 +
r= 0.5\big ] = 0.6 > {\rm Pr}\big [Q_0 \hspace{0.05cm}\vert\hspace{0.05cm}
 +
r= 0.5\big ] = 0.4 \hspace{0.05cm}.$$}}<br>
 +
 
 +
== Maximum likelihood decision for Gaussian noise ==
 
<br>
 
<br>
{{Beispiel}}''':''' Zur Verdeutlichung von ML&ndash; und MAP&ndash;Entscheidungsregel konstruieren wir nun ein sehr einfaches Beispiel mit nur zwei Quellensymbolen (<i>M</i> = 2). Diese beiden möglichen Symbole <i>Q</i><sub>0</sub> und <i>Q</i><sub>1</sub> werden durch die Sendesignale <i>s</i> = 0 bzw. <i>s</i> = 1 dargestellt. Dagegen kann das Empfangssignal &ndash; warum auch immer &ndash; drei verschiedene Werte annehmen, nämlich <i>r</i> = 0, <i>r</i> = 1 und <i>r</i> = 0.5.<br><br>
+
We now assume that the received signal &nbsp;$r(t)$&nbsp; is additively composed of a useful component &nbsp;$s(t)$&nbsp; and a noise component &nbsp;$n(t)$,&nbsp; where the noise is assumed to be Gaussian distributed and white &nbsp; &rArr; &nbsp; &nbsp;[[Digital_Signal_Transmission/System_Components_of_a_Baseband_Transmission_System#Transmission_channel_and_interference|"AWGN noise"]]:
 +
:$$r(t) = s(t) + n(t) \hspace{0.05cm}.$$
  
[[File:P ID1461 Dig T 3 7 S2 version1.png|Zur Verdeutlichung von MAP- und ML-Empfänger|class=fit]]<br>
+
Any channel distortions are already applied to the signal &nbsp;$s(t)$&nbsp; for simplicity.<br>
  
Die Empfangswerte <i>r</i> = 0 und <i>r</i> = 1 werden sowohl vom ML&ndash; als auch vom MAP&ndash;Entscheider den Senderwerten <i>s</i> = 0 (<i>Q</i><sub>0</sub>) bzw. <i>s</i> = 1 (<i>Q</i><sub>1</sub>) zugeordnet. Dagegen werden die beiden Entscheider bezüglich des Empfangswertes <i>r</i> = 0.5 zu einem anderen Ergebnis kommen:
+
The necessary noise power limitation is realized by an integrator;&nbsp; this corresponds to an averaging of the noise values in the time domain.&nbsp; If one limits the integration interval to the range &nbsp;$t_1$&nbsp; to &nbsp;$t_2$,&nbsp; one can derive a quantity &nbsp;$W_i$&nbsp; for each source symbol sequence &nbsp;$Q_i$,&nbsp; which is a measure for the conditional probability &nbsp;${\rm Pr}\big [ r(t)\hspace{0.05cm} \vert \hspace{0.05cm}
 +
Q_i\big ] $:&nbsp;
 +
:$$W_i  = \int_{t_1}^{t_2} r(t) \cdot s_i(t) \,{\rm d} t -
 +
{1}/{2} \cdot \int_{t_1}^{t_2} s_i^2(t) \,{\rm d} t=
 +
I_i - {E_i}/{2} \hspace{0.05cm}.$$
  
*Die Maximum&ndash;Likelihood&ndash;Entscheidungsregel führt zum Quellensymbol <i>Q</i><sub>0</sub>, wegen
+
This decision variable &nbsp;$W_i$&nbsp; can be derived using the &nbsp;$k$&ndash;dimensionial&nbsp; [[Theory_of_Stochastic_Signals/Two-Dimensional_Random_Variables#Joint_probability_density_function|"joint probability density"]]&nbsp; of the noise&nbsp; $($with &nbsp;$k \to \infty)$&nbsp; and some boundary crossings.&nbsp; The result can be interpreted as follows:
 +
*Integration is used for noise power reduction by averaging.&nbsp; If &nbsp;$N$&nbsp; binary symbols are decided simultaneously by the maximum likelihood detector,&nbsp; set &nbsp;$t_1 = 0 $&nbsp; and &nbsp;$t_2 = N \cdot T$&nbsp; for distortion-free channel.
  
::<math>{\rm Pr}( r= 0.5\hspace{0.05cm}|\hspace{0.05cm}
+
*The first term of the above decision variable &nbsp;$W_i$&nbsp; is equal to the&nbsp; [[Theory_of_Stochastic_Signals/Cross-Correlation_Function_and_Cross_Power-Spectral_Density#Definition_of_the_cross-correlation_function| "energy cross-correlation function"]]&nbsp; formed over the finite time interval &nbsp;$NT$&nbsp; between &nbsp;$r(t)$&nbsp; and &nbsp;$s_i(t)$&nbsp; at the time point &nbsp;$\tau = 0$:
Q_0) = 0.4 > {\rm Pr}( r= 0.5\hspace{0.05cm}|\hspace{0.05cm}
+
:$$I_i  = \varphi_{r, \hspace{0.08cm}s_i} (\tau = 0) = \int_{0}^{N \cdot T}r(t) \cdot s_i(t) \,{\rm d} t
Q_1) = 0.2 \hspace{0.05cm}.</math>
+
\hspace{0.05cm}.$$
  
*Die MAP&ndash;Entscheidung führt dagegen zum Quellensymbol <i>Q</i><sub>1</sub>, da entsprechend der Grafik gilt:
+
*The second term gives half the energy of the considered useful signal &nbsp;$s_i(t)$&nbsp; to be subtracted.&nbsp; The energy is equal to the auto-correlation function&nbsp; $\rm (ACF)$&nbsp; of &nbsp;$s_i(t)$&nbsp; at the time point &nbsp;$\tau = 0$:
  
::<math>{\rm Pr}(Q_1 \hspace{0.05cm}|\hspace{0.05cm}
+
::<math>E_i  =  \varphi_{s_i} (\tau = 0) = \int_{0}^{N \cdot T}
r= 0.5) = 0.6 > {\rm Pr}(Q_0 \hspace{0.05cm}|\hspace{0.05cm}
+
s_i^2(t) \,{\rm d} t \hspace{0.05cm}.</math>
r= 0.5) = 0.4 \hspace{0.05cm}.</math>
 
{{end}}<br>
 
  
== ML–Entscheidung bei Gaußscher Störung ==
+
*In the case of a distorting channel,&nbsp; the channel impulse response &nbsp;$h_{\rm K}(t)$&nbsp; is not Dirac-shaped,&nbsp; but for example extended to the range &nbsp;$-T_{\rm K} \le t \le +T_{\rm K}$.&nbsp; In this case,&nbsp; $t_1 = -T_{\rm K}$&nbsp; and &nbsp;$t_2 = N \cdot T +T_{\rm K}$&nbsp; must be used for the integration limits.<br>
 +
 
 +
== Matched filter receiver vs. correlation receiver ==
 
<br>
 
<br>
Wir setzen nun voraus, dass sich das Empfangssignal <i>r</i>(<i>t</i>) additiv aus einem Nutzsignal <i>s</i>(<i>t</i>) und einem Störanteil <i>n</i>(<i>t</i>) zusammensetzt, wobei die Störung als gaußverteilt und weiß angenommen wird (Beispiel: AWGN&ndash;Rauschen):
+
There are various circuit implementations of the maximum likelihood&nbsp; $\rm (ML)$&nbsp; receiver.
  
