Difference between revisions of "Aufgaben:Exercise 5.2: Error Correlation Function"

From LNTwww
 
(23 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Beschreibungsgrößen digitaler Kanalmodelle}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Parameters_of_Digital_Channel_Models}}
  
[[File:P_ID1854__Dig_A_5_2_version1.png|right|frame|Gegebene Fehlerabstandswahrscheinlichkeiten und Fehlerkorrelationsfunktion]]
+
[[File:P_ID1854__Dig_A_5_2_version1.png|right|frame|Error distance probability & error correlation function]]
Zur Charakterisierung von digitalen Kanalmodellen verwendet man unter Anderem
+
For the characterization of digital channel models one uses among other things
* die Fehlerkorrelationsfunktion (FKF)
+
* the  "error correlation function"  $\rm (ECF)$
:$$\varphi_{e}(k) = {\rm E}[e_{\nu} \cdot e_{\nu +
+
:$$\varphi_{e}(k) = {\rm E}\big[e_{\nu} \cdot e_{\nu +
k}]\hspace{0.05cm}, \hspace{0.2cm} k \ge 0\hspace{0.05cm},$$
+
k}\big]\hspace{0.05cm}, \hspace{0.2cm} k \ge 0\hspace{0.05cm},$$
  
* die Fehlerabstandswahrscheinlichkeiten
+
* the  "error distance probabilities"
 
:$${\rm Pr}( a =k)  \hspace{0.05cm}, \hspace{0.2cm} k \ge
 
:$${\rm Pr}( a =k)  \hspace{0.05cm}, \hspace{0.2cm} k \ge
 
1\hspace{0.05cm}.$$
 
1\hspace{0.05cm}.$$
  
Hierbei bezeichnen
+
Here denote:
* $〈e_{\rm \nu}〉$ die Fehlerfolge mit $e_{\rm \nu} ∈ \{0, 1\}$, und
+
* $〈e_{\rm \nu}〉$  is the error sequence with  $e_{\rm \nu} ∈ \{0, 1\}$.
* $a$ den Fehlerabstand.
+
 +
* $a$  indicates the error distance  with  $a_{\rm \nu} ∈ \{0, 1, 2, \text{...} \}$.
  
  
Zwei direkt aufeinanderfolgende Bitfehler werden somit durch den Fehlerabstand $a = 1$ gekennzeichnet.
+
Two directly consecutive symbol errors are thus characterized by the error distance  $a = 1$. 
  
Die Tabelle zeigt beispielhafte Werte der Fehlerabstandswahrscheinlichkeiten ${\rm Pr}(a = k)$ sowie der Fehlerkorrelationsfunktion $\varphi_e(k)$. Einige Angaben fehlen in der Tabelle. Diese Werte sollen aus den gegebenen Werten berechnet werden.
+
The table shows exemplary values of the error distance probabilities  ${\rm Pr}(a = k)$  as well as the error correlation function  $\varphi_e(k)$.  
 +
*Some data are missing in the table.
 +
*These values are to be calculated from the given values.
  
''Hinweise:''
 
* Die Aufgabe behandel den Lehrstoff des Kapitels [[Digitalsignal%C3%BCbertragung/Beschreibungsgr%C3%B6%C3%9Fen_digitaler_Kanalmodelle| Beschreibungsgrößen digitaler Kanalmodelle]].
 
  
  
===Fragebogen===
+
 
 +
Note:  The exercise covers the subject matter of the chapter  [[Digital_Signal_Transmission/Parameters_of_Digital_Channel_Models|"Parameters of Digital Channel Models"]].
 +
 +
 
 +
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Welcher Wert ergibt sich für die mittlere Fehlerwahrscheinlichkeit?
+
{Which value results for the mean error probability?
 
|type="{}"}
 
|type="{}"}
$p_{\rm M} \ = \ ${ 5.4 3% }
+
$p_{\rm M} \ = \ ${ 0.1 3% }
  
{Welcher Wert ergibt sich für den mittleren Fehlerabstand?
+
{Which value results for the mean error distance?
 
|type="{}"}
 
|type="{}"}
${\rm E}[a] \ = \ ${ 10 3% }
+
${\rm E}\big[a\big] \ = \ ${ 10 3% }
  
{Berechnen Sie den FKF&ndash;Wert für $k = 1$.
+
{Calculate the value of the error correlation function&nbsp; $\rm (ECF)$&nbsp; for&nbsp; $k = 1$.
 
|type="{}"}
 
|type="{}"}
$\varphi_r(k = 1) \ = \ ${ 0.0309 3% }  
+
$\varphi_e(k = 1) \ = \ ${ 0.0309 3% }  
  
