Difference between revisions of "Aufgaben:Exercise 4.09Z: Laplace Distributed Noise"

From LNTwww
 
(33 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Approximation der Fehlerwahrscheinlichkeit}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Approximation_of_the_Error_Probability}}
  
[[File:P_ID2042__Dig_Z_4_9.png|right|frame|2D–Laplace–WDF]]
+
[[File:P_ID2042__Dig_Z_4_9.png|right|frame|Two-dimensional Laplacian PDF]]
Wir betrachten zweidimensionales Rauschen $\boldsymbol{n} = (n_1, n_2)$.  
+
We consider two-dimensional noise  $\boldsymbol{n} = (n_1, n_2)$.  
  
Die beiden Rauschvariablen sind &bdquo;<i>independent and identically distributed</i>&rdquo;, abgekürzt i.i.d., und besitzen beide jeweils eine Laplace&ndash;Wahrscheinlichkeitsdichte:
+
The two noise variables are&nbsp; "independent and identically distributed",&nbsp; abbreviated&nbsp; "i.i.d.",&nbsp; and each has a Laplace probability density function&nbsp; $\rm (PDF)$:
 
:$$p_{n_1}(x)  \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  K \cdot {\rm e}^{- a \hspace{0.03cm}\cdot \hspace{0.03cm} |x|}  \hspace{0.05cm},$$
 
:$$p_{n_1}(x)  \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  K \cdot {\rm e}^{- a \hspace{0.03cm}\cdot \hspace{0.03cm} |x|}  \hspace{0.05cm},$$
 
:$$ p_{n_2}(y)  \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  K \cdot {\rm e}^{- a \hspace{0.03cm}\cdot \hspace{0.03cm} |y|}  \hspace{0.05cm}. $$
 
:$$ p_{n_2}(y)  \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  K \cdot {\rm e}^{- a \hspace{0.03cm}\cdot \hspace{0.03cm} |y|}  \hspace{0.05cm}. $$
  
Die 2D&ndash;Wahrscheinlichkeitsdichtefunktion $p_{\it \boldsymbol{n})(x, y)$ ist in der Grafik dargestellt. Zur Vereinfachung der Schreibweise werden hier die Realisierungen von $n_1$ und $n_2$ mit $x$ und $y$ bezeichnet.
+
*The two-dimensional probability density function&nbsp; $p_{\it \boldsymbol{n}}(x, y)$&nbsp; is shown in the graph.
  
''Hinweise:''
+
*To simplify notation,&nbsp; the realizations of&nbsp; $n_1$&nbsp; and&nbsp; $n_2$&nbsp; are denoted here by&nbsp; $x$&nbsp; and&nbsp; $y$,&nbsp; respectively.
* Die Aufgabe bezieht sich auf das Kapitel [[Digitalsignal%C3%BCbertragung/Approximation_der_Fehlerwahrscheinlichkeit| Approximation der Fehlerwahrscheinlichkeit]].
 
* Beachten Sie bitte, dass in Teilaufgabe (6) das sich ergebende Integral aufgrund der Betragsbildung in mehrere Teilintegrale aufgespalten werden muss.
 
* Weiterhin gilt:
 
:$$\int_{0}^{\infty} x^2 \cdot {\rm e}^{-a \hspace{0.03cm}\cdot \hspace{0.03cm} x} \,{\rm d} x  = {2}/{a^3} \hspace{0.05cm}.$$
 
  
  
  
===Fragebogen===
+
Notes:
 +
* The exercise belongs to the chapter&nbsp; [[Digital_Signal_Transmission/Approximation_of_the_Error_Probability|"Approximation of the Error Probability"]].
 +
 +
* We would like to refer to the&nbsp; (German language)&nbsp; interactive SWF applet &nbsp;[[Applets:2D_Laplace|"2D Laplace"]].&nbsp;
 +
 +
* The integral resulting in subtask&nbsp; '''(6)'''&nbsp; must be split into several partial integrals due to the magnitude formation.
 +
 
