Difference between revisions of "Digital Signal Transmission/Binary Symmetric Channel"

From LNTwww
 
(25 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Digitale Kanalmodelle
+
|Untermenü=Digital Channel Models
 
|Vorherige Seite=Beschreibungsgrößen digitaler Kanalmodelle
 
|Vorherige Seite=Beschreibungsgrößen digitaler Kanalmodelle
 
|Nächste Seite=Bündelfehlerkanäle
 
|Nächste Seite=Bündelfehlerkanäle
 
}}
 
}}
  
== Fehlerkorrelationsfunktion des BSC–Modells ==
+
== Binary Symmetric Channel – Model and Error Correlation Function==
 
<br>
 
<br>
Die linke Grafik zeigt mit dem BSC&ndash;Modell das einfachste Modell eines digitalen Übertragungssystems.<br>
+
The left graph shows the BSC model,&nbsp; the simplest model of a digital transmission system.
  
[[File:P ID1828 Dig T 5 2 S1 version1.png|BSC–Modell und zugehörige Fehlerkorrelationsfunktion|class=fit]]<br>
+
The name stands for&nbsp; "'''Binary Symmetric Channel'''"&nbsp; and states that this model can only be used for binary systems with symmetrical falsification properties.
 +
[[File:EN_Dig_T_5_2_S1.png|right|frame|BSC model and associated error correlation function|class=fit]]
  
Der Name steht für Binary Symmetric Channel und besagt, dass dieses Modell nur bei Binärsystemen mit symmetrischen Verfälschungseigenschaften angewendet werden kann. Weiter gilt:
+
Further applies:
 +
*The BSC model is suitable for the study and generation of an error sequence with statistically independent errors.&nbsp;
  
*Das BSC&ndash;Modell eignet sich für die Untersuchung und Erzeugung einer Fehlerfolge mit statistisch unabhängigen Fehlern. Man nennt einen solchen Kanal auch <i>gedächtnisfrei</i> und es existiert nur ein einziger Kanalzustand.<br>
+
*Such a channel is also called&nbsp; "memory-free"&nbsp; and unlike the&nbsp; [[Digital_Signal_Transmission/Burst_Error_Channels|"burst error channel models"]]&nbsp; only a single channel state exists.<br>
*Die beiden Symbole (zum Beispiel <b>L</b> und <b>H</b>) werden jeweils mit der gleichen Wahrscheinlichkeit <i>p</i> verfälscht, so dass auch die mittlere Fehlerwahrscheinlichkeit <i>p</i><sub>M</sub> gleich <i>p</i> ist, und zwar unabhängig von den Symbolwahrscheinlichkeiten <i>p</i><sub>L</sub> und  <i>p</i><sub>H</sub>.<br><br>
 
  
Die rechte Grafik zeigt die Fehlerkorrelationsfunktion (FKF)
+
*The two symbols&nbsp; $($for example&nbsp; $\rm L$&nbsp; and &nbsp;$\rm H)$&nbsp; are each falsified with the same probability&nbsp; $p$,&nbsp; so that the mean error probability&nbsp; $p_{\rm M} = p$&nbsp; is also independent of the symbol probabilities&nbsp; $p_{\rm L}$&nbsp; and&nbsp;  $p_{\rm H}$.<br><br>
  
:<math>\varphi_{e}(k) =  {\rm E}[e_{\nu} \cdot e_{\nu + k}] =
+
The right graph shows the&nbsp; [[Digital_Signal_Transmission/Parameters_of_Digital_Channel_Models#Error_correlation_function|"error correlation function"]]&nbsp; $\rm (ECF)$&nbsp; of the BSC model:
 +
 