:<math>r(t) = s(t) + n(t) \hspace{0.05cm}.</math>
+
&rArr; &nbsp; For example,&nbsp; the required integrals can be obtained by linear filtering and subsequent sampling.&nbsp; This realization form is called&nbsp; '''matched filter receiver''',&nbsp; because here the impulse responses of the &nbsp;$M$&nbsp; parallel filters have the same shape as the useful signals &nbsp;$s_0(t)$, ... , $s_{M-1}(t)$.&nbsp; <br>
 +
*The&nbsp; $M$&nbsp; decision variables &nbsp;$I_i$&nbsp; are then equal to the convolution products &nbsp;$r(t) \star s_i(t)$&nbsp; at time &nbsp;$t= 0$.  
 +
*For example,&nbsp; the&nbsp; "optimal binary receiver"&nbsp; described in detail in the chapter&nbsp; [[Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems#Prerequisites_and_optimization_criterion|"Optimization of Baseband Transmission Systems"]]&nbsp; allows a maximum likelihood&nbsp; $\rm (ML)$&nbsp; decision with parameters &nbsp;$M = 2$&nbsp; and &nbsp;$N = 1$.<br>
  
Eventuelle Kanalverzerrungen werden zur Vereinfachung bereits dem Signal <i>s</i>(<i>t</i>) beaufschlagt.<br>
 
  
Die notwendige Rauschleistungsbegrenzung wird durch einen Integrator realisiert; dies entspricht einer Mittelung der Rauschwerte im Zeitbereich. Begrenzt man das Integrationsintervall auf den Bereich <i>t</i><sub>1</sub> bis <i>t</i><sub>2</sub>, so kann man für jede Quellensymbolfolge <i>Q<sub>i</sub></i> eine Größe <i>W<sub>i</sub></i> ableiten, die ein Maß für die bedingte Wahrscheinlichkeit Pr(<i>r</i>(<i>t</i>)|<i>Q<sub>i</sub></i>) darstellt:
+
&rArr; &nbsp; A second realization form is provided by the &nbsp;'''correlation receiver'''&nbsp; according to the following graph.&nbsp; One recognizes from this block diagram for the indicated parameters:
 +
[[File:EN_Dig_T_3_7_S4.png|right|frame|Correlation receiver for &nbsp;$N = 3$, &nbsp;$t_1 = 0$, &nbsp;$t_2 = 3T$ &nbsp; and &nbsp; $M = 2^3 = 8$ |class=fit]]
  
:<math>W_i  = \int_{t_1}^{t_2} r(t) \cdot s_i(t) \,{\rm d} t -
+
*The drawn correlation receiver forms a total of &nbsp;$M = 8$&nbsp; cross-correlation functions between the received signal &nbsp;$r(t) = s_k(t) + n(t)$&nbsp; and the possible transmitted signals &nbsp;$s_i(t), \ i = 0$, ... , $M-1$. The following description assumes that the useful signal &nbsp;$s_k(t)$&nbsp; has been transmitted.<br>
\frac{1}{2} \cdot \int_{t_1}^{t_2} s_i^2(t) \,{\rm d} t=
 
I_i - \frac{E_i}{2} \hspace{0.05cm}.</math>
 
  
Diese Entscheidungsgröße <i>W<sub>i</sub></i> kann über die <i>k</i>&ndash;dimensioniale Verbundwahrscheinlichkeitsdichte der Störungen (mit <i>k</i> &#8594; &#8734;) und einigen Grenzübergängen hergeleitet werden. Die Gleichung lässt sich wie folgt interpretieren:
+
*This receiver searches for the maximum value &nbsp;$W_j$&nbsp; of all correlation values and outputs the corresponding sequence &nbsp;$Q_j$&nbsp; as sink symbol sequence &nbsp;$V$.&nbsp; Formally,&nbsp; the&nbsp; $\rm ML$&nbsp; decision rule can be expressed as follows:
*Die Integration dient der Rauschleistungsbegrenzung. Werden vom ML&ndash;Detektor <i>N</i> Binärsymbole gleichzeitig entschieden, so ist bei verzerrungsfreiem Kanal <i>t</i><sub>1</sub> = 0 und <i>t</i><sub>2</sub> = <i>NT</i> zu setzen.
+
:$$V = Q_j, \hspace{0.2cm}{\rm if}\hspace{0.2cm} W_i < W_j
 +
\hspace{0.2cm}{\rm for}\hspace{0.2cm} {\rm
 +
all}\hspace{0.2cm} i \ne j \hspace{0.05cm}.$$
 +
 
 +
*If we further assume that all transmitted signals &nbsp;$s_i(t)$&nbsp; have same energy,&nbsp; we can dispense with the subtraction of &nbsp;$E_i/2$&nbsp; in all branches.&nbsp; In this case,&nbsp; the following correlation values are compared &nbsp;$(i = 0$, ... , $M-1)$:
 +
::<math>I_i  = \int_{0}^{NT} s_j(t) \cdot s_i(t) \,{\rm d} t +
 +
\int_{0}^{NT} n(t) \cdot s_i(t) \,{\rm d} t
 +
\hspace{0.05cm}.</math>
  
*Der erste Term der obigen Entscheidungsgröße <i>W<sub>i</sub></i> ist gleich der über das endliche Zeitintervall <i>NT</i> gebildeten [http://en.lntwww.de/Stochastische_Signaltheorie/Kreuzkorrelationsfunktion_und_Kreuzleistungsdichte#Definition_der_Kreuzkorrelationsfunktion Energie&ndash;Kreuzkorrelationsfunktion] zwischen <i>r</i>(<i>t</i>) und <i>s<sub>i</sub></i>(<i>t</i>) an der Stelle <i>&tau;</i> = 0:
+
*With high probability, &nbsp;$I_j = I_k$&nbsp; is larger than all other comparison values&nbsp; $I_{j \ne k}$ &nbsp; &rArr; &nbsp; right decision.&nbsp; However,&nbsp; if the noise &nbsp;$n(t)$&nbsp; is too large,&nbsp; also the correlation receiver will make wrong decisions.<br>
  
::<math>I_i = \varphi_{r, \hspace{0.05cm}s_i} (\tau = 0) = \int_{0}^{NT}r(t) \cdot s_i(t) \,{\rm d} t
+
== Representation of the correlation receiver in the tree diagram==
\hspace{0.05cm}.</math>
+
<br>
 +
Let us illustrate the correlation receiver operation in the tree diagram,&nbsp; where the &nbsp;$2^3 = 8$&nbsp; possible source symbol sequences &nbsp;$Q_i$&nbsp; of length &nbsp;$N = 3$&nbsp; are represented by bipolar rectangular transmitted signals &nbsp;$s_i(t)$.  
  