 +
*Furthermore, it holds:&nbsp; $\int_{0}^{\infty} x^2 \cdot {\rm e}^{-a \hspace{0.03cm}\cdot \hspace{0.03cm} x} \,{\rm d} x  = {2}/{a^3} \hspace{0.05cm}.$
 +
 
 +
 
 +
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice
+
{What is the size of the constant&nbsp; $K$&nbsp; of the one-dimensional PDF?
|type="[]"}
+
|type="()"}
+ correct
+
- $K = 1$.
- false
+
+ $K = a/2$
 +
- $K = 1/a$.
  
{Input-Box Frage
+
{Let&nbsp; $a = 1$.&nbsp; What are the mean&nbsp; ${\rm E}\big[n_i \big]$&nbsp; and the variance&nbsp; $\sigma^2 = {\rm E}\big[n_i^2\big]$&nbsp; of the two one-dimensional random variables? &nbsp;$(i = 1,\ 2)$.
 
|type="{}"}
 
|type="{}"}
$xyz$ = { 5.4 3% } $ab$
+
${\rm E}\big[n_i\big] \ = \ $ { 0. }
 +
${\rm E}\big[n_i^2\big] \ = \ ${ 2 3% }
 +
 
 +
{What is the shape of the contour lines of the two-dimensional PDF in the first quadrant?
 +
|type="()"}
 +
+ They are straight lines.
 +
- They are hyperbolas.
 +
- They are circles.
 +
 
 +
{Let further&nbsp; $a = 1$.&nbsp; What is the probability that both&nbsp; $n_1$&nbsp; and&nbsp; $n_2$&nbsp; are negative?
 +
|type="{}"}
 +
${\rm Pr}\big[(n_1 < 0) ∩ (n_2 < 0)\big]\ = \ $ { 25 3% } $\ \%$
 +
 
 +
{What is the probability that&nbsp; $n_1$&nbsp; and&nbsp; $n_2$&nbsp; are jointly greater than&nbsp; $1$?&nbsp;
 +
|type="{}"}
 +
${\rm Pr}\big[(n_1 > 1) ∩ (n_2 > 1)\big]\ = \ $ { 3.4 3% } $\ \%$
 +
 
 +
{What is the probability that the sum&nbsp; $n_1 + n_2 > 2$?&nbsp;
 +
|type="{}"}
 +
$ {\rm Pr}\big[n_1 + n_2 > 2)\big] \ = \ $ { 13.5 3% } $\ \%$
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  
+
'''(1)'''&nbsp; <u>Solution 2</u>&nbsp; is correct:
'''(2)'''&nbsp;  
+
*The area under the PDF must equal&nbsp; $1$:
'''(3)'''&nbsp;  
+
:$$\int_{-\infty}^{+\infty}  p_{n_1}(x) \,{\rm d} x  = 1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
'''(4)'''&nbsp;  
+
\int_{0}^{+\infty}  p_{n_1}(x) \,{\rm d} x  = 0.5  \hspace{0.3cm}
'''(5)'''&nbsp;  
+
\Rightarrow \hspace{0.3cm} K \cdot \int_{0}^{\infty} {\rm e}^{- a \hspace{0.03cm}\cdot \hspace{0.03cm}x} \,{\rm d} x  = - {K}/{a} \cdot \left [ {\rm e}^{- a \hspace{0.03cm} \cdot \hspace{0.03cm} x}
 +
\right ]_{0}^{\infty}=  {K}/{a} = 0.5 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} K = {a}/{2}\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(2)'''&nbsp; The&nbsp; <u>linear mean</u>&nbsp; is&nbsp; <u>equal to 0</u>&nbsp; due to PDF symmetry.
 +
 
