Difference between revisions of "Aufgaben:Exercise 4.06: Optimal Decision Boundaries"

From LNTwww
 
(20 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Approximation der Fehlerwahrscheinlichkeit}}
+
{{quiz-Header|Buchseite=Digital_Signal_Transmission/Approximation_of_the_Error_Probability}}
  
[[File:P_ID2015__Dig_A_4_6.png|right|frame|Signalraumkonstellation für <i>N</i> = 2, <i>M</i> = 2]]
+
[[File:P_ID2015__Dig_A_4_6.png|right|frame|Signal space constellation with<br> $N = 2, \ M = 2$]]
Wie betrachten ein binäres Nachrichtensystem ($M = 2$), das durch die gezeichnete 2D&ndash;Signalraumkonstellation  ($N = 2$) festliegt. Für die beiden möglichen Sendevektoren, die mit den Nachrichten $m_0$ und $m_1$ direkt gekoppelt sind, gilt:
+
We consider a binary transmission system &nbsp;$(M = 2)$&nbsp; that is defined by the drawn two-dimensional signal space constellation &nbsp;$(N = 2)$.&nbsp; The following applies to the two possible transmitted vectors that are directly coupled to the messages&nbsp; $m_0$&nbsp; and&nbsp; $m_1$:&nbsp;
:$$\boldsymbol{ s }_0 \hspace{-0.1cm} \ =\ \hspace{-0.1cm}  \sqrt {E} \cdot (1,\hspace{0.1cm} 5) \hspace{0.2cm} \Longleftrightarrow \hspace{0.2cm} m_0  \hspace{0.05cm},$$
+
:$$\boldsymbol{ s }_0 \hspace{-0.1cm} \ =\ \hspace{-0.1cm}  \sqrt {E} \cdot (1,\hspace{0.1cm} 5) \hspace{0.2cm} \Leftrightarrow \hspace{0.2cm} m_0  \hspace{0.05cm},$$
:$$ \boldsymbol{ s }_1 \hspace{-0.1cm} \ =\ \hspace{-0.1cm}  \sqrt {E} \cdot (4, \hspace{0.1cm}1) \hspace{0.2cm} \Longleftrightarrow \hspace{0.2cm} m_1  \hspace{0.05cm}.$$
+
:$$ \boldsymbol{ s }_1 \hspace{-0.1cm} \ =\ \hspace{-0.1cm}  \sqrt {E} \cdot (4, \hspace{0.1cm}1) \hspace{0.2cm} \Leftrightarrow \hspace{0.2cm} m_1  \hspace{0.05cm}.$$
  
Gesucht ist jeweils die optimale Entscheidungsgrenze zwischen den Regionen $I_0 &#8660; m_0$ und $I_1 &#8660; m_1$, wobei von folgenden Voraussetzungen ausgegangen wird:
+
The optimal decision boundary between the regions&nbsp; $I_0 &#8660; m_0$&nbsp; and&nbsp; $I_1 &#8660; m_1$ is sought.&nbsp; The following assumptions are made:
* Für die Teilaufgaben (1) bis (3) gilt
+
* It applies to subtasks&nbsp; '''(1)'''&nbsp; to&nbsp; '''(3)''':
 
:$${\rm Pr}(m_0 ) = {\rm Pr}(m_1 ) = 0.5
 
:$${\rm Pr}(m_0 ) = {\rm Pr}(m_1 ) = 0.5
 
  \hspace{0.05cm}. $$
 
  \hspace{0.05cm}. $$
* Für die Teilaufgaben (4) und (5) soll dagegen gelten:
+
* For subtasks&nbsp; '''(4)'''&nbsp; and&nbsp; '''(5)'''&nbsp; should apply:
 
:$${\rm Pr}(m_0 ) = 0.817 \hspace{0.05cm},\hspace{0.2cm} {\rm Pr}(m_1 ) = 0.183\hspace{0.3cm}
 
:$${\rm Pr}(m_0 ) = 0.817 \hspace{0.05cm},\hspace{0.2cm} {\rm Pr}(m_1 ) = 0.183\hspace{0.3cm}
 
  \Rightarrow \hspace{0.3cm} {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_0)}{{\rm Pr}( m_1)} =
 
