Difference between revisions of "Aufgaben:Exercise 4.11Z: OOK and BPSK once again"

From LNTwww
 
(9 intermediate revisions by 4 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Trägerfrequenzsysteme mit kohärenter Demodulation}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation}}
  
[[File:P_ID2061__Dig_Z_4_11.png|right|frame|Fehlerwahrscheinlichkeiten von <i>On&ndash;Off&ndash;Keying</i> (OOK) und <i>Binary Phase Shift Keying</i> (BPSK)]]
+
[[File:P_ID2061__Dig_Z_4_11.png|right|frame|Error probabilities of On&ndash;Off Keying and Binary Phase Shift Keying]]
Hier werden die Fehlerwahrscheinlichkeiten $p_{\rm S}$ von den digitalen Modulationsverfahren OOK und BPSK ohne Herleitung angegeben. Beispielsweise erhält man mit der sogenannten Q&ndash;Funktion
+
The error probabilities&nbsp; $p_{\rm S}$&nbsp; of the digital modulation methods "On&ndash;Off Keying"&nbsp; $\rm (OOK)$&nbsp; and&nbsp; "Binary Phase Shift Keying"&nbsp; $\rm (BPSK)$&nbsp; are given here without derivation.&nbsp;
 +
 
 +
For example,&nbsp; one obtains with the so-called Q-function
 
:$${\rm Q} (x) = \frac{\rm 1}{\sqrt{\rm 2\pi}}\cdot \int_{\it
 
:$${\rm Q} (x) = \frac{\rm 1}{\sqrt{\rm 2\pi}}\cdot \int_{\it
 
x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d \it u$$
 
x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d \it u$$
  
für den AWGN&ndash;Kanal &ndash; gekennzeichnet durch $E_{\rm S}/N_0$ &ndash; und weiteren optimalen Voraussetzungen (zum Beispiel kohärente Demodulation)
+
for the AWGN channel &ndash; identified by&nbsp; $E_{\rm S}/N_0$&nbsp; &ndash; and other optimal conditions&nbsp; (e.g. coherent demodulation)
* für <i>On&ndash;Off&ndash;Keying</i> (OOK), oft auch <i>Amplitude Shift Keying</i> (2&ndash;ASK) genannt:
+
* for On&ndash;Off Keying,&nbsp; often also called&nbsp; "Amplitude Shift Keying"&nbsp; $\rm (2&ndash;ASK)$:
 
:$$p_{\rm S} = {\rm Q}\left ( \sqrt{{E_{\rm S}}/{N_0 }} \hspace{0.1cm}\right
 
:$$p_{\rm S} = {\rm Q}\left ( \sqrt{{E_{\rm S}}/{N_0 }} \hspace{0.1cm}\right
 
  ) \hspace{0.05cm},$$
 
  ) \hspace{0.05cm},$$
* für <i>Binary Phase Shift Keying</i> (BPSK):
+
* for Binary Phase Shift Keying:
 
:$$p_{\rm S} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm S}}/{N_0 }} \hspace{0.1cm}\right
 
:$$p_{\rm S} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm S}}/{N_0 }} \hspace{0.1cm}\right
 
  ) \hspace{0.05cm}.$$
 
  ) \hspace{0.05cm}.$$
  
Diese Fehlerwahrscheinlichkeiten sind in der Grafik dargestellt. Für $10 \cdot {\rm lg} \, E_{\rm S}/N_0 = 10 \ \rm dB$ erhält man beispielsweise entsprechend den exakten Funktionen:
+
 
:$$p_{\rm S} = 7.83 \cdot 10^{-4}\,\,{\rm (OOK)}\hspace{0.05cm},\hspace{0.3cm}
+
These symbol error probabilities&nbsp; (at the same time the bit error probabilities)&nbsp; are shown in the graph.
 +
 