*Der zweite Term gibt die halbe Energie des betrachteten Nutzsignals <i>s<sub>i</sub></i>(<i>t</i>) an, die zu subtrahieren ist. Die Energie ist gleich der AKF des Nutzsignals an der Stelle <i>&tau;</i> = 0:
+
[[File:P ID1458 Dig T 3 7 S5a version1.png|right|frame|All&nbsp; $2^3=8$&nbsp; possible bipolar transmitted signals&nbsp; $s_i(t)$&nbsp; for &nbsp;$N = 3$|class=fit]]
 +
The possible symbol sequences &nbsp;$Q_0 = \rm LLL$, ... , $Q_7 = \rm HHH$&nbsp; and the associated transmitted signals &nbsp;$s_0(t)$, ... , $s_7(t)$&nbsp; are listed below.
  
::<math>E_i  =  \varphi_{s_i} (\tau = 0) = \int_{0}^{NT}
+
*Due to bipolar amplitude coefficients and the rectangular shape &nbsp; &rArr; &nbsp; all signal energies are equal:&nbsp; $E_0 =  \text{...} = E_7 = N \cdot E_{\rm B}$, where &nbsp;$E_{\rm B}$&nbsp; indicates the energy of a single pulse of duration $T$.
s_i^2(t) \,{\rm d} t \hspace{0.05cm}.</math>
+
 +
*Therefore,&nbsp; the subtraction of the &nbsp;$E_i/2$&nbsp; term in all branches can be omitted &nbsp; &rArr; &nbsp; the decision based on the correlation values &nbsp;$I_i$&nbsp; gives equally reliable results as maximizing the corrected values &nbsp;$W_i$.
 +
<br clear=all>
  
*Bei verzerrendem Kanal ist die Impulsantwort <i>h</i><sub>K</sub>(<i>t</i>) nicht diracförmig, sondern beispielsweise auf den Bereich &ndash;<i>T</i><sub>K</sub> &#8804; <i>t</i> &#8804; +<i>T</i><sub>K</sub> ausgedehnt. In diesem Fall muss für die beiden Integrationsgrenzen <i>t</i><sub>1</sub> = &ndash;<i>T</i><sub>K</sub> und <i>t</i><sub>2</sub> = <i>NT</i> + <i>T</i><sub>K</sub> eingesetzt werden.<br>
 
  
== Korrelationsempfänger ==
+
{{GraueBox|TEXT=
<br>
+
$\text{Example 2:}$&nbsp; The graph shows the continuous-valued integral values,&nbsp; assuming the actually transmitted signal &nbsp;$s_5(t)$&nbsp; and the noise-free case.&nbsp; For this case,&nbsp; the time-dependent integral values and the integral end values:
Es gibt verschiedene schaltungstechnische Implementierungen des Maximum&ndash;Likelihood&ndash;Empfängers. Beispielsweise können die erforderlichen Integrale durch lineare Filterung und anschließender Abtastung gewonnen werden. Man bezeichnet diese Realisierungsform als Matched&ndash;Filter&ndash;Empfänger, da hier die Impulsantworten der <i>M</i> parallelen Filter formgleich mit den Nutzsignalen <i>s</i><sub>0</sub>(<i>t</i>), ... , <i>s</i><sub><i>M</i>&ndash;1</sub>(<i>t</i>) sind.<br>
+
[[File:EN_Dig_T_3_7_S5b.png|right|frame|Tree diagram of the correlation receiver in the noise-free case|class=fit]]
 +
:$$i_i(t)  =  \int_{0}^{t} r(\tau) \cdot s_i(\tau) \,{\rm d}
 +
\tau =  \int_{0}^{t} s_5(\tau) \cdot s_i(\tau) \,{\rm d}
 +
\tau \hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm}I_i = i_i(3T). $$
 +
The graph can be interpreted as follows:
 +
*Because of the rectangular shape of the signals &nbsp;$s_i(t)$,&nbsp; all function curves &nbsp;$i_i(t)$&nbsp; are rectilinear.&nbsp; The end values normalized to &nbsp;$E_{\rm B}$&nbsp; are &nbsp;$+3$, &nbsp;$+1$, &nbsp;$-1$&nbsp; and &nbsp;$-3$.<br>
  
Die <i>M</i> Entscheidungsgrößen <i>I<sub>i</sub></i> sind dann gleich den Faltungsprodukten <i>r</i>(<i>t</i>) &#8727; <i>s<sub>i</sub></i>(<i>t</i>) zum Zeitpunkt <i>t</i> = 0. Beispielsweise erlaubt der im Kapitel 1.4 ausführlich beschriebene &bdquo;optimale Binärempfänger&rdquo; eine Maximum&ndash;Likelihood&ndash;Entscheidung mit den ML&ndash;Parametern <i>M</i> = 2 und <i>N</i> = 1.<br>
+
*The maximum final value is &nbsp;$I_5 = 3 \cdot E_{\rm B}$&nbsp; (red waveform),&nbsp; since signal &nbsp;$s_5(t)$&nbsp; was actually sent.&nbsp; Without noise,&nbsp; the correlation receiver thus naturally always makes the correct decision.<br>
  
[[File:P ID1457 Dig T 3 7 S4 version1.png|Korrelationsempfänger|class=fit]]<br>
+
*The blue curve &nbsp;$i_1(t)$&nbsp; leads to the final value &nbsp;$I_1 = -E_{\rm B} + E_{\rm B}+ E_{\rm B} = E_{\rm B}$,&nbsp; since &nbsp;$s_1(t)$&nbsp; differs from &nbsp;$s_5(t)$&nbsp; only in the first bit.&nbsp; The comparison values &nbsp;$I_4$&nbsp; and &nbsp;$I_7$&nbsp; are also equal to &nbsp;$E_{\rm B}$.<br>
  
Wir beschränken uns hier auf den sog. Korrelationsempfänger entsprechend obigem Blockschaltbild. Zur Vereinfachung werden <i>N</i> = 3, <i>t</i><sub>1</sub> = 0, <i>t</i><sub>2</sub> = 3<i>T</i> sowie <i>M</i> = 2<sup>3</sup> = 8 vorausgesetzt. Man erkennt:
+
*Since &nbsp;$s_0(t)$, &nbsp;$s_3(t)$&nbsp; and &nbsp;$s_6(t)$&nbsp; differ from the transmitted &nbsp;$s_5(t)$&nbsp; in two bits, &nbsp;$I_0 = I_3 = I_6 =-E_{\rm B}$.&nbsp; The green curve shows &nbsp;$s_6(t)$ initially increasing&nbsp; (first bit matches)&nbsp; and then decreasing over two bits.
*Der Korrelationsempfänger bildet insgesamt <i>M</i> = 8 Kreuzkorrelationsfunktionen zwischen dem Empfangssignal <i>r</i>(<i>t</i>) = <i>s<sub>k</sub></i>(<i>t</i>) + <i>n</i>(<i>t</i>) und den möglichen Sendesignalen <i>s<sub>i</sub></i>(<i>t</i>), <i>i</i> = 0, ... , <i>M</i>&ndash;1. Vorausgesetzt ist für diese Beschreibung, dass das Nutzsignal <i>s<sub>k</sub></i>(<i>t</i>) gesendet wurde.<br>
 