  \Rightarrow \hspace{0.3cm} {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_0)}{{\rm Pr}( m_1)} =
Line 17: Line 17:
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Bei AWGN&ndash;Rauschen mit der Varianz $\sigma_n^2$ ist die Entscheidungsgrenze die Lösung der folgenden vektoriellen Gleichung hinsichtlich des Vektors ($\rho_1, \rho_2$):
+
For AWGN noise with variance&nbsp; $\sigma_n^2$,&nbsp; the decision boundary is the solution of the following vectorial equation with respect to the vector&nbsp; $\boldsymbol{ \rho } =(\rho_1, \rho_2)$:
 
:$$|| \boldsymbol{ s }_1||^2 - || \boldsymbol{ s }_0||^2 + 2 \cdot \sigma_n^2 \cdot  {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_0)}{{\rm Pr}( m_1)} =
 
:$$|| \boldsymbol{ s }_1||^2 - || \boldsymbol{ s }_0||^2 + 2 \cdot \sigma_n^2 \cdot  {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_0)}{{\rm Pr}( m_1)} =
2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm},\hspace{0.2cm}
+
2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.$$
\boldsymbol{ \rho } = (\rho_1 , \hspace{0.1cm}\rho_2 )\hspace{0.05cm}.$$
+
 
 +
In addition,&nbsp; two received values ​​
 +
:$$\boldsymbol{ A }= \sqrt {E} \cdot (1.5, \hspace{0.1cm}2)\hspace{0.05cm},$$
 +
:$$\boldsymbol{ B }= \sqrt {E} \cdot (3, \hspace{0.1cm}3.5)  $$
  
Zusätzlich sind in der Grafik zwei Empfangswerte
+
are drawn in the graphic.&nbsp; It must be checked whether these should be assigned to the regions&nbsp; $I_0$&nbsp; $($and thus the message $m_0)$&nbsp; or to&nbsp; $I_1$&nbsp; $($message $m_1)$&nbsp; given the corresponding boundary conditions.
:$$\boldsymbol{ A }= \sqrt {E} \cdot (1.5, \hspace{0.1cm}2)\hspace{0.05cm}, \hspace{0.2cm} \boldsymbol{ B }= \sqrt {E} \cdot (3, \hspace{0.1cm}3.5)   $$
 
  
eingezeichnet. Es ist zu überprüfen, ob diese bei den entsprechenden Randbedingungen den Regionen $I_0$ (und damit der Nachricht $m_0$) oder $I_1$ (Nachricht $m_1$) zugeordnet werden sollten.
 
  
''Hinweise:''
 
* Die Aufgabe bezieht sich auf das Kapitel [[Digitalsignal%C3%BCbertragung/Approximation_der_Fehlerwahrscheinlichkeit| Approximation der Fehlerwahrscheinlichkeit]] dieses Buches.
 
* Für numerische Berechnungen kann zur Vereinfachung die Energie $E = 1$ gesetzt werden.
 
  
 +
Notes:
 +
* The exercise belongs to the chapter&nbsp; [[Digital_Signal_Transmission/Approximation_of_the_Error_Probability|"Approximation of the Error Probability"]].
 +
 +
* For numeric calculations,&nbsp; the energy&nbsp; $E = 1$&nbsp; can be set for simplification.
 +
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wo liegt die optimale Entscheidergrenze bei gleichwahrscheinlichen Symbolen?
+
{Where lies the optimal decision  boundary for equally probable symbols?&nbsp; At
 
|type="[]"}
 
|type="[]"}
 
+ $\rho_2 = 3/4 \cdot \rho_1 + 9/8$,
 
+ $\rho_2 = 3/4 \cdot \rho_1 + 9/8$,
Line 42: Line 45:
 
- $\rho_2 = 3$.
 
- $\rho_2 = 3$.
  
{Zu welchem Entscheidungsgebiet gehört der Empfangswert $A = (1.5, \ \, 2)$?
+
{To which decision area does the received value&nbsp; $A = (1.5, \ \, 2)$&nbsp; belong?
 
|type="()"}
 
|type="()"}
- Zum Entscheidungsgebiet $I_0$,
+
- To decision area&nbsp; $I_0$,
+ zum Entscheidungsgebiet $I_1$.
+
+ to decision area&nbsp; $I_1$.
  