 +
For example,&nbsp; for&nbsp; $10 \cdot {\rm lg} \, E_{\rm S}/N_0 = 10 \ \rm dB$&nbsp; one obtains according to the exact functions:
 +
:$$p_{\rm S} = 7.83 \cdot 10^{-4}\,\,{\rm (OOK)}\hspace{0.05cm},$$
 +
:$$
 
p_{\rm S} = 3.87 \cdot 10^{-6}\,\,{\rm (BPSK)}\hspace{0.05cm}.$$
 
p_{\rm S} = 3.87 \cdot 10^{-6}\,\,{\rm (BPSK)}\hspace{0.05cm}.$$
  
Um bei BPSK $p_{\rm S} = 10^{\rm &ndash;5}$ zu erreichen, muss $10 \cdot {\rm lg} \, E_{\rm S}/N_0 &#8805; 9.6 \ \rm dB$ sein.
+
In order to achieve&nbsp; $p_{\rm S} = 10^{\rm -5}$&nbsp; with BPSK,&nbsp; $10 \cdot {\rm lg} \, E_{\rm S}/N_0 &#8805; 9.6 \ \rm dB$&nbsp; must hold.
 +
 
 +
 
  
 +
Notes:
 +
* The exercise belongs to the chapter&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Coherent_Demodulation|"Carrier Frequency Systems with Coherent Demodulation"]].
  
''Hinweise:''
+
* You can also find the derivations in the chapter&nbsp; [[Digital_Signal_Transmission/Linear_Digital_Modulation_-_Coherent_Demodulation|"Linear Digital Modulation &ndash; Coherent Demodulation"]].
* Die Aufgabe gehört zum Kapitel [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation| Trägerfrequenzsysteme mit kohärenter Demodulation]].
+
* Die Herleitungen finden Sie auch im Kapitel [[Digitalsignal%C3%BCbertragung/Lineare_digitale_Modulation_%E2%80%93_Koh%C3%A4rente_Demodulation| Lineare digitale Modulation &ndash; Kohärente Demodulation]].
+
* For the complementary Gaussian error function, use the following approximation&nbsp; (upper bound):
* Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
* Verwenden Sie für die komplementäre Gaußsche Fehlerfunktion die folgende Näherung:
 
 
:$${\rm Q}(x)  \approx  \frac{1}{\sqrt{2\pi} \cdot x} \cdot {\rm e}^{-x^2/2}
 
:$${\rm Q}(x)  \approx  \frac{1}{\sqrt{2\pi} \cdot x} \cdot {\rm e}^{-x^2/2}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
Line 32: Line 40:
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie die '''OOK'''&ndash;Bitfehlerwahrscheinlichkeit für $10 \cdot {\rm lg} \, E_{\rm S}/N_0 = 10 \ \rm dB$ unter Verwendung der oberen Schranke.
+
{Calculate the &nbsp;'''OOK'''&nbsp; symbol error probability for&nbsp; $10 \cdot {\rm lg} \, E_{\rm S}/N_0 = 10 \ \rm dB$&nbsp; using the upper bound.
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm S}\ = \ $  { 85 3% } $\ \cdot 10^{\rm &ndash;5}$
 
$p_{\rm S}\ = \ $  { 85 3% } $\ \cdot 10^{\rm &ndash;5}$
  
{Wie groß ist die '''BPSK'''&ndash;Bitfehlerwahrscheinlichkeit für $10 \cdot {\rm lg} \, E_{\rm S}/N_0 = 10 \ \rm dB$?
+
{What is the &nbsp;'''BPSK'''&nbsp; symbol error probability for&nbsp; $10 \cdot {\rm lg} \, E_{\rm S}/N_0 = 10 \ \rm dB$?
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm S}\ = \ $ { 0.405 3% } $\ \cdot 10^{\rm &ndash;5}$
 
$p_{\rm S}\ = \ $ { 0.405 3% } $\ \cdot 10^{\rm &ndash;5}$
  
{Geben Sie für '''OOK''' den minimalen Wert für $E_{\rm S}/N_0$ (in $\rm dB$) an, damit gerade noch die Bitehlerwahrscheinlichkeit $p_{\rm S} = 10^{\rm &ndash;5}$ erreicht wird.
+
{For&nbsp; '''OOK''',&nbsp; give the minimum value of&nbsp; $E_{\rm S}/N_0$&nbsp; $($in $\rm dB)$&nbsp; required for&nbsp; $p_{\rm S} = 10^{\rm -5}$.
 