 +
*Thus,&nbsp; the variance&nbsp; $\sigma^2$&nbsp; is actually equal to the second moment,&nbsp; as already stated in the question:
 +
[[File:EN_Dig_Z_4_9ML.png|right|frame|Contour lines of the two-dimensional Laplace PDF]]
 +
:$$\sigma^2 = {\rm E}[n_1^2] = 2 \cdot \frac{a}{2} \cdot \int_{0}^{\infty} x^2 \cdot {\rm e}^{-a \hspace{0.03cm} \cdot \hspace{0.03cm} x} \,{\rm d} x  = a \cdot {2}/{a^3}=
 +
{2}/{a^2} \hspace{0.05cm}. \hspace{0.2cm}{\rm With}\hspace{0.15cm}a = 1\text{:} \hspace{0.2cm}\hspace{0.1cm}\underline {\sigma^2 = 2 }\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(3)'''&nbsp; <u>Solution 1</u>&nbsp; is correct:
 +
*In the first quadrant&nbsp; $(x &#8805; 0, y &#8805; 0)$,&nbsp; the magnitude formation can be omitted.&nbsp; Then the two-dimensional PDF is given by:
 +
:$$\boldsymbol{ p }_{\boldsymbol{ n }}  (x,\hspace{0.15cm} y) = {a^2}/{4} \cdot {\rm e}^{- a \hspace{0.03cm}\cdot \hspace{0.03cm}x} \cdot {\rm e}^{- a \hspace{0.03cm}\cdot \hspace{0.03cm}y }= {a^2}/{4} \cdot {\rm e}^{- a \hspace{0.03cm}\cdot \hspace{0.03cm}(x+y)}\hspace{0.05cm}.$$
 +
*A contour line with factor&nbsp; $\beta$&nbsp; versus maximum then has the following shape&nbsp; $(0 < \beta < 1)$:
 +
:$${\rm e}^{- a \hspace{0.03cm}\cdot \hspace{0.03cm}(x+y)} = \beta
 +
\hspace{0.3cm} \Rightarrow \hspace{0.3cm} x + y = \frac{{\rm ln}\hspace{0.15cm}1/\beta}{a}
 +
  \hspace{0.05cm}.$$
 +
 
 +
*The graph shows the contour lines for&nbsp; $a = 1$&nbsp; and some values of&nbsp; $\beta$,&nbsp; each giving a square rotated by&nbsp; $45^\circ$ &nbsp; &#8658; &nbsp; the contour lines are thus even.
 +
 
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; The probability event considered here corresponds exactly to the third quadrant of the composite PDF sketched above.
 +
*Because of symmetry,&nbsp; this probability is:
 +
:$${\rm Pr}[(n_1 < 0) ∩ (n_2 < 0)]\hspace{0.15cm}\underline {=25\%}.$$
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; For this,&nbsp; the composite PDF can be written:
 +
:$${\rm Pr} \left [ (n_1 > 1)\cap (n_2 > 1)\right ] = {1}/{4} \cdot \int_{1}^{\infty} \int_{1}^{\infty}{\rm e}^{-  (x+y)} \,{\rm d} x  \,{\rm d} y == {1}/{2} \cdot \int_{1}^{\infty} {\rm e}^{-  x} \,{\rm d} x  \hspace{0.15cm} \cdot \hspace{0.15cm}
 +
  {1}/{2} \cdot \int_{1}^{\infty} {\rm e}^{-  y} \,{\rm d} y $$ 
 +
:$$ \Rightarrow \hspace{0.3cm}{\rm Pr} \left [ (n_1 > 1)\cap (n_2 > 1)\right ] =  \left [ {\rm Pr} (n_1 > 1)\right ] \cdot \left [ {\rm Pr} (n_2 > 1)\right ]\hspace{0.05cm}. $$
 +
 