 +
::<math>\varphi_{e}(k) =  {\rm E}\big[e_{\nu} \cdot e_{\nu + k}\big] =
 
  \left\{ \begin{array}{c} p \\
 
  \left\{ \begin{array}{c} p \\
 
  p^2 \end{array} \right.\quad
 
  p^2 \end{array} \right.\quad
\begin{array}{*{1}c} f{\rm \ddot{u}r }\hspace{0.25cm}k = 0  \hspace{0.05cm},
+
\begin{array}{*{1}c} f{\rm or }\hspace{0.25cm}k = 0  \hspace{0.05cm},
\\  f{\rm \ddot{u}r }\hspace{0.25cm} k > 0 \hspace{0.05cm}.\\ \end{array}</math>
+
\\  f{\rm or }\hspace{0.25cm} k > 0 \hspace{0.05cm}.\\ \end{array}</math>
  
Bitte beachten Sie:
+
{{BlaueBox|TEXT= 
*Beim BSC&ndash;Modell wird also der FKF&ndash;Endwert (Quadrat der mittleren Fehlerwahrscheinlichkeit), der bei anderen Modellen erst für <i>k</i> &#8594; &#8734; gültig ist, bereits bei <i>k</i> = 1 exakt erreicht.<br>
+
$\text{Conclusion:}$&nbsp;
 +
*In the BSC model, the final ECF value&nbsp; $($square of the mean error probability$)$,&nbsp; which in other models is valid only for&nbsp; $k \to \infty$,&nbsp; is reached exactly at&nbsp; $k = 1$&nbsp; and then remains constant.<br>
  
*Das BSC&ndash;Modell gehört zur Klasse der erneuernden Kanalmodelle (<i>Renewal Channels</i>). Bei einem erneuernden Kanalmodell sind die Fehlerabstände statistisch voneinander unabhängig und die Fehlerkorrelationsfunktion kann in einfacher Weise iterativ berechnet werden:
+
*The BSC model belongs to the class of&nbsp; "renewal channel models".&nbsp; In a renewal channel model,&nbsp; the error distances are statistically independent of each other and the error correlation function can be calculated iteratively in a simple way:
  
 
::<math>\varphi_{e}(k) = \sum_{\kappa = 1}^{k} {\rm Pr}(a = \kappa) \cdot
 
::<math>\varphi_{e}(k) = \sum_{\kappa = 1}^{k} {\rm Pr}(a = \kappa) \cdot
\varphi_{e}(k - \kappa) \hspace{0.05cm}.</math>
+
\varphi_{e}(k - \kappa) \hspace{0.05cm}.</math>}}
  
== Fehlerabstandsverteilung des BSC–Modells ==
+
== Binary Symmetric Channel &ndash; Error Distance Distribution==
 
<br>
 
<br>
Betrachten wir nun die <i>Fehlerabstandsverteilung</i> (FAV). Die Wahrscheinlichkeit für den Fehlerabstand <i>a</i> = <i>k</i> ergibt sich aus der Bedingung von <i>k</i> &ndash; 1 fehlerfreien Symbolen und eines Übertragungsfehlers zum Zeitpunkt <i>&nu;</i> + <i>k</i>, vorausgesetzt, dass zum Zeitpunkt <i>&nu;</i> ein Fehler aufgetreten ist. Man erhält:
+
We now consider the&nbsp; "error distance distribution"&nbsp; $\rm (EDD)$.&nbsp; The probability for the error distance&nbsp; $a=k$&nbsp; is obtained from the condition of&nbsp; $k-1$&nbsp; error-free symbols and one transmission error at time&nbsp; $\nu +k$,&nbsp; assuming that the last error occurred at time&nbsp; $\nu$.&nbsp; One obtains:
 +
 
 +
::<math>{\rm Pr}(a = k) = (1-p)^{k-1}\cdot p \hspace{0.05cm}.</math>
 +
 
 +
It follows:
 +
*The error distance&nbsp; $a = 1$&nbsp; always occurs  in the BSC model with the greatest probability,&nbsp; and this for any value of&nbsp; $p$.<br>
 +
 
 +
*This fact is somewhat surprising at first glance:&nbsp;
 +
 
 +
:With&nbsp; $p = 0.01$,&nbsp; for example,&nbsp; the mean error distance is&nbsp; ${\rm E}\big[a\big] = 100$.&nbsp; Nevertheless,&nbsp; two consecutive errors&nbsp; $(a = 1)$&nbsp; are more probable by a factor of&nbsp; $0.99^{99} \approx 2.7$&nbsp; than the error distance&nbsp; $a = 100$.<br>
 +
 