{Zu welchem Entscheidungsgebiet gehört der Empfangswert $B = (3, \ \, 3.5)$?
+
{To which decision area does the received value&nbsp; $B = (3, \ \, 3.5)$&nbsp; belong?
 
|type="()"}
 
|type="()"}
+ Zum Entscheidungsgebiet $I_0$,
+
+ To decision area&nbsp; $I_0$,
- zum Entscheidungsgebiet $I_1$.
+
- to decision area&nbsp; $I_1$.
  
{Wie lautet die Gleichung der Entscheidungsgeraden für ${\rm Pr}(m_0) = 0.817, \sigma_n = 1$?
+
{What is the equation of the decision line for&nbsp; ${\rm Pr}(m_0) = 0.817, \sigma_n = 1$?
|type="[]"}
+
|type="()"}
 
- $\rho_2 = 3/4 \cdot \rho_1 + 9/8$,
 
- $\rho_2 = 3/4 \cdot \rho_1 + 9/8$,
 
+ $\rho_2 = 3/4 \cdot \rho_1 + 3/4$,
 
+ $\rho_2 = 3/4 \cdot \rho_1 + 3/4$,
- $\rho_2 = 3/4 \cdot \rho_2 + 3/2$,
+
- $\rho_2 = 3/4 \cdot \rho_1 + 3/2$,
- $\rho_2 = 3/4$.
+
- $\rho_2 = 3/4 \cdot \rho_1$.
  
{Welche Entscheidungen werden mit diesen neuen Regionen $I_0$ und $I_1$ getroffen?
+
{Which decisions are made with these new regions&nbsp; $I_0$&nbsp; and&nbsp; $I_1$?&nbsp;
 
|type="[]"}
 
|type="[]"}
+ Der Empfangsvektor $A$ wird als Nachricht $m_0$ interpretiert.
+
+ The received vector &nbsp;$A$&nbsp; is interpreted as message &nbsp;$m_0$.&nbsp;
- Der Empfangsvektor $A$ wird als Nachricht $m_1$ interpretiert.
+
- The received vector &nbsp;$A$&nbsp; is interpreted as message &nbsp;$m_1$.&nbsp;
+ Der Empfangsvektor $B$ wird als Nachricht $m_0$ interpretiert.
+
+ The received vector &nbsp;$B$&nbsp; is interpreted as message &nbsp;$m_0$.&nbsp;
- Der Empfangsvektor $B$ wird als Nachricht $m_1$ interpretiert.
+
- The received vector &nbsp;$B$&nbsp; is interpreted as message &nbsp;$m_1$.&nbsp;
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Mit ${\rm Pr}(m_0) = {\rm Pr}(m_1) = 0.5$ lautet die Gleichung der Begrenzungsgeraden zwischen den beiden Entscheidungsgebieten $I_0$ und $I_1$:
+
'''(1)'''&nbsp; With&nbsp; ${\rm Pr}(m_0) = {\rm Pr}(m_1) = 0.5$,&nbsp; the equation of the boundary line between the decision areas&nbsp; $I_0$&nbsp; and&nbsp; $I_1$&nbsp; reads:
 
:$$|| \boldsymbol{ s }_1||^2 - || \boldsymbol{ s }_0||^2  =
 
:$$|| \boldsymbol{ s }_1||^2 - || \boldsymbol{ s }_0||^2  =
 
2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.$$
 
2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.$$
  
Mit den gegebenen Vektorwerten, also den Zahlenwerten
+
*With the given vector values,&nbsp; i.e. the numerical values
 
:$$|| \boldsymbol{ s }_1||^2  = 4^2 + 1^2 = 17\hspace{0.05cm}, \hspace{0.2cm}
 
:$$|| \boldsymbol{ s }_1||^2  = 4^2 + 1^2 = 17\hspace{0.05cm}, \hspace{0.2cm}
 
  || \boldsymbol{ s }_0||^2  =  1^2 + 5^2 = 26\hspace{0.05cm}, \hspace{0.2cm}
 
  || \boldsymbol{ s }_0||^2  =  1^2 + 5^2 = 26\hspace{0.05cm}, \hspace{0.2cm}
 
\boldsymbol{ s }_1 - \boldsymbol{ s }_0 = (3,\hspace{0.1cm}-4) \hspace{0.05cm}$$
 
\boldsymbol{ s }_1 - \boldsymbol{ s }_0 = (3,\hspace{0.1cm}-4) \hspace{0.05cm}$$
  
erhält man folgende Gleichung für die Entscheidungsgrenzen:
+
:one obtains the following equation for the decision boundaries:
 