  
*Der Korrelationsempfänger sucht nun den maximalen Wert <i>W<sub>j</sub></i> aller Korrelationswerte und gibt die dazugehörige Folge <i>Q<sub>j</sub></i> als Sinkensymbolfolge <i>V</i> aus. Formal lässt sich die ML&ndash;Entscheidungsregel wie folgt ausdrücken:
+
*The purple curve leads to the final value &nbsp;$I_2 = -3 \cdot E_{\rm B}$.&nbsp; The corresponding signal &nbsp;$s_2(t)$&nbsp; differs from &nbsp;$s_5(t)$&nbsp; in all three symbols and &nbsp;$s_2(t) = -s_5(t)$&nbsp; holds.}}<br><br>
  
::<math>V = Q_j, \hspace{0.2cm}{\rm falls}\hspace{0.2cm} W_j > W_i
+
{{GraueBox|TEXT= 
\hspace{0.2cm}{\rm f\ddot{u}r}\hspace{0.2cm} {\rm
+
$\text{Example 3:}$&nbsp; The graph describes the same situation as &nbsp;$\text{Example 2}$,&nbsp; but now the received signal &nbsp;$r(t) = s_5(t)+ n(t)$&nbsp; is assumed.&nbsp; The variance of the AWGN noise &nbsp;$n(t)$&nbsp; here is &nbsp;$\sigma_n^2 = 4 \cdot E_{\rm B}/T$.
alle}\hspace{0.2cm} i \ne j \hspace{0.05cm}.</math>
+
[[File:EN_Dig_T_3_7_S5c_neu.png|right|frame|Tree diagram of the correlation receiver with noise &nbsp; $(\sigma_n^2 = 4 \cdot E_{\rm B}/T)$ |class=fit]]
 +
<br><br><br>One can see from this graph compared to the noise-free case:
 +
*The curves are now no longer straight due to the noise component &nbsp;$n(t)$&nbsp; and there are also slightly different final values than without noise.
  
*Setzt man weiter voraus, dass alle Sendesignale <i>s<sub>i</sub></i>(<i>t</i>) die genau gleiche Energie besitzen, so kann man auf die Subtraktion von <i>E<sub>i</sub></i>/2 in allen Zweigen verzichten. In diesem Fall werden folgende Korrelationswerte miteinander verglichen (<i>i</i> = 0, ... , <i>M</i>&ndash;1):
+
*In the considered example,&nbsp;  the correlation receiver decides correctly with high probability,&nbsp; since the difference between &nbsp;$I_5$&nbsp; and the next value &nbsp;$I_7$&nbsp; is relatively large: &nbsp;$1.65\cdot E_{\rm B}$.&nbsp; <br>
  
::<math>I_i  =  \int_{0}^{NT} s_j(t) \cdot s_i(t) \,{\rm d} t +
+
*The error probability in this example  is not better than that of the matched filter receiver with symbol-wise decision.&nbsp; In accordance with the chapter&nbsp;  [[Digital_Signal_Transmission/Optimization_of_Baseband_Transmission_Systems#Prerequisites_and_optimization_criterion|"Optimization of Baseband Transmission Systems"]],&nbsp; the following also applies here:
\int_{0}^{NT} n(t) \cdot s_i(t) \,{\rm d} t
+
:$$p_{\rm S} = {\rm Q} \left( \sqrt{ {2 \cdot E_{\rm B} }/{N_0} }\right)
\hspace{0.05cm}.</math>
+
= {1}/{2} \cdot {\rm erfc} \left( \sqrt{ { E_{\rm B} }/{N_0} }\right) \hspace{0.05cm}.$$}}
 +
<br clear = all>
  
*Mit großer Wahrscheinlichkeit ist <i>I<sub>j</sub></i> = <i>I<sub>k</sub></i> größer als alle anderen Vergleichswerte <i>I<sub>i</i>&ne;<i>k</i></sub>. Ist das Rauschen <i>n</i>(<i>t</i>) allerdings zu groß, so kann auch der ML&ndash;Empfänger eine Fehlentscheidung treffen.<br>
+
{{BlaueBox|TEXT= 
 +
$\text{Conclusions:}$&nbsp;
 +
#If the input signal does not have statistical bindings &nbsp;$\text{(Example 2)}$,&nbsp; there is no improvement by joint decision of &nbsp;$N$&nbsp; symbols over symbol-wise decision &nbsp; <br>&rArr; &nbsp; $p_{\rm S} = {\rm Q} \left( \sqrt{ {2 \cdot E_{\rm B} }/{N_0} }\right)$.
 +
#In the presence of statistical bindings &nbsp;$\text{(Example 3)}$,&nbsp; the joint decision of &nbsp;$N$&nbsp; symbols noticeably reduces the error probability,&nbsp; since the maximum likelihood receiver takes the bindings into account.
 +
#Such bindings can be either deliberately created by transmission-side coding&nbsp; $($see the &nbsp;$\rm LNTwww$ book&nbsp; [[Channel_Coding|"Channel Coding"]])&nbsp; or unintentionally caused by&nbsp; (linear)&nbsp; channel distortions.<br>
 +
#In the presence of such&nbsp; "intersymbol interferences",&nbsp; the calculation of the error probability is much more difficult.&nbsp; However,&nbsp; comparable approximations as for the Viterbi receiver can be used,&nbsp; which are given at the &nbsp;[[Digital_Signal_Transmission/Viterbi_Receiver#Bit_error_probability_with_maximum_likelihood_decision|end of the next chapter]].&nbsp; }}<br>
  
== Darstellung des Korrelationsempfängers im Baumdiagramm (1) ==
+
== Correlation receiver with unipolar signaling ==
 