 +
*The error distance distribution is obtained by summation according to the&nbsp; [[Digital_Signal_Transmission/Parameters_of_Digital_Channel_Models#Error_distance_distribution|"general definition"]]:&nbsp;
  
:<math>{\rm Pr}(a = k) = (1-p)^{k-1}\cdot p \hspace{0.05cm}.</math>
+
::<math>V_a(k) =  {\rm Pr}(a \ge k) = 1 - \sum_{\kappa = 1}^{k}  (1-p)^{\kappa-1}\cdot p = (1-p)^{k-1}\hspace{0.05cm}.</math>
  
Daraus folgt:
+
{{GraueBox|TEXT= 
*Der Fehlerabstand <i>a</i> = 1 tritt beim BSC&ndash;Modell stets mit der größten Wahrscheinlichkeit auf, und zwar für jeden Wert von <i>p</i>.<br>
+
$\text{Example 1:}$&nbsp; The left graph shows&nbsp; $V_a(k)$&nbsp; in linear representation for
*Dieser Sachverhalt ist auf den ersten Blick etwas überraschend. Mit <i>p</i> = 0.01 ergibt sich zum Beispiel der mittlere Fehlerabstand E[<i>a</i>] = 100. Trotzdem sind zwei aufeinanderfolgende Fehler (<i>a</i> = 1) um den Faktor 0.99<sup>99</sup> &asymp; 2.7 wahrscheinlicher als der Fehlerabstand <i>a</i> = 100.<br><br>
+
[[File:EN_Dig_T_5_2_S2.png|right|frame||Error distance distribution for the BSC model in linear and logarithmic plots.|class=fit]]
 +
*$p = 0.1$&nbsp; (blue curve), and&nbsp;
 +
 +
*$p = 0.02$&nbsp; (red curve).  
  
Die Fehlerabstandsverteilung ergibt sich entsprechend der allgemeinen Definition durch Summation:
 
  
:<math>V_a(k) =  {\rm Pr}(a \ge k) = 1 - \sum_{\kappa = 1}^{k}  (1-p)^{\kappa-1}\cdot p = (1-p)^{k-1}\hspace{0.05cm}.</math>
+
&rArr; &nbsp; The decrease is exponential with increasing&nbsp; $k$&nbsp; and is steeper the smaller&nbsp; $p$&nbsp; is.<br>
  
Die linke Grafik zeigt <i>V<sub>a</sub></i>(<i>k</i>) in linearer Darstellung für die Parameter <i>p</i> = 0.1 (blaue Kurve) und <i>p</i> = 0.02 (rote Kurve). Der Abfall erfolgt mit steigendem <i>k</i> exponentiell und ist umso steiler, je kleiner <i>p</i> ist.<br>
+
&rArr; &nbsp; The right graph shows the logarithmic representation.&nbsp; Here the drop is linear according to
  
[[File:P ID1829 Dig T 5 2 S2 version1.png|Fehlerabstandsverteilung beim BSC–Modell in linearer und logarithmischer Darstellung.|class=fit]]<br>
+
::<math>{\rm lg} \hspace{0.15cm}V_a(k) =  (k - 1) \cdot {\rm lg} \hspace{0.15cm}(1-p)\hspace{0.05cm}.</math>}}<br>
  
Die rechte Grafik zeigt die logarithmische Darstellung. Hier verläuft der Abfall linear entsprechend
+
== Applications of the BSC model ==
 +
<br>
 +
The BSC model is the&nbsp; "digital equivalent"&nbsp; of the simplest analog model &nbsp; &#8658; &nbsp; [[Digital_Signal_Transmission/Structure_of_the_Optimal_Receiver#Some_properties_of_the_AWGN_channel|"AWGN"]]&nbsp; for a time-invariant digital system corresponding to the following graph.&nbsp; It holds
 +
[[File:EN_Dig_T_5_2_S2b.png|right|frame|On the use of the BSC model|class=fit]]
 +
#The only degradation is noise.
 +
#There is no distortion.<br>
  