 +
*Considered is the statistical independence between&nbsp; $n_1$&nbsp; and&nbsp; $n_2$&nbsp; and the equality&nbsp; $p_{\it n1}(x) = p_{\it n2}(y)$.&nbsp;  For $a = 1$&nbsp; holds:
 +
:$${\rm Pr} (n_1 > 1) = {1}/{2} \cdot \int_{1}^{\infty} {\rm e}^{-  x} \,{\rm d} x = {1}/({2{\rm e}})\approx 0.184\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} {\rm Pr} \left [ (n_1 > 1)\cap (n_2 > 1)\right ] = {1}/({4{\rm e}^2)}\hspace{0.1cm}\hspace{0.15cm}\underline {\approx 3.4\%}\hspace{0.05cm}.$$
 +
 
 +
 
 +
[[File:P_ID2046__Dig_Z_4_9f.png|right|frame|Division of the integration domain]]
 +
'''(6)'''&nbsp; The region considered here is highlighted in color in the following graph.
 +
*However,&nbsp; the regions extend to the right and above to infinity.
 +
 
 +
*The searched probability results in
 +
 
 +
:$${\rm Pr}  [ n_1 \hspace{-0.2cm} \ + \ \hspace{-0.2cm} n_2 > 2 ]  =\frac{1}{4} \cdot \int\limits_{-\infty}^{+\infty} {\rm e}^{-|x|} \int\limits_{2-x}^{\infty}{\rm e}^{-|y|} \,{\rm d} y  \,{\rm d} x = I_1 + I_2 + I_3 + I_4 \hspace{0.05cm}.$$
 +
 
 +
*Because of the magnitude,&nbsp; a splitting into partial integrals has to be done.
 +
 
 +
*Upwards and to the right all areas extend to infinity.
 +
 
 +
*Because of the symmetry $I_4 = I_3$ is valid.
 +
:$$I_1 = {1}/{4} \cdot \int_{2}^{+\infty} \hspace{-0.15cm}{\rm e}^{-x} \int_{0}^{\infty}\hspace{-0.15cm}{\rm e}^{-y} \,{\rm d} y  \,{\rm d} x =
 +
{1}/{4} \cdot \int_{2}^{+\infty} {\rm e}^{-x}  \,{\rm d} x ={1}/({4{\rm e}^2})\hspace{0.05cm},$$
 +
:$$I_2 = {1}/{4} \cdot \hspace{-0.1cm} \int_{0}^{2} \hspace{-0.15cm}{\rm e}^{-x} \int_{2-x}^{\infty}\hspace{-0.15cm}{\rm e}^{-y} \,{\rm d} y  \,{\rm d} x =
 +
{1}/{4} \cdot  \hspace{-0.1cm} \int_{0}^{2} {\rm e}^{-x}\hspace{-0.1cm} \cdot  {\rm e}^{x-2} \,{\rm d} x$$
 +
:$$\Rightarrow \hspace{0.3cm}I_2 = {1}/{4} \cdot  \hspace{-0.1cm}\int_{0}^{2} {\rm e}^{-2}  \,{\rm d} x
 +
= {1}/({2{\rm e}^2})\hspace{0.05cm},$$
 +
:$$I_3 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{4} \cdot \int_{-\infty}^{0} {\rm e}^{x} \int_{2-x}^{\infty}{\rm e}^{-y} \,{\rm d} y  \,{\rm d} x =
 +
{1}/{4} \cdot \int_{-\infty}^{0} {\rm e}^{x} \cdot {\rm e}^{x-2} \,{\rm d} x
 +
= {1}/{4} \cdot \int_{-\infty}^{0} {\rm e}^{2x-2}  \,{\rm d} x = \frac{{\rm e}^{-2}}{4} \cdot \int_{0}^{\infty} {\rm e}^{-2x}  \,{\rm d} x
 +
= {1}/({8{\rm e}^2})\hspace{0.05cm},$$
 +
:$$I_4 ={1}/{4} \cdot \int_{-\infty}^{0} {\rm e}^{y} \int_{2-y}^{\infty}{\rm e}^{-x} \,{\rm d} x  \,{\rm d} y = ... =
 +
  {1}/({8{\rm e}^2}) = I_3\hspace{0.05cm}.$$
 +
 