:$$3 \cdot \rho_1 - 4 \cdot \rho_2  =  ({17-26})/{2} = -  {9}/{2}
 
:$$3 \cdot \rho_1 - 4 \cdot \rho_2  =  ({17-26})/{2} = -  {9}/{2}
 
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\rho_2  = 3/4 \cdot \rho_1 + 9/8
 
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\rho_2  = 3/4 \cdot \rho_1 + 9/8
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
[[File:P_ID2033__Dig_A_4_6a.png|right|frame|Entscheidungsgerade und Entscheidungsregionen]]
+
[[File:P_ID2033__Dig_A_4_6a.png|right|frame|Decision regions for&nbsp; $K=0$]]
Die Entscheidungsgrenze liegt in der Mitte zwischen $s_0$ und $s_1$ und verläuft um $90°$ gedreht gegenüber der Verbindungslinie zwischen den beiden Symbolen. Sie geht durch den Punkt $(2.5, \ \,  3)$. Richtig ist also der <u>erste Lösungsvorschlag</u>.
+
*The decision line lies in the middle between&nbsp; $s_0$&nbsp; and&nbsp; $s_1$&nbsp; and is rotated by&nbsp; $90^\circ$&nbsp; compared to the connecting line between the two symbols.&nbsp; It goes through the point $(2.5, \ \,  3)$.&nbsp; So the&nbsp; <u>first solution</u>&nbsp; is correct.
  
Der Vorschlag 2 beschreibt dagegen die Verbindungsgerade selbst und $\rho_2 = 3$ ist eine Horizontale.
+
*Solution 2,&nbsp; on the other hand,&nbsp; describes the connecting line itself and&nbsp; $\rho_2 = 3$&nbsp; is a horizontal line.
  
  
'''(2)'''&nbsp; Das Entscheidungsgebiet $I_1$ sollte natürlich den Punkt $s_1$ beinhalten &nbsp;&#8658;&nbsp; Gebiet unterhalb der Entscheidungsgeraden. Punkt $A = (1.5, \ \, 2)$ gehört zu diesem Entscheidungsgebiet, wie aus der Grafik hervorgeht. Rechnerisch lässt sich dies zeigen, da die Entscheidungsgerade zum Beispiel durch den Punkt $(1.5, \ \, 2.25)$ geht und somit $(1.5, \ \,  2)$ unterhalb der Entscheidungsgeraden liegt. Richtig ist also der <u>Lösungsvorschlag 2</u>.
 
  
 +
'''(2)'''&nbsp; The decision region&nbsp; $I_1$&nbsp; should of course contain the point&nbsp; $s_1$ &nbsp; &#8658; &nbsp; region below the decision line.&nbsp;
 +
*Point $A = (1.5, \ \, 2)$&nbsp; belongs to this decision region,&nbsp; as shown in the graphic.
 +
*This can be shown mathematically,&nbsp; since the decision line goes through the point $(1.5, \ \, 2.25)$,&nbsp; for example,&nbsp; and thus&nbsp; $(1.5, \ \,  2)$&nbsp; lies below the decision line.
 +
*So,&nbsp; <u>solution 2</u>&nbsp; is correct.
  
'''(3)'''&nbsp; Die Entscheidungsgerade geht auch durch den Punkt $(3, \ \,  3.375)$. $B = (3, \ \, 3.5)$ liegt oberhalb und gehört somit zum Entscheidungsgebiet $I_0$ entsprechend dem <u>Lösungsvorschlag 1</u>.
 