:<math>{\rm lg} \hspace{0.15cm}V_a(k) =  (k - 1) \cdot {\rm lg} \hspace{0.15cm}(1-p)\hspace{0.05cm}.</math><br>
 
  
 +
To use the BSC model,&nbsp; the digital system must meet the following requirements:
 +
*Redundancy-free binary encoding &nbsp; &#8658; &nbsp; no channel encoding and decoding,<br>
 +
 +
*noise according to the AWGN model &nbsp; &#8658; &nbsp; additive,&nbsp; white,&nbsp; Gaussian distributed,<br>
 +
 +
*no&nbsp; $($linear & non-linear$)$&nbsp; distortions due to transmitter / receiver components,<br>
 +
 +
*threshold decision with symmetric decision threshold,<br>
 +
 +
*no extraneous interference influences such as: <br>crosstalk, dial pulses, electromagnetic fields, ...<br>
 +
 +
 +
For a&nbsp; "radio system"&nbsp; with a direct line-of-sight between transmitter and receiver,
 +
*the application of the BSC model is often justified,
 +
 +
*but not if fading influences &nbsp; $($[[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation#Rayleigh_and_Rice_Distribution|"Rayleigh or Rice"]]$)$&nbsp; play a role or if echoes may occur &nbsp; <br>&#8658; &nbsp;[[Mobile_Communications/Multi-Path_Reception_in_Mobile_Communications|"multi-path reception"]].<br>
 +
 +
 +
&rArr; &nbsp; In contrast,&nbsp; according to network operators,&nbsp; statistically independent errors tend to be the exception in the case of&nbsp; "wireline transmission"&nbsp; <br>(e.g.&nbsp; [[Examples_of_Communication_Systems/General_Description_of_DSL|"DSL"]],&nbsp; but also optical transmission$)$.&nbsp;
 +
 +
&rArr; &nbsp; If errors occur during data transmission via the telephone network,&nbsp; they are usually clustered.&nbsp; In this case,&nbsp;  we speak of so-called&nbsp; "burst errors",&nbsp; which will be discussed in the next chapter.<br>
 +
 +
==Exercises for the chapter==
 +
<br>
 +
[[Aufgaben:Exercise_5.3:_AWGN_and_BSC_Model|Exercise 5.3:&nbsp; AWGN and BSC Model]]
  
 +
[[Aufgaben:Exercise_5.3Z:_Analysis_of_the_BSC_Model|Exercise 5.3Z:&nbsp; Analysis of the BSC Model]]
  
 +
[[Aufgaben:Exercise_5.4:Is_the_BSC_Model_Renewing%3F|Exercise 5.4:&nbsp; Is the BSC Model Renewing?]]
  
 +
[[Aufgaben:Exercise_5.5:_Error_Sequence_and_Error_Distance_Sequence|Exercise 5.5:&nbsp; Error Sequence and Error Distance Sequence]]
  
  
 
{{Display}}
 
{{Display}}

Latest revision as of 16:23, 6 September 2022

Binary Symmetric Channel – Model and Error Correlation Function


The left graph shows the BSC model,  the simplest model of a digital transmission system.

The name stands for  "Binary Symmetric Channel"  and states that this model can only be used for binary systems with symmetrical falsification properties.

BSC model and associated error correlation function

Further applies:

  • The BSC model is suitable for the study and generation of an error sequence with statistically independent errors. 
  • The two symbols  $($for example  $\rm L$  and  $\rm H)$  are each falsified with the same probability  $p$,  so that the mean error probability  $p_{\rm M} = p$  is also independent of the symbol probabilities  $p_{\rm L}$  and  $p_{\rm H}$.