 +
*Thus,&nbsp; the overall result is:
 +
:$${\rm Pr} \left [ n_1 + n_2 > 2 \right ] = {\rm e}^{-2} \cdot ({1}/{4} +{1}/{2} +{1}/{8} +{1}/{8})= {\rm e}^{-2} \hspace{0.1cm}\hspace{0.15cm}\underline {\approx 13.5\%}\hspace{0.05cm}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^4.3 BER-Approximation^]]
+
[[Category:Digital Signal Transmission: Exercises|^4.3 BER Approximation^]]

Latest revision as of 16:15, 6 September 2022

Two-dimensional Laplacian PDF

We consider two-dimensional noise  $\boldsymbol{n} = (n_1, n_2)$.

The two noise variables are  "independent and identically distributed",  abbreviated  "i.i.d.",  and each has a Laplace probability density function  $\rm (PDF)$:

$$p_{n_1}(x) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} K \cdot {\rm e}^{- a \hspace{0.03cm}\cdot \hspace{0.03cm} |x|} \hspace{0.05cm},$$
$$ p_{n_2}(y) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} K \cdot {\rm e}^{- a \hspace{0.03cm}\cdot \hspace{0.03cm} |y|} \hspace{0.05cm}. $$
  • The two-dimensional probability density function  $p_{\it \boldsymbol{n}}(x, y)$  is shown in the graph.
  • To simplify notation,  the realizations of  $n_1$  and  $n_2$  are denoted here by  $x$  and  $y$,  respectively.


Notes:

  • We would like to refer to the  (German language)  interactive SWF applet  "2D Laplace"
  • The integral resulting in subtask  (6)  must be split into several partial integrals due to the magnitude formation.
  • Furthermore, it holds:  $\int_{0}^{\infty} x^2 \cdot {\rm e}^{-a \hspace{0.03cm}\cdot \hspace{0.03cm} x} \,{\rm d} x = {2}/{a^3} \hspace{0.05cm}.$


Questions

1

What is the size of the constant  $K$  of the one-dimensional PDF?

$K = 1$.
$K = a/2$
$K = 1/a$.

2

Let  $a = 1$.  What are the mean  ${\rm E}\big[n_i \big]$  and the variance  $\sigma^2 = {\rm E}\big[n_i^2\big]$  of the two one-dimensional random variables?  $(i = 1,\ 2)$.

${\rm E}\big[n_i\big] \ = \ $

${\rm E}\big[n_i^2\big] \ = \ $

3

What is the shape of the contour lines of the two-dimensional PDF in the first quadrant?

They are straight lines.
They are hyperbolas.
They are circles.

4

Let further  $a = 1$.  What is the probability that both  $n_1$  and  $n_2$  are negative?

${\rm Pr}\big[(n_1 < 0) ∩ (n_2 < 0)\big]\ = \ $

$\ \%$

5

What is the probability that  $n_1$  and  $n_2$  are jointly greater than  $1$? 

${\rm Pr}\big[(n_1 > 1) ∩ (n_2 > 1)\big]\ = \ $

$\ \%$

6

What is the probability that the sum  $n_1 + n_2 > 2$? 

$ {\rm Pr}\big[n_1 + n_2 > 2)\big] \ = \ $

$\ \%$


Solution

(1)  Solution 2  is correct:

  • The area under the PDF must equal  $1$:
$$\int_{-\infty}^{+\infty} p_{n_1}(x) \,{\rm d} x = 1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \int_{0}^{+\infty} p_{n_1}(x) \,{\rm d} x = 0.5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} K \cdot \int_{0}^{\infty} {\rm e}^{- a \hspace{0.03cm}\cdot \hspace{0.03cm}x} \,{\rm d} x = - {K}/{a} \cdot \left [ {\rm e}^{- a \hspace{0.03cm} \cdot \hspace{0.03cm} x} \right ]_{0}^{\infty}= {K}/{a} = 0.5 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} K = {a}/{2}\hspace{0.05cm}.$$


(2)  The  linear mean  is  equal to 0  due to PDF symmetry.