  
  
'''(4)'''&nbsp; Entsprechend der Gleichung auf dem Angabenblatt und den Berechnungen zur Teilaufgabe (1) gilt nun:
+
'''(3)'''&nbsp; The decision line also goes through the point&nbsp; $(3, \ \,  3.375)$.
 +
*$B = (3, \ \, 3.5)$&nbsp; lies above and therefore belongs to the decision region&nbsp; $I_0$&nbsp; according to&nbsp; <u>solution 1</u>.
 +
 
 +
 
 +
'''(4)'''&nbsp; According to the equation in the information section and the calculations for subtask&nbsp; '''(1)''',&nbsp; the following now applies:
 +
[[File:P_ID2034__Dig_A_4_6c.png|right|frame|Decision regions for different&nbsp; $K$]]
 
:$$|| \boldsymbol{ s }_1||^2 - || \boldsymbol{ s }_0||^2 + 2 \cdot \sigma_n^2 \cdot  {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_0)}{{\rm Pr}( m_1)} =
 
:$$|| \boldsymbol{ s }_1||^2 - || \boldsymbol{ s }_0||^2 + 2 \cdot \sigma_n^2 \cdot  {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_0)}{{\rm Pr}( m_1)} =
 
2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.$$
 
2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.$$
  
[[File:P_ID2034__Dig_A_4_6c.png|right|frame|Entscheidungsgebiete für unterschiedliche Randbedingungen]]
+
*With&nbsp; $|| \boldsymbol{ s }_1||^2 = 17$,&nbsp; $|| \boldsymbol{ s }_0||^2 = 26$,&nbsp; $ \boldsymbol{ s }_1 \, &ndash;\boldsymbol{ s }_0 = (3, \ \, &ndash;4)$&nbsp; we obtain:
 
 
Mit $|| \boldsymbol{ s }_1||^2 = 17$, $|| \boldsymbol{ s }_0||^2 = 26$, $ \boldsymbol{ s }_1 \, &ndash;\boldsymbol{ s }_0 = (3, \ \, &ndash;4)$ erhält man:
 
 
:$$\rho_2  = 3/4 \cdot \rho_1 + 9/8 - K /8
 
:$$\rho_2  = 3/4 \cdot \rho_1 + 9/8 - K /8
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Hierbei ist folgende Abkürzung verwendet worden:
+
*The following abbreviation was used here:
 
:$$K =  2 \cdot \sigma_n^2 \cdot  {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_0)}{{\rm Pr}( m_1)} =
 
:$$K =  2 \cdot \sigma_n^2 \cdot  {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_0)}{{\rm Pr}( m_1)} =
 
2 \cdot 1^2 \cdot 1.5 = 3 \hspace{0.05cm}.$$
 
2 \cdot 1^2 \cdot 1.5 = 3 \hspace{0.05cm}.$$
  
Daraus folgt weiter:
+
*From this it follows:
 
:$$\rho_2  = 3/4 \cdot \rho_1 + 9/8 - 3 /8 = 3/4 \cdot \rho_1 + 3/4
 
:$$\rho_2  = 3/4 \cdot \rho_1 + 9/8 - 3 /8 = 3/4 \cdot \rho_1 + 3/4
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
Die Entscheidungsgerade ist um $3/8$ nach unten verschoben (schwarze Kurve, mit &bdquo;$K = 3$&rdquo; bezeichnet in der Grafik). Richtig ist also der <u>Lösungsvorschlag 2</u>.
+
*The decision line is shifted down by&nbsp; $3/8$&nbsp; $($black curve,&nbsp; labeled&nbsp; "$K = 3$"&nbsp; in the graphic$)$.&nbsp; So,&nbsp; <u>solution 2</u>&nbsp; is correct.
  
Die erste Gleichung beschreibt die optimale Entscheidungsgrenze für gleichwahrscheinliche Symbole ($K = 0$, grau gestrichelt). Die dritte Gleichung gilt für $K = \, &ndash;3$). Diese ergibt sich mit $\sigma_n^2 = 1$ für die Symbolwahrscheinlichkeiten ${\rm Pr}(m_1) \approx 0.817$ und ${\rm Pr}(m_0) \approx 0.138$ (grüne Kurve). Die violette Gerade ergibt sich mit $K = 9$, also zum Beispiel bei gleichen Wahrscheinlichkeiten wie für die schwarze Kurve, aber nun mit der Varianz $\sigma_n^2 = 3$.
+
#The first equation describes the optimal decision line for equally probable symbols&nbsp; $(K = 0$,&nbsp; dashed gray$)$.  
 +
#The third equation is valid for&nbsp; $K = \, &ndash;3$.&nbsp; This results with&nbsp; $\sigma_n^2 = 1$&nbsp; for the symbol probabilities&nbsp; ${\rm Pr}(m_1) \approx 0.817$&nbsp; and&nbsp; ${\rm Pr}(m_0) \approx 0.138$&nbsp; (green curve).  
 +
#The violet straight line results with&nbsp; $K = 9$,&nbsp; i.e. with the same probabilities as for the black curve,&nbsp; but now with the variance $\sigma_n^2 = 3$.
  