The right graph shows the  "error correlation function"  $\rm (ECF)$  of the BSC model:

\[\varphi_{e}(k) = {\rm E}\big[e_{\nu} \cdot e_{\nu + k}\big] = \left\{ \begin{array}{c} p \\ p^2 \end{array} \right.\quad \begin{array}{*{1}c} f{\rm or }\hspace{0.25cm}k = 0 \hspace{0.05cm}, \\ f{\rm or }\hspace{0.25cm} k > 0 \hspace{0.05cm}.\\ \end{array}\]

$\text{Conclusion:}$ 

  • In the BSC model, the final ECF value  $($square of the mean error probability$)$,  which in other models is valid only for  $k \to \infty$,  is reached exactly at  $k = 1$  and then remains constant.
  • The BSC model belongs to the class of  "renewal channel models".  In a renewal channel model,  the error distances are statistically independent of each other and the error correlation function can be calculated iteratively in a simple way:
\[\varphi_{e}(k) = \sum_{\kappa = 1}^{k} {\rm Pr}(a = \kappa) \cdot \varphi_{e}(k - \kappa) \hspace{0.05cm}.\]

Binary Symmetric Channel – Error Distance Distribution


We now consider the  "error distance distribution"  $\rm (EDD)$.  The probability for the error distance  $a=k$  is obtained from the condition of  $k-1$  error-free symbols and one transmission error at time  $\nu +k$,  assuming that the last error occurred at time  $\nu$.  One obtains:

\[{\rm Pr}(a = k) = (1-p)^{k-1}\cdot p \hspace{0.05cm}.\]

It follows:

  • The error distance  $a = 1$  always occurs in the BSC model with the greatest probability,  and this for any value of  $p$.
  • This fact is somewhat surprising at first glance: 
With  $p = 0.01$,  for example,  the mean error distance is  ${\rm E}\big[a\big] = 100$.  Nevertheless,  two consecutive errors  $(a = 1)$  are more probable by a factor of  $0.99^{99} \approx 2.7$  than the error distance  $a = 100$.
\[V_a(k) = {\rm Pr}(a \ge k) = 1 - \sum_{\kappa = 1}^{k} (1-p)^{\kappa-1}\cdot p = (1-p)^{k-1}\hspace{0.05cm}.\]

$\text{Example 1:}$  The left graph shows  $V_a(k)$  in linear representation for

Error distance distribution for the BSC model in linear and logarithmic plots.
  • $p = 0.1$  (blue curve), and 
  • $p = 0.02$  (red curve).


⇒   The decrease is exponential with increasing  $k$  and is steeper the smaller  $p$  is.

⇒   The right graph shows the logarithmic representation.  Here the drop is linear according to

\[{\rm lg} \hspace{0.15cm}V_a(k) = (k - 1) \cdot {\rm lg} \hspace{0.15cm}(1-p)\hspace{0.05cm}.\]


Applications of the BSC model


The BSC model is the  "digital equivalent"  of the simplest analog model   ⇒   "AWGN"  for a time-invariant digital system corresponding to the following graph.  It holds

On the use of the BSC model
  1. The only degradation is noise.
  2. There is no distortion.


To use the BSC model,  the digital system must meet the following requirements:

  • Redundancy-free binary encoding   ⇒   no channel encoding and decoding,
  • noise according to the AWGN model   ⇒   additive,  white,  Gaussian distributed,
  • no  $($linear & non-linear$)$  distortions due to transmitter / receiver components,
  • threshold decision with symmetric decision threshold,
  • no extraneous interference influences such as:
    crosstalk, dial pulses, electromagnetic fields, ...


For a  "radio system"  with a direct line-of-sight between transmitter and receiver,

  • the application of the BSC model is often justified,


⇒   In contrast,  according to network operators,  statistically independent errors tend to be the exception in the case of  "wireline transmission" 
(e.g.  "DSL",  but also optical transmission$)$. 

⇒   If errors occur during data transmission via the telephone network,  they are usually clustered.  In this case,  we speak of so-called  "burst errors",  which will be discussed in the next chapter.

Exercises for the chapter


Exercise 5.3:  AWGN and BSC Model

Exercise 5.3Z:  Analysis of the BSC Model

Exercise 5.4:  Is the BSC Model Renewing?

Exercise 5.5:  Error Sequence and Error Distance Sequence