<br>
 
<br>
Verdeutlichen wir uns die Funktionsweise des Korrelationsempfängers im Baumdiagramm, wobei die 2<sup>3</sup> = 8 möglichen Quellensymbolfolgen <i>Q<sub>i</sub></i> der Länge <i>N</i> = 3 durch bipolare rechteckförmige Sendesignale <i>s<sub>i</sub></i>(<i>t</i>) repräsentiert werden. Die möglichen Quellensymbolfolgen <i>Q</i><sub>0</sub> = &bdquo;LLL&rdquo;, ... , <i>Q</i><sub>7</sub> = &bdquo;HHH&rdquo; und die dazugehörigen Sendesignale <i>s</i><sub>0</sub>(<i>t</i>), ... , <i>s</i><sub>7</sub>(<i>t</i>) sind nachfolgend aufgeführt.<br>
+
So far,&nbsp; we have always assumed binary&nbsp; '''bipolar'''&nbsp; signaling when describing the correlation receiver:
 +
:$$a_\nu  =   \left\{ \begin{array}{c} +1  \\
 +
-1 \\  \end{array} \right.\quad
 +
\begin{array}{*{1}c} {\rm{f\ddot{u}r}}
 +
\\  {\rm{for}}  \\ \end{array}\begin{array}{*{20}c}
 +
q_\nu = \mathbf{H} \hspace{0.05cm}, \\
 +
q_\nu = \mathbf{L} \hspace{0.05cm}.  \\
 +
\end{array}$$
 +
Now we consider the case of binary&nbsp; '''unipolar'''&nbsp; digital signaling holds:
 +
:$$a_\nu  =  \left\{ \begin{array}{c} 1  \\
 +
0 \\  \end{array} \right.\quad
 +
\begin{array}{*{1}c} {\rm{for}}
 +
\\  {\rm{for}}  \\ \end{array}\begin{array}{*{20}c}
 +
q_\nu = \mathbf{H} \hspace{0.05cm}, \\
 +
q_\nu = \mathbf{L} \hspace{0.05cm}. \\
 +
\end{array}$$
 +
[[File:P ID1462 Dig T 3 7 S5c version1.png|right|frame|Possible unipolar transmitted signals for &nbsp;$N = 3$|class=fit]]
 +
The &nbsp;$2^3 = 8$&nbsp; possible source symbol sequences &nbsp;$Q_i$&nbsp; of length &nbsp;$N = 3$&nbsp; are now represented by unipolar rectangular transmitted signals &nbsp;$s_i(t)$.&nbsp;
  
[[File:P ID1458 Dig T 3 7 S5a version1.png|Mögliche bipolare Sendesignale für <i>N</i> = 3|class=fit]]<br>
+
Listed on the right are the eight symbol sequences and the transmitted signals 
 +
:$$Q_0 = \rm LLL, \text{ ... },\ Q_7 = \rm HHH,$$
 +
:$$s_0(t), \text{ ... },\ s_7(t).$$
  
Wegen den bipolaren Amplitudenkoeffizienten und der Rechteckform sind alle Signalenergien <i>E</i><sub>0</sub>, ... , <i>E</i><sub>7</sub> gleich <i>N</i> &middot; <i>E</i><sub>B</sub>, wobei <i>E</i><sub>B</sub> die Energie eines Einzelimpulses der Dauer <i>T</i> angibt. Deshalb kann auf die Subtraktion des Terms <i>E<sub>i</sub></i>/2 in allen Zweigen verzichtet werden. Eine auf den Korrelationswerten <i>I<sub>i</sub></i> basierende Entscheidung liefert ebenso zuverlässige Ergebnisse wie die Maximierung der korrigierten Werte <i>W<sub>i</sub></i>.<br>
+
By comparing with the &nbsp;[[Digital_Signal_Transmission/Optimal_Receiver_Strategies#Representation_of_the_correlation_receiver_in_the_tree_diagram|"corresponding table"]]&nbsp; for bipolar signaling,&nbsp; one can see:
 +
*Due to the unipolar amplitude coefficients,&nbsp; the signal energies &nbsp;$E_i$&nbsp; are now different,&nbsp; e.g. &nbsp;$E_0 =  0$&nbsp; and  &nbsp;$E_7 = 3 \cdot E_{\rm B}$.
 +
 +
*Here the decision based on the integral values &nbsp;$I_i$&nbsp; does not lead to the correct result.&nbsp; Instead,&nbsp; the corrected comparison values &nbsp;$W_i = I_i- E_i/2$&nbsp; must now be used.<br>
  
[[File:P ID1459 Dig T 3 7 S5b version1.png|Baumdiagramm des Korrelationsempfängers (bipolar)|class=fit]]<br>
 
  
In der linken Grafik sind die fortlaufenden Integralwerte dargestellt, wobei vom tatsächlich gesendeten Signal <i>s</i><sub>5</sub>(<i>t</i>) und dem rauschfreien Fall ausgegangen wird:
+
{{GraueBox|TEXT= 
 +
$\text{Example 4:}$&nbsp; The graph shows the integral values&nbsp; $I_i$,&nbsp; again assuming the actual transmitted signal &nbsp;$s_5(t)$&nbsp; and the noise-free case.&nbsp; The corresponding bipolar equivalent was considered in&nbsp; [[Digital_Signal_Transmission/Optimal_Receiver_Strategies#Representation_of_the_correlation_receiver_in_the_tree_diagram|Example 2]].
  
:<math>i_i(t) = \int_{0}^{t} r(\tau) \cdot s_i(\tau) \,{\rm d}
+
[[File:EN_Dig_T_3_7_S5d.png|right|frame|Tree diagram of the correlation receiver&nbsp; (unipolar signaling)|class=fit]]
\tau = \int_{0}^{t} s_5(\tau) \cdot s_i(\tau) \,{\rm d}
+
For this example,&nbsp; the following comparison values result,&nbsp; each normalized to &nbsp;$E_{\rm B}$:
\tau \hspace{0.3cm}
+
:$$I_5 = I_7 = 2, \hspace{0.2cm}I_1 = I_3 = I_4= I_6 = 1 \hspace{0.2cm},
\Rightarrow \hspace{0.3cm}I_i = i_i(3T). </math>
+
\hspace{0.2cm}I_0 = I_2 = 0
 +
  \hspace{0.05cm},$$
 +
:$$W_5 = 1, \hspace{0.2cm}W_1 = W_4 = W_7 = 0.5, \hspace{0.2cm}
 +
W_0 = W_3 =W_6 =0, \hspace{0.2cm}W_2 = -0.5
 +
\hspace{0.05cm}.$$
  
Das rechte Baumdiagramm berücksichtigt AWGN&ndash;Rauschen <i>n</i>(<i>t</i>) mit der Varianz <i>&sigma;<sub>n</sub></i><sup>2</sup> = 4 &middot; <i>E</i><sub>B</sub>/<i>T</i>.<br>
+
This means:
 +
*When compared in terms of maximum &nbsp;$I_i$ values,&nbsp; the source symbol sequences &nbsp;$Q_5$&nbsp; and &nbsp;$Q_7$&nbsp; would be equivalent.
  
Die Interpretation dieser Grafik folgt auf der nächsten Seite.<br>
+
*On the other hand,&nbsp; if the different energies &nbsp;$(E_5 = 2, \ E_7 = 3)$&nbsp; are taken into account,&nbsp; the decision is clearly in favor of the sequence &nbsp;$Q_5$&nbsp; because of &nbsp;$W_5 > W_7$.&nbsp;
  
 +
*The correlation receiver according to &nbsp;$W_i = I_i- E_i/2$&nbsp; therefore decides correctly on&nbsp; $s(t) = s_5(t)$&nbsp; even with unipolar signaling. }}<br>
  
 +
== Exercises for the chapter==
 +
<br>
 +
[[Aufgaben:Exercise_3.09:_Correlation_Receiver_for_Unipolar_Signaling|Exercise 3.09: Correlation Receiver for Unipolar Signaling]]
  
 +
[[Aufgaben:Exercise_3.10:_Maximum_Likelihood_Tree_Diagram|Exercise 3.10: Maximum Likelihood Tree Diagram]]
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 13:16, 11 July 2022

Considered scenario and prerequisites


All digital receivers described so far always make symbol-wise decisions.  If,  on the other hand,  several symbols are decided simultaneously,  statistical bindings between the received signal samples can be taken into account during detection,  which results in a lower error probability – but at the cost of an additional delay time.