  
'''(5)'''&nbsp; Bereits aus obiger Grafik erkennt man, dass nun sowohl $A$ als auch $B$ zur Entscheidungsregion $I_0$ gehören. Richtig sind also die <u>Lösungsvorschläge 1 und 3</u>.
+
'''(5)'''&nbsp; The graphic above already shows that both&nbsp; $A$&nbsp; and&nbsp; $B$&nbsp; now belong to the decision region&nbsp; $I_0$.&nbsp; <u>Solutions 1 and 3</u>&nbsp; are correct.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Digitalsignalübertragung|^4.3 BER-Approximation^]]
+
[[Category:Digital Signal Transmission: Exercises|^4.3 BER Approximation^]]

Latest revision as of 15:57, 1 October 2022

Signal space constellation with
$N = 2, \ M = 2$

We consider a binary transmission system  $(M = 2)$  that is defined by the drawn two-dimensional signal space constellation  $(N = 2)$.  The following applies to the two possible transmitted vectors that are directly coupled to the messages  $m_0$  and  $m_1$: 

$$\boldsymbol{ s }_0 \hspace{-0.1cm} \ =\ \hspace{-0.1cm} \sqrt {E} \cdot (1,\hspace{0.1cm} 5) \hspace{0.2cm} \Leftrightarrow \hspace{0.2cm} m_0 \hspace{0.05cm},$$
$$ \boldsymbol{ s }_1 \hspace{-0.1cm} \ =\ \hspace{-0.1cm} \sqrt {E} \cdot (4, \hspace{0.1cm}1) \hspace{0.2cm} \Leftrightarrow \hspace{0.2cm} m_1 \hspace{0.05cm}.$$

The optimal decision boundary between the regions  $I_0 ⇔ m_0$  and  $I_1 ⇔ m_1$ is sought.  The following assumptions are made:

  • It applies to subtasks  (1)  to  (3):
$${\rm Pr}(m_0 ) = {\rm Pr}(m_1 ) = 0.5 \hspace{0.05cm}. $$
  • For subtasks  (4)  and  (5)  should apply:
$${\rm Pr}(m_0 ) = 0.817 \hspace{0.05cm},\hspace{0.2cm} {\rm Pr}(m_1 ) = 0.183\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_0)}{{\rm Pr}( m_1)} = 1.5 \hspace{0.05cm}.$$

For AWGN noise with variance  $\sigma_n^2$,  the decision boundary is the solution of the following vectorial equation with respect to the vector  $\boldsymbol{ \rho } =(\rho_1, \rho_2)$:

$$|| \boldsymbol{ s }_1||^2 - || \boldsymbol{ s }_0||^2 + 2 \cdot \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_0)}{{\rm Pr}( m_1)} = 2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.$$

In addition,  two received values ​​

$$\boldsymbol{ A }= \sqrt {E} \cdot (1.5, \hspace{0.1cm}2)\hspace{0.05cm},$$
$$\boldsymbol{ B }= \sqrt {E} \cdot (3, \hspace{0.1cm}3.5) $$

are drawn in the graphic.  It must be checked whether these should be assigned to the regions  $I_0$  $($and thus the message $m_0)$  or to  $I_1$  $($message $m_1)$  given the corresponding boundary conditions.


Notes:

  • For numeric calculations,  the energy  $E = 1$  can be set for simplification.


Questions

1

Where lies the optimal decision boundary for equally probable symbols?  At

$\rho_2 = 3/4 \cdot \rho_1 + 9/8$,
$\rho_2 = \, –4/3 \cdot \rho_1 + 19/3$,
$\rho_2 = 3$.

2

To which decision area does the received value  $A = (1.5, \ \, 2)$  belong?