|type="{}"}
 
|type="{}"}
$10 \cdot {\rm lg} \, E_{\rm S}/N_0 \ = \ $ { 12.6 3% } $\ \rm dB$
+
${\rm Minimum} \big[10 \cdot {\rm lg} \, E_{\rm S}/N_0 \big ] \ = \ $ { 12.6 3% } $\ \rm dB$
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Aus $10 \cdot {\rm lg} \, E_{\rm S}/N_0 = 10 \ \rm dB$ folgt $E_{\rm S}/N_0 = 10$ und damit
+
'''(1)'''&nbsp; From&nbsp; $10 \cdot {\rm lg} \, E_{\rm S}/N_0 = 10 \ \rm dB$&nbsp; follows&nbsp; $E_{\rm S}/N_0 = 10$&nbsp; and thus
 
:$$p_{\rm S} = {\rm Q}\left ( \sqrt{10} \right ) \approx  
 
:$$p_{\rm S} = {\rm Q}\left ( \sqrt{10} \right ) \approx  
 
  \frac{\rm 1}{\sqrt{\rm 20\pi} }\cdot \rm e^{-5  }  \underline{=85 \cdot 10^{-5}}\hspace{0.05cm}.$$
 
  \frac{\rm 1}{\sqrt{\rm 20\pi} }\cdot \rm e^{-5  }  \underline{=85 \cdot 10^{-5}}\hspace{0.05cm}.$$
  
Der tatsächliche Wert gemäß dem Angabenblatt lautet $78.3 \cdot 10^{\rm &ndash;5}$. Die angegebene Gleichung ist also tatsächlich eine obere Schranke für ${\rm Q}(x)$. Der relative Fehler bei Verwendung dieser Näherung anstelle der exakten Funktion ${\rm Q}(x)$ ist in diesem Fall kleiner als $10\%$.
+
*The actual value according to the data section is&nbsp; $78.3 \cdot 10^{\rm -5}$.
 +
 +
*So the given equation is actually an upper bound for&nbsp; ${\rm Q}(x)$.
 +
 +
*The relative error when using this approximation instead of the exact function&nbsp; ${\rm Q}(x)$&nbsp; is  in this case less than&nbsp; $10\%$.
 +
 
  
  
'''(2)'''&nbsp; Bei BPSK lautet die entsprechende Gleichung:
+
'''(2)'''&nbsp; For BPSK,&nbsp; the corresponding equation is:
 
:$$p_{\rm S} = {\rm Q}\left ( \sqrt{20} \right ) \approx  
 
:$$p_{\rm S} = {\rm Q}\left ( \sqrt{20} \right ) \approx  
 
  \frac{\rm 1}{\sqrt{\rm 40\pi} }\cdot \rm e^{-10  }  \underline{=0.405 \cdot 10^{-5}}\hspace{0.05cm}.$$
 
  \frac{\rm 1}{\sqrt{\rm 40\pi} }\cdot \rm e^{-10  }  \underline{=0.405 \cdot 10^{-5}}\hspace{0.05cm}.$$
  
Nun beträgt der relative Fehler bei Verwendung der Näherung nur noch $5\%$. <br>Allgemein gilt: Je kleiner die Fehlerwahrscheinlichkeit ist, um so besser ist die Näherung.
+
*Now the relative error using the approximation is only&nbsp; $5\%$.
 +
 +
*In general:&nbsp; The smaller the error probability, the better the approximation.
 +
 
 +
 
  
 +
'''(3)'''&nbsp; According to the specification,&nbsp; a (logarithmic) value of&nbsp; $9.6 \ \rm dB$&nbsp; is required for BPSK.
  
'''(3)'''&nbsp; Bei BPSK ist hierfür laut Angabe ein (logarithmierter) Wert von $9.6 \ \rm dB$ erforderlich. Bei der OOK muss der logarithmierte Wert um etwa $3 \ \rm dB$ erhöht werden &#8658; $10 \cdot {\rm lg} \, E_{\rm S}/N_0 \ \underline {\approx 12.6 \ \rm dB}$.
+
*With the OOK,&nbsp; the logarithmic value must be increased by about&nbsp; $3 \ \rm dB$ &#8658; $10 \cdot {\rm lg} \, E_{\rm S}/N_0 \ \underline {\approx 12.6 \ \rm dB}$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^4.4 Kohärente Demodulation^]]
+
[[Category:Digital Signal Transmission: Exercises|^4.4 Coherent Demodulation^]]

Latest revision as of 15:13, 20 August 2022

Error probabilities of On–Off Keying and Binary Phase Shift Keying

The error probabilities  $p_{\rm S}$  of the digital modulation methods "On–Off Keying"  $\rm (OOK)$  and  "Binary Phase Shift Keying"  $\rm (BPSK)$  are given here without derivation. 