In this  $($partly also in the next chapter$)$  the following transmission model is assumed.  Compared to the last two chapters,  the following differences arise:

Transmission system with optimal receiver
  • $Q \in \{Q_i\}$  with  $i = 0$, ... , $M-1$  denotes a time-constrained source symbol sequence  $\langle q_\nu \rangle$ whose symbols are to be jointly decided by the receiver.
  • If the source  $Q$  describes a sequence of  $N$  redundancy-free binary symbols, set  $M = 2^N$.  On the other hand,  if the decision is symbol-wise,  $M$  specifies the level number of the digital source.
  • In this model,  any channel distortions are added to the transmitter and are thus already included in the basic transmission pulse  $g_s(t)$  and the signal  $s(t)$.  This measure is only for a simpler representation and is not a restriction.
  • Knowing the currently applied received signal  $r(t)$,  the optimal receiver searches from the set  $\{Q_0$, ... , $Q_{M-1}\}$  of the possible source symbol sequences, the receiver searches for the most likely transmitted sequence  $Q_j$  and outputs this as a sink symbol sequence  $V$. 
  • Before the actual decision algorithm,  a numerical value  $W_i$  must be derived from the received signal  $r(t)$  for each possible sequence  $Q_i$  by suitable signal preprocessing.  The larger  $W_i$  is,  the greater the inference probability that  $Q_i$  was transmitted.
  • Signal preprocessing must provide for the necessary noise power limitation and – in the case of strong channel distortions – for sufficient pre-equalization of the resulting intersymbol interferences.  In addition,  preprocessing also includes sampling for time discretization.

Maximum-a-posteriori and maximum–likelihood decision rule


The  (unconstrained)  optimal receiver is called the  "MAP receiver",  where  "MAP"  stands for  "maximum–a–posteriori".

$\text{Definition:}$  The  maximum–a–posteriori receiver  $($abbreviated  $\rm MAP)$  determines the  $M$  inference probabilities  ${\rm Pr}\big[Q_i \hspace{0.05cm}\vert \hspace{0.05cm}r(t)\big]$,  and sets the output sequence  $V$  according to the decision rule,  where the index is   $i = 0$, ... , $M-1$  as well as  $i \ne j$:

$${\rm Pr}\big[Q_j \hspace{0.05cm}\vert \hspace{0.05cm} r(t)\big] > {\rm Pr}\big[Q_i \hspace{0.05cm}\vert \hspace{0.05cm} r(t)\big] \hspace{0.05cm}.$$


  • The  "inference probability"  ${\rm Pr}\big[Q_i \hspace{0.05cm}\vert \hspace{0.05cm} r(t)\big]$  indicates the probability with which the sequence  $Q_i$  was sent when the received signal  $r(t)$  is present at the decision.  Using  "Bayes' theorem",  this probability can be calculated as follows:
$${\rm Pr}\big[Q_i \hspace{0.05cm}|\hspace{0.05cm} r(t)\big] = \frac{ {\rm Pr}\big[ r(t)\hspace{0.05cm}|\hspace{0.05cm} Q_i \big] \cdot {\rm Pr}\big[Q_i]}{{\rm Pr}[r(t)\big]} \hspace{0.05cm}.$$
  • The MAP decision rule can thus be reformulated or simplified as follows:   Let the sink symbol sequence  $V = Q_j$,  if for all  $i \ne j$  holds:
$$\frac{ {\rm Pr}\big[ r(t)\hspace{0.05cm}|\hspace{0.05cm} Q_j \big] \cdot {\rm Pr}\big[Q_j)}{{\rm Pr}\big[r(t)\big]} > \frac{ {\rm Pr}\big[ r(t)\hspace{0.05cm}|\hspace{0.05cm} Q_i\big] \cdot {\rm Pr}\big[Q_i\big]}{{\rm Pr}\big[r(t)\big]}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Pr}\big[ r(t)\hspace{0.05cm}|\hspace{0.05cm} Q_j\big] \cdot {\rm Pr}\big[Q_j\big]> {\rm Pr}\big[ r(t)\hspace{0.05cm}|\hspace{0.05cm} Q_i \big] \cdot {\rm Pr}\big[Q_i\big] \hspace{0.05cm}.$$

A further simplification of this MAP decision rule leads to the  "ML receiver",  where  "ML"  stands for  "maximum likelihood".

$\text{Definition:}$  The  maximum likelihood receiver  $($abbreviated  $\rm ML)$   decides according to the conditional forward probabilities  ${\rm Pr}\big[r(t)\hspace{0.05cm} \vert \hspace{0.05cm}Q_i \big]$,  and sets the output sequence  $V = Q_j$,  if for all  $i \ne j$  holds:

$${\rm Pr}\big[ r(t)\hspace{0.05cm} \vert\hspace{0.05cm} Q_j \big] > {\rm Pr}\big[ r(t)\hspace{0.05cm} \vert \hspace{0.05cm} Q_i\big] \hspace{0.05cm}.$$


A comparison of these two definitions shows:

  • For equally probable source symbols,  the  "ML receiver"  and the  "MAP receiver"  use the same decision rules.  Thus,  they are equivalent.
  • For symbols that are not equally probable,  the  "ML receiver"  is inferior to the  "MAP receiver"  because it does not use all the available information for detection.


$\text{Example 1:}$  To illustrate the  "ML"  and the  "MAP"  decision rule,  we now construct a very simple example with only two source symbols  $(M = 2)$.

For clarification of MAP and ML receiver



⇒   The two possible symbols  $Q_0$  and  $Q_1$  are represented by the transmitted signals  $s = 0$  and  $s = 1$.

⇒   The received signal can – for whatever reason – take three different values, namely  $r = 0$,  $r = 1$  and additionally  $r = 0.5$.