  • Thus,  the variance  $\sigma^2$  is actually equal to the second moment,  as already stated in the question:
Contour lines of the two-dimensional Laplace PDF
$$\sigma^2 = {\rm E}[n_1^2] = 2 \cdot \frac{a}{2} \cdot \int_{0}^{\infty} x^2 \cdot {\rm e}^{-a \hspace{0.03cm} \cdot \hspace{0.03cm} x} \,{\rm d} x = a \cdot {2}/{a^3}= {2}/{a^2} \hspace{0.05cm}. \hspace{0.2cm}{\rm With}\hspace{0.15cm}a = 1\text{:} \hspace{0.2cm}\hspace{0.1cm}\underline {\sigma^2 = 2 }\hspace{0.05cm}.$$


(3)  Solution 1  is correct:

  • In the first quadrant  $(x ≥ 0, y ≥ 0)$,  the magnitude formation can be omitted.  Then the two-dimensional PDF is given by:
$$\boldsymbol{ p }_{\boldsymbol{ n }} (x,\hspace{0.15cm} y) = {a^2}/{4} \cdot {\rm e}^{- a \hspace{0.03cm}\cdot \hspace{0.03cm}x} \cdot {\rm e}^{- a \hspace{0.03cm}\cdot \hspace{0.03cm}y }= {a^2}/{4} \cdot {\rm e}^{- a \hspace{0.03cm}\cdot \hspace{0.03cm}(x+y)}\hspace{0.05cm}.$$
  • A contour line with factor  $\beta$  versus maximum then has the following shape  $(0 < \beta < 1)$:
$${\rm e}^{- a \hspace{0.03cm}\cdot \hspace{0.03cm}(x+y)} = \beta \hspace{0.3cm} \Rightarrow \hspace{0.3cm} x + y = \frac{{\rm ln}\hspace{0.15cm}1/\beta}{a} \hspace{0.05cm}.$$
  • The graph shows the contour lines for  $a = 1$  and some values of  $\beta$,  each giving a square rotated by  $45^\circ$   ⇒   the contour lines are thus even.



(4)  The probability event considered here corresponds exactly to the third quadrant of the composite PDF sketched above.

  • Because of symmetry,  this probability is:
$${\rm Pr}[(n_1 < 0) ∩ (n_2 < 0)]\hspace{0.15cm}\underline {=25\%}.$$


(5)  For this,  the composite PDF can be written:

$${\rm Pr} \left [ (n_1 > 1)\cap (n_2 > 1)\right ] = {1}/{4} \cdot \int_{1}^{\infty} \int_{1}^{\infty}{\rm e}^{- (x+y)} \,{\rm d} x \,{\rm d} y == {1}/{2} \cdot \int_{1}^{\infty} {\rm e}^{- x} \,{\rm d} x \hspace{0.15cm} \cdot \hspace{0.15cm} {1}/{2} \cdot \int_{1}^{\infty} {\rm e}^{- y} \,{\rm d} y $$
$$ \Rightarrow \hspace{0.3cm}{\rm Pr} \left [ (n_1 > 1)\cap (n_2 > 1)\right ] = \left [ {\rm Pr} (n_1 > 1)\right ] \cdot \left [ {\rm Pr} (n_2 > 1)\right ]\hspace{0.05cm}. $$
  • Considered is the statistical independence between  $n_1$  and  $n_2$  and the equality  $p_{\it n1}(x) = p_{\it n2}(y)$.  For $a = 1$  holds:
$${\rm Pr} (n_1 > 1) = {1}/{2} \cdot \int_{1}^{\infty} {\rm e}^{- x} \,{\rm d} x = {1}/({2{\rm e}})\approx 0.184\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Pr} \left [ (n_1 > 1)\cap (n_2 > 1)\right ] = {1}/({4{\rm e}^2)}\hspace{0.1cm}\hspace{0.15cm}\underline {\approx 3.4\%}\hspace{0.05cm}.$$


Division of the integration domain

(6)  The region considered here is highlighted in color in the following graph.