{Welche Näherung gilt für die Wahrscheinlichkeit des Fehlerabstands $a = 2$?
+
{What is the approximation for the probability of the error distance&nbsp; $a = 2$?
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(a = 2) \ = \ ${ 0.1715 3% }  
 
${\rm Pr}(a = 2) \ = \ ${ 0.1715 3% }  
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  
+
'''(1)'''&nbsp; The mean error probability is equal to the ECF value for&nbsp; $k = 0$.&nbsp; Namely,&nbsp; because of&nbsp; $e_{\nu} &#8712; \{0, 1\}$:
'''(2)'''&nbsp;  
+
:$$\varphi_{e}(k = 0) = {\rm E}[e_{\nu}^2 ]= {\rm E}[e_{\nu} ]=
'''(3)'''&nbsp;  
+
p_{\rm M} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}p_{\rm M}\hspace{0.15cm}\underline { = 0.1}
'''(4)'''&nbsp;  
+
\hspace{0.05cm}.$$
'''(5)'''&nbsp;  
+
 
 +
 
 +
'''(2)'''&nbsp; The mean&nbsp; $($or:&nbsp; "average"$)$&nbsp; error distance is equal to the reciprocal of the mean error probability.&nbsp; That is:
 +
:$${\rm E}\big[a\big] = 1/p_{\rm M} \ \underline {= 10}.$$
 +
 
 +
 
 +
'''(3)'''&nbsp; According to the definition equation and&nbsp; [[Theory_of_Stochastic_Signals/Statistical_Dependence_and_Independence#Conditional_Probability| "Bayes' theorem"]],&nbsp; the following result is obtained:
 +
:$$\varphi_{e}(k = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm
 +
E}[e_{\nu} \cdot e_{\nu + 1}] = {\rm E}[(e_{\nu} = 1) \cdot
 +
(e_{\nu + 1}=1)]={\rm Pr}(e_{\nu + 1}=1
 +
\hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) \cdot {\rm
 +
Pr}(e_{\nu} = 1)
 +
\hspace{0.05cm}.$$
 +
 
 +
*The first probability is equal to&nbsp; ${\rm Pr}(a = 1)$&nbsp; and the second probability is equal to&nbsp; $p_{\rm M}$:
 +
:$$\varphi_{e}(k = 1) = {\rm Pr}(a = 1) \cdot p_{\rm M} = 0.3091 \cdot 0.1\hspace{0.15cm}\underline { = 0.0309}
 +
\hspace{0.05cm}.$$
 +
 
 +
 
 +
'''(4)'''&nbsp; The ECF value&nbsp; $\varphi_e(k = 2)$&nbsp; can be interpreted&nbsp; (approximately)&nbsp; as follows:
 +
:$$\varphi_{e}(k = 2) ={\rm Pr}(e_{\nu + 2}=1
 +
\hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) \cdot p_{\rm M} $$
 +
:$$\Rightarrow \hspace{0.3cm}{\rm Pr}(e_{\nu + 2}=1
 +
\hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) = \frac{\varphi_{e}(k
 +
= 2)}{p_{\rm M}} = \frac{0.0267}{0.1} = 0.267\hspace{0.05cm}.$$
 +
 
 +
*This probability is composed of &nbsp;"at time&nbsp; $\nu+1$&nbsp; an error occurs"&nbsp; and &nbsp;"at time&nbsp; $\nu+1$&nbsp; there is no error":
 +
:$${\rm Pr}(e_{\nu + 2}=1 \hspace{0.05cm}|\hspace{0.05cm} e_{\nu} =
 +
1) = {\rm Pr}( a =1) \cdot {\rm Pr}( a =1) + {\rm Pr}( a =2)\hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm}{\rm Pr}( a =2)= 0.267 - 0.3091^2 \hspace{0.15cm}\underline {= 0.1715}\hspace{0.05cm}.$$
 +
 
 +
*In the calculation,&nbsp; it was assumed that the individual error distances are statistically independent of each other.
 +
#However,&nbsp; this assumption is valid only for a special class of channel models called&nbsp; "renewing".
 +
#The burst error model considered here does not satisfy this condition.
 +
#The actual probability&nbsp; ${\rm Pr}(a = 2) = 0.1675$&nbsp; therefore deviates slightly from the value calculated here&nbsp; $(0.1715)$.&nbsp;  
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
[[Category:Aufgaben zu Digitalsignalübertragung|^5.1 Zu den Digitalen Kanalmodellen^]]
+
[[Category:Digital Signal Transmission: Exercises|^5.1 Digital Channel Models^]]