Note:

  • The received values  $r = 0$  and  $r = 1$  will be assigned to the transmitter values  $s = 0 \ (Q_0)$  resp.  $s = 1 \ (Q_1)$,  by both,  the ML and MAP decisions.
  • In contrast, the decisions will give a different result with respect to the received value  $r = 0.5$: 
  • The maximum likelihood  $\rm (ML)$  decision rule leads to the source symbol  $Q_0$,  because of:
$${\rm Pr}\big [ r= 0.5\hspace{0.05cm}\vert\hspace{0.05cm} Q_0\big ] = 0.4 > {\rm Pr}\big [ r= 0.5\hspace{0.05cm} \vert \hspace{0.05cm} Q_1\big ] = 0.2 \hspace{0.05cm}.$$
  • The maximum–a–posteriori  $\rm (MAP)$  decision rule leads to the source symbol  $Q_1$,  since according to the incidental calculation in the graph:
$${\rm Pr}\big [Q_1 \hspace{0.05cm}\vert\hspace{0.05cm} r= 0.5\big ] = 0.6 > {\rm Pr}\big [Q_0 \hspace{0.05cm}\vert\hspace{0.05cm} r= 0.5\big ] = 0.4 \hspace{0.05cm}.$$


Maximum likelihood decision for Gaussian noise


We now assume that the received signal  $r(t)$  is additively composed of a useful component  $s(t)$  and a noise component  $n(t)$,  where the noise is assumed to be Gaussian distributed and white   ⇒    "AWGN noise":

$$r(t) = s(t) + n(t) \hspace{0.05cm}.$$

Any channel distortions are already applied to the signal  $s(t)$  for simplicity.

The necessary noise power limitation is realized by an integrator;  this corresponds to an averaging of the noise values in the time domain.  If one limits the integration interval to the range  $t_1$  to  $t_2$,  one can derive a quantity  $W_i$  for each source symbol sequence  $Q_i$,  which is a measure for the conditional probability  ${\rm Pr}\big [ r(t)\hspace{0.05cm} \vert \hspace{0.05cm} Q_i\big ] $: 

$$W_i = \int_{t_1}^{t_2} r(t) \cdot s_i(t) \,{\rm d} t - {1}/{2} \cdot \int_{t_1}^{t_2} s_i^2(t) \,{\rm d} t= I_i - {E_i}/{2} \hspace{0.05cm}.$$

This decision variable  $W_i$  can be derived using the  $k$–dimensionial  "joint probability density"  of the noise  $($with  $k \to \infty)$  and some boundary crossings.  The result can be interpreted as follows:

  • Integration is used for noise power reduction by averaging.  If  $N$  binary symbols are decided simultaneously by the maximum likelihood detector,  set  $t_1 = 0 $  and  $t_2 = N \cdot T$  for distortion-free channel.
  • The first term of the above decision variable  $W_i$  is equal to the  "energy cross-correlation function"  formed over the finite time interval  $NT$  between  $r(t)$  and  $s_i(t)$  at the time point  $\tau = 0$:
$$I_i = \varphi_{r, \hspace{0.08cm}s_i} (\tau = 0) = \int_{0}^{N \cdot T}r(t) \cdot s_i(t) \,{\rm d} t \hspace{0.05cm}.$$
  • The second term gives half the energy of the considered useful signal  $s_i(t)$  to be subtracted.  The energy is equal to the auto-correlation function  $\rm (ACF)$  of  $s_i(t)$  at the time point  $\tau = 0$:
\[E_i = \varphi_{s_i} (\tau = 0) = \int_{0}^{N \cdot T} s_i^2(t) \,{\rm d} t \hspace{0.05cm}.\]
  • In the case of a distorting channel,  the channel impulse response  $h_{\rm K}(t)$  is not Dirac-shaped,  but for example extended to the range  $-T_{\rm K} \le t \le +T_{\rm K}$.  In this case,  $t_1 = -T_{\rm K}$  and  $t_2 = N \cdot T +T_{\rm K}$  must be used for the integration limits.

Matched filter receiver vs. correlation receiver


There are various circuit implementations of the maximum likelihood  $\rm (ML)$  receiver.

⇒   For example,  the required integrals can be obtained by linear filtering and subsequent sampling.  This realization form is called  matched filter receiver,  because here the impulse responses of the  $M$  parallel filters have the same shape as the useful signals  $s_0(t)$, ... , $s_{M-1}(t)$. 

  • The  $M$  decision variables  $I_i$  are then equal to the convolution products  $r(t) \star s_i(t)$  at time  $t= 0$.
  • For example,  the  "optimal binary receiver"  described in detail in the chapter  "Optimization of Baseband Transmission Systems"  allows a maximum likelihood  $\rm (ML)$  decision with parameters  $M = 2$  and  $N = 1$.


⇒   A second realization form is provided by the  correlation receiver  according to the following graph.  One recognizes from this block diagram for the indicated parameters:

Correlation receiver for  $N = 3$,  $t_1 = 0$,  $t_2 = 3T$   and   $M = 2^3 = 8$
  • The drawn correlation receiver forms a total of  $M = 8$  cross-correlation functions between the received signal  $r(t) = s_k(t) + n(t)$  and the possible transmitted signals  $s_i(t), \ i = 0$, ... , $M-1$. The following description assumes that the useful signal  $s_k(t)$  has been transmitted.
  • This receiver searches for the maximum value  $W_j$  of all correlation values and outputs the corresponding sequence  $Q_j$  as sink symbol sequence  $V$.  Formally,  the  $\rm ML$  decision rule can be expressed as follows:
$$V = Q_j, \hspace{0.2cm}{\rm if}\hspace{0.2cm} W_i < W_j \hspace{0.2cm}{\rm for}\hspace{0.2cm} {\rm all}\hspace{0.2cm} i \ne j \hspace{0.05cm}.$$
  • If we further assume that all transmitted signals  $s_i(t)$  have same energy,  we can dispense with the subtraction of  $E_i/2$  in all branches.  In this case,  the following correlation values are compared  $(i = 0$, ... , $M-1)$:
\[I_i = \int_{0}^{NT} s_j(t) \cdot s_i(t) \,{\rm d} t + \int_{0}^{NT} n(t) \cdot s_i(t) \,{\rm d} t \hspace{0.05cm}.\]
  • With high probability,  $I_j = I_k$  is larger than all other comparison values  $I_{j \ne k}$   ⇒   right decision.  However,  if the noise  $n(t)$  is too large,  also the correlation receiver will make wrong decisions.

Representation of the correlation receiver in the tree diagram


Let us illustrate the correlation receiver operation in the tree diagram,  where the  $2^3 = 8$  possible source symbol sequences  $Q_i$  of length  $N = 3$  are represented by bipolar rectangular transmitted signals  $s_i(t)$.

All  $2^3=8$  possible bipolar transmitted signals  $s_i(t)$  for  $N = 3$

The possible symbol sequences  $Q_0 = \rm LLL$, ... , $Q_7 = \rm HHH$  and the associated transmitted signals  $s_0(t)$, ... , $s_7(t)$  are listed below.

  • Due to bipolar amplitude coefficients and the rectangular shape   ⇒   all signal energies are equal:  $E_0 = \text{...} = E_7 = N \cdot E_{\rm B}$, where  $E_{\rm B}$  indicates the energy of a single pulse of duration $T$.
  • Therefore,  the subtraction of the  $E_i/2$  term in all branches can be omitted   ⇒   the decision based on the correlation values  $I_i$  gives equally reliable results as maximizing the corrected values  $W_i$.