For example,  one obtains with the so-called Q-function

$${\rm Q} (x) = \frac{\rm 1}{\sqrt{\rm 2\pi}}\cdot \int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d \it u$$

for the AWGN channel – identified by  $E_{\rm S}/N_0$  – and other optimal conditions  (e.g. coherent demodulation)

  • for On–Off Keying,  often also called  "Amplitude Shift Keying"  $\rm (2–ASK)$:
$$p_{\rm S} = {\rm Q}\left ( \sqrt{{E_{\rm S}}/{N_0 }} \hspace{0.1cm}\right ) \hspace{0.05cm},$$
  • for Binary Phase Shift Keying:
$$p_{\rm S} = {\rm Q}\left ( \sqrt{{2 \cdot E_{\rm S}}/{N_0 }} \hspace{0.1cm}\right ) \hspace{0.05cm}.$$


These symbol error probabilities  (at the same time the bit error probabilities)  are shown in the graph.

For example,  for  $10 \cdot {\rm lg} \, E_{\rm S}/N_0 = 10 \ \rm dB$  one obtains according to the exact functions:

$$p_{\rm S} = 7.83 \cdot 10^{-4}\,\,{\rm (OOK)}\hspace{0.05cm},$$
$$ p_{\rm S} = 3.87 \cdot 10^{-6}\,\,{\rm (BPSK)}\hspace{0.05cm}.$$

In order to achieve  $p_{\rm S} = 10^{\rm -5}$  with BPSK,  $10 \cdot {\rm lg} \, E_{\rm S}/N_0 ≥ 9.6 \ \rm dB$  must hold.


Notes:

  • For the complementary Gaussian error function, use the following approximation  (upper bound):
$${\rm Q}(x) \approx \frac{1}{\sqrt{2\pi} \cdot x} \cdot {\rm e}^{-x^2/2} \hspace{0.05cm}.$$


Questions

1

Calculate the  OOK  symbol error probability for  $10 \cdot {\rm lg} \, E_{\rm S}/N_0 = 10 \ \rm dB$  using the upper bound.

$p_{\rm S}\ = \ $

$\ \cdot 10^{\rm –5}$

2

What is the  BPSK  symbol error probability for  $10 \cdot {\rm lg} \, E_{\rm S}/N_0 = 10 \ \rm dB$?

$p_{\rm S}\ = \ $

$\ \cdot 10^{\rm –5}$

3

For  OOK,  give the minimum value of  $E_{\rm S}/N_0$  $($in $\rm dB)$  required for  $p_{\rm S} = 10^{\rm -5}$.

${\rm Minimum} \big[10 \cdot {\rm lg} \, E_{\rm S}/N_0 \big ] \ = \ $

$\ \rm dB$


Solution

(1)  From  $10 \cdot {\rm lg} \, E_{\rm S}/N_0 = 10 \ \rm dB$  follows  $E_{\rm S}/N_0 = 10$  and thus

$$p_{\rm S} = {\rm Q}\left ( \sqrt{10} \right ) \approx \frac{\rm 1}{\sqrt{\rm 20\pi} }\cdot \rm e^{-5 } \underline{=85 \cdot 10^{-5}}\hspace{0.05cm}.$$
  • The actual value according to the data section is  $78.3 \cdot 10^{\rm -5}$.
  • So the given equation is actually an upper bound for  ${\rm Q}(x)$.
  • The relative error when using this approximation instead of the exact function  ${\rm Q}(x)$  is in this case less than  $10\%$.


(2)  For BPSK,  the corresponding equation is:

$$p_{\rm S} = {\rm Q}\left ( \sqrt{20} \right ) \approx \frac{\rm 1}{\sqrt{\rm 40\pi} }\cdot \rm e^{-10 } \underline{=0.405 \cdot 10^{-5}}\hspace{0.05cm}.$$
  • Now the relative error using the approximation is only  $5\%$.
  • In general:  The smaller the error probability, the better the approximation.


(3)  According to the specification,  a (logarithmic) value of  $9.6 \ \rm dB$  is required for BPSK.

  • With the OOK,  the logarithmic value must be increased by about  $3 \ \rm dB$ ⇒ $10 \cdot {\rm lg} \, E_{\rm S}/N_0 \ \underline {\approx 12.6 \ \rm dB}$.