  • However,  the regions extend to the right and above to infinity.
  • The searched probability results in
$${\rm Pr} [ n_1 \hspace{-0.2cm} \ + \ \hspace{-0.2cm} n_2 > 2 ] =\frac{1}{4} \cdot \int\limits_{-\infty}^{+\infty} {\rm e}^{-|x|} \int\limits_{2-x}^{\infty}{\rm e}^{-|y|} \,{\rm d} y \,{\rm d} x = I_1 + I_2 + I_3 + I_4 \hspace{0.05cm}.$$
  • Because of the magnitude,  a splitting into partial integrals has to be done.
  • Upwards and to the right all areas extend to infinity.
  • Because of the symmetry $I_4 = I_3$ is valid.
$$I_1 = {1}/{4} \cdot \int_{2}^{+\infty} \hspace{-0.15cm}{\rm e}^{-x} \int_{0}^{\infty}\hspace{-0.15cm}{\rm e}^{-y} \,{\rm d} y \,{\rm d} x = {1}/{4} \cdot \int_{2}^{+\infty} {\rm e}^{-x} \,{\rm d} x ={1}/({4{\rm e}^2})\hspace{0.05cm},$$
$$I_2 = {1}/{4} \cdot \hspace{-0.1cm} \int_{0}^{2} \hspace{-0.15cm}{\rm e}^{-x} \int_{2-x}^{\infty}\hspace{-0.15cm}{\rm e}^{-y} \,{\rm d} y \,{\rm d} x = {1}/{4} \cdot \hspace{-0.1cm} \int_{0}^{2} {\rm e}^{-x}\hspace{-0.1cm} \cdot {\rm e}^{x-2} \,{\rm d} x$$
$$\Rightarrow \hspace{0.3cm}I_2 = {1}/{4} \cdot \hspace{-0.1cm}\int_{0}^{2} {\rm e}^{-2} \,{\rm d} x = {1}/({2{\rm e}^2})\hspace{0.05cm},$$
$$I_3 \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{4} \cdot \int_{-\infty}^{0} {\rm e}^{x} \int_{2-x}^{\infty}{\rm e}^{-y} \,{\rm d} y \,{\rm d} x = {1}/{4} \cdot \int_{-\infty}^{0} {\rm e}^{x} \cdot {\rm e}^{x-2} \,{\rm d} x = {1}/{4} \cdot \int_{-\infty}^{0} {\rm e}^{2x-2} \,{\rm d} x = \frac{{\rm e}^{-2}}{4} \cdot \int_{0}^{\infty} {\rm e}^{-2x} \,{\rm d} x = {1}/({8{\rm e}^2})\hspace{0.05cm},$$
$$I_4 ={1}/{4} \cdot \int_{-\infty}^{0} {\rm e}^{y} \int_{2-y}^{\infty}{\rm e}^{-x} \,{\rm d} x \,{\rm d} y = ... = {1}/({8{\rm e}^2}) = I_3\hspace{0.05cm}.$$
  • Thus,  the overall result is:
$${\rm Pr} \left [ n_1 + n_2 > 2 \right ] = {\rm e}^{-2} \cdot ({1}/{4} +{1}/{2} +{1}/{8} +{1}/{8})= {\rm e}^{-2} \hspace{0.1cm}\hspace{0.15cm}\underline {\approx 13.5\%}\hspace{0.05cm}.$$