$\text{Example 2:}$  The graph shows the continuous-valued integral values,  assuming the actually transmitted signal  $s_5(t)$  and the noise-free case.  For this case,  the time-dependent integral values and the integral end values:

Tree diagram of the correlation receiver in the noise-free case
$$i_i(t) = \int_{0}^{t} r(\tau) \cdot s_i(\tau) \,{\rm d} \tau = \int_{0}^{t} s_5(\tau) \cdot s_i(\tau) \,{\rm d} \tau \hspace{0.3cm} \Rightarrow \hspace{0.3cm}I_i = i_i(3T). $$

The graph can be interpreted as follows:

  • Because of the rectangular shape of the signals  $s_i(t)$,  all function curves  $i_i(t)$  are rectilinear.  The end values normalized to  $E_{\rm B}$  are  $+3$,  $+1$,  $-1$  and  $-3$.
  • The maximum final value is  $I_5 = 3 \cdot E_{\rm B}$  (red waveform),  since signal  $s_5(t)$  was actually sent.  Without noise,  the correlation receiver thus naturally always makes the correct decision.
  • The blue curve  $i_1(t)$  leads to the final value  $I_1 = -E_{\rm B} + E_{\rm B}+ E_{\rm B} = E_{\rm B}$,  since  $s_1(t)$  differs from  $s_5(t)$  only in the first bit.  The comparison values  $I_4$  and  $I_7$  are also equal to  $E_{\rm B}$.
  • Since  $s_0(t)$,  $s_3(t)$  and  $s_6(t)$  differ from the transmitted  $s_5(t)$  in two bits,  $I_0 = I_3 = I_6 =-E_{\rm B}$.  The green curve shows  $s_6(t)$ initially increasing  (first bit matches)  and then decreasing over two bits.
  • The purple curve leads to the final value  $I_2 = -3 \cdot E_{\rm B}$.  The corresponding signal  $s_2(t)$  differs from  $s_5(t)$  in all three symbols and  $s_2(t) = -s_5(t)$  holds.



$\text{Example 3:}$  The graph describes the same situation as  $\text{Example 2}$,  but now the received signal  $r(t) = s_5(t)+ n(t)$  is assumed.  The variance of the AWGN noise  $n(t)$  here is  $\sigma_n^2 = 4 \cdot E_{\rm B}/T$.

Tree diagram of the correlation receiver with noise   $(\sigma_n^2 = 4 \cdot E_{\rm B}/T)$




One can see from this graph compared to the noise-free case:

  • The curves are now no longer straight due to the noise component  $n(t)$  and there are also slightly different final values than without noise.
  • In the considered example,  the correlation receiver decides correctly with high probability,  since the difference between  $I_5$  and the next value  $I_7$  is relatively large:  $1.65\cdot E_{\rm B}$. 
  • The error probability in this example is not better than that of the matched filter receiver with symbol-wise decision.  In accordance with the chapter  "Optimization of Baseband Transmission Systems",  the following also applies here:
$$p_{\rm S} = {\rm Q} \left( \sqrt{ {2 \cdot E_{\rm B} }/{N_0} }\right) = {1}/{2} \cdot {\rm erfc} \left( \sqrt{ { E_{\rm B} }/{N_0} }\right) \hspace{0.05cm}.$$


$\text{Conclusions:}$ 

  1. If the input signal does not have statistical bindings  $\text{(Example 2)}$,  there is no improvement by joint decision of  $N$  symbols over symbol-wise decision  
    ⇒   $p_{\rm S} = {\rm Q} \left( \sqrt{ {2 \cdot E_{\rm B} }/{N_0} }\right)$.
  2. In the presence of statistical bindings  $\text{(Example 3)}$,  the joint decision of  $N$  symbols noticeably reduces the error probability,  since the maximum likelihood receiver takes the bindings into account.
  3. Such bindings can be either deliberately created by transmission-side coding  $($see the  $\rm LNTwww$ book  "Channel Coding")  or unintentionally caused by  (linear)  channel distortions.
  4. In the presence of such  "intersymbol interferences",  the calculation of the error probability is much more difficult.  However,  comparable approximations as for the Viterbi receiver can be used,  which are given at the  end of the next chapter


Correlation receiver with unipolar signaling


So far,  we have always assumed binary  bipolar  signaling when describing the correlation receiver:

$$a_\nu = \left\{ \begin{array}{c} +1 \\ -1 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} q_\nu = \mathbf{H} \hspace{0.05cm}, \\ q_\nu = \mathbf{L} \hspace{0.05cm}. \\ \end{array}$$

Now we consider the case of binary  unipolar  digital signaling holds:

$$a_\nu = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{for}} \\ {\rm{for}} \\ \end{array}\begin{array}{*{20}c} q_\nu = \mathbf{H} \hspace{0.05cm}, \\ q_\nu = \mathbf{L} \hspace{0.05cm}. \\ \end{array}$$
Possible unipolar transmitted signals for  $N = 3$

The  $2^3 = 8$  possible source symbol sequences  $Q_i$  of length  $N = 3$  are now represented by unipolar rectangular transmitted signals  $s_i(t)$. 

Listed on the right are the eight symbol sequences and the transmitted signals

$$Q_0 = \rm LLL, \text{ ... },\ Q_7 = \rm HHH,$$
$$s_0(t), \text{ ... },\ s_7(t).$$

By comparing with the  "corresponding table"  for bipolar signaling,  one can see:

  • Due to the unipolar amplitude coefficients,  the signal energies  $E_i$  are now different,  e.g.  $E_0 = 0$  and  $E_7 = 3 \cdot E_{\rm B}$.
  • Here the decision based on the integral values  $I_i$  does not lead to the correct result.  Instead,  the corrected comparison values  $W_i = I_i- E_i/2$  must now be used.


$\text{Example 4:}$  The graph shows the integral values  $I_i$,  again assuming the actual transmitted signal  $s_5(t)$  and the noise-free case.  The corresponding bipolar equivalent was considered in  Example 2.

Tree diagram of the correlation receiver  (unipolar signaling)

For this example,  the following comparison values result,  each normalized to  $E_{\rm B}$:

$$I_5 = I_7 = 2, \hspace{0.2cm}I_1 = I_3 = I_4= I_6 = 1 \hspace{0.2cm}, \hspace{0.2cm}I_0 = I_2 = 0 \hspace{0.05cm},$$
$$W_5 = 1, \hspace{0.2cm}W_1 = W_4 = W_7 = 0.5, \hspace{0.2cm} W_0 = W_3 =W_6 =0, \hspace{0.2cm}W_2 = -0.5 \hspace{0.05cm}.$$

This means:

  • When compared in terms of maximum  $I_i$ values,  the source symbol sequences  $Q_5$  and  $Q_7$  would be equivalent.
  • On the other hand,  if the different energies  $(E_5 = 2, \ E_7 = 3)$  are taken into account,  the decision is clearly in favor of the sequence  $Q_5$  because of  $W_5 > W_7$. 
  • The correlation receiver according to  $W_i = I_i- E_i/2$  therefore decides correctly on  $s(t) = s_5(t)$  even with unipolar signaling.


Exercises for the chapter


Exercise 3.09: Correlation Receiver for Unipolar Signaling

Exercise 3.10: Maximum Likelihood Tree Diagram