Latest revision as of 03:39, 18 September 2022

Error distance probability & error correlation function

For the characterization of digital channel models one uses among other things

  • the  "error correlation function"  $\rm (ECF)$
$$\varphi_{e}(k) = {\rm E}\big[e_{\nu} \cdot e_{\nu + k}\big]\hspace{0.05cm}, \hspace{0.2cm} k \ge 0\hspace{0.05cm},$$
  • the  "error distance probabilities"
$${\rm Pr}( a =k) \hspace{0.05cm}, \hspace{0.2cm} k \ge 1\hspace{0.05cm}.$$

Here denote:

  • $〈e_{\rm \nu}〉$  is the error sequence with  $e_{\rm \nu} ∈ \{0, 1\}$.
  • $a$  indicates the error distance with  $a_{\rm \nu} ∈ \{0, 1, 2, \text{...} \}$.


Two directly consecutive symbol errors are thus characterized by the error distance  $a = 1$. 

The table shows exemplary values of the error distance probabilities  ${\rm Pr}(a = k)$  as well as the error correlation function  $\varphi_e(k)$.

  • Some data are missing in the table.
  • These values are to be calculated from the given values.



Note:  The exercise covers the subject matter of the chapter  "Parameters of Digital Channel Models".


Questions

1

Which value results for the mean error probability?

$p_{\rm M} \ = \ $

2

Which value results for the mean error distance?

${\rm E}\big[a\big] \ = \ $

3

Calculate the value of the error correlation function  $\rm (ECF)$  for  $k = 1$.

$\varphi_e(k = 1) \ = \ $

4

What is the approximation for the probability of the error distance  $a = 2$?

${\rm Pr}(a = 2) \ = \ $


Solution

(1)  The mean error probability is equal to the ECF value for  $k = 0$.  Namely,  because of  $e_{\nu} ∈ \{0, 1\}$:

$$\varphi_{e}(k = 0) = {\rm E}[e_{\nu}^2 ]= {\rm E}[e_{\nu} ]= p_{\rm M} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}p_{\rm M}\hspace{0.15cm}\underline { = 0.1} \hspace{0.05cm}.$$


(2)  The mean  $($or:  "average"$)$  error distance is equal to the reciprocal of the mean error probability.  That is:

$${\rm E}\big[a\big] = 1/p_{\rm M} \ \underline {= 10}.$$


(3)  According to the definition equation and  "Bayes' theorem",  the following result is obtained:

$$\varphi_{e}(k = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm E}[e_{\nu} \cdot e_{\nu + 1}] = {\rm E}[(e_{\nu} = 1) \cdot (e_{\nu + 1}=1)]={\rm Pr}(e_{\nu + 1}=1 \hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) \cdot {\rm Pr}(e_{\nu} = 1) \hspace{0.05cm}.$$
  • The first probability is equal to  ${\rm Pr}(a = 1)$  and the second probability is equal to  $p_{\rm M}$:
$$\varphi_{e}(k = 1) = {\rm Pr}(a = 1) \cdot p_{\rm M} = 0.3091 \cdot 0.1\hspace{0.15cm}\underline { = 0.0309} \hspace{0.05cm}.$$


(4)  The ECF value  $\varphi_e(k = 2)$  can be interpreted  (approximately)  as follows:

$$\varphi_{e}(k = 2) ={\rm Pr}(e_{\nu + 2}=1 \hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) \cdot p_{\rm M} $$
$$\Rightarrow \hspace{0.3cm}{\rm Pr}(e_{\nu + 2}=1 \hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) = \frac{\varphi_{e}(k = 2)}{p_{\rm M}} = \frac{0.0267}{0.1} = 0.267\hspace{0.05cm}.$$
  • This probability is composed of  "at time  $\nu+1$  an error occurs"  and  "at time  $\nu+1$  there is no error":
$${\rm Pr}(e_{\nu + 2}=1 \hspace{0.05cm}|\hspace{0.05cm} e_{\nu} = 1) = {\rm Pr}( a =1) \cdot {\rm Pr}( a =1) + {\rm Pr}( a =2)\hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\rm Pr}( a =2)= 0.267 - 0.3091^2 \hspace{0.15cm}\underline {= 0.1715}\hspace{0.05cm}.$$
  • In the calculation,  it was assumed that the individual error distances are statistically independent of each other.
  1. However,  this assumption is valid only for a special class of channel models called  "renewing".
  2. The burst error model considered here does not satisfy this condition.
  3. The actual probability  ${\rm Pr}(a = 2) = 0.1675$  therefore deviates slightly from the value calculated here  $(0.1715)$.