To decision area  $I_0$,
to decision area  $I_1$.

3

To which decision area does the received value  $B = (3, \ \, 3.5)$  belong?

To decision area  $I_0$,
to decision area  $I_1$.

4

What is the equation of the decision line for  ${\rm Pr}(m_0) = 0.817, \ \sigma_n = 1$?

$\rho_2 = 3/4 \cdot \rho_1 + 9/8$,
$\rho_2 = 3/4 \cdot \rho_1 + 3/4$,
$\rho_2 = 3/4 \cdot \rho_1 + 3/2$,
$\rho_2 = 3/4 \cdot \rho_1$.

5

Which decisions are made with these new regions  $I_0$  and  $I_1$? 

The received vector  $A$  is interpreted as message  $m_0$. 
The received vector  $A$  is interpreted as message  $m_1$. 
The received vector  $B$  is interpreted as message  $m_0$. 
The received vector  $B$  is interpreted as message  $m_1$. 


Solution

(1)  With  ${\rm Pr}(m_0) = {\rm Pr}(m_1) = 0.5$,  the equation of the boundary line between the decision areas  $I_0$  and  $I_1$  reads:

$$|| \boldsymbol{ s }_1||^2 - || \boldsymbol{ s }_0||^2 = 2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.$$
  • With the given vector values,  i.e. the numerical values
$$|| \boldsymbol{ s }_1||^2 = 4^2 + 1^2 = 17\hspace{0.05cm}, \hspace{0.2cm} || \boldsymbol{ s }_0||^2 = 1^2 + 5^2 = 26\hspace{0.05cm}, \hspace{0.2cm} \boldsymbol{ s }_1 - \boldsymbol{ s }_0 = (3,\hspace{0.1cm}-4) \hspace{0.05cm}$$
one obtains the following equation for the decision boundaries:
$$3 \cdot \rho_1 - 4 \cdot \rho_2 = ({17-26})/{2} = - {9}/{2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\rho_2 = 3/4 \cdot \rho_1 + 9/8 \hspace{0.05cm}.$$
Decision regions for  $K=0$
  • The decision line lies in the middle between  $s_0$  and  $s_1$  and is rotated by  $90^\circ$  compared to the connecting line between the two symbols.  It goes through the point $(2.5, \ \, 3)$.  So the  first solution  is correct.
  • Solution 2,  on the other hand,  describes the connecting line itself and  $\rho_2 = 3$  is a horizontal line.


(2)  The decision region  $I_1$  should of course contain the point  $s_1$   ⇒   region below the decision line. 

  • Point $A = (1.5, \ \, 2)$  belongs to this decision region,  as shown in the graphic.
  • This can be shown mathematically,  since the decision line goes through the point $(1.5, \ \, 2.25)$,  for example,  and thus  $(1.5, \ \, 2)$  lies below the decision line.
  • So,  solution 2  is correct.


(3)  The decision line also goes through the point  $(3, \ \, 3.375)$.

  • $B = (3, \ \, 3.5)$  lies above and therefore belongs to the decision region  $I_0$  according to  solution 1.


(4)  According to the equation in the information section and the calculations for subtask  (1),  the following now applies:

Decision regions for different  $K$
$$|| \boldsymbol{ s }_1||^2 - || \boldsymbol{ s }_0||^2 + 2 \cdot \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_0)}{{\rm Pr}( m_1)} = 2 \cdot \boldsymbol{ \rho }^{\rm T} \cdot (\boldsymbol{ s }_1 - \boldsymbol{ s }_0)\hspace{0.05cm}.$$
  • With  $|| \boldsymbol{ s }_1||^2 = 17$,  $|| \boldsymbol{ s }_0||^2 = 26$,  $ \boldsymbol{ s }_1 \, –\boldsymbol{ s }_0 = (3, \ \, –4)$  we obtain:
$$\rho_2 = 3/4 \cdot \rho_1 + 9/8 - K /8 \hspace{0.05cm}.$$
  • The following abbreviation was used here:
$$K = 2 \cdot \sigma_n^2 \cdot {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}( m_0)}{{\rm Pr}( m_1)} = 2 \cdot 1^2 \cdot 1.5 = 3 \hspace{0.05cm}.$$
  • From this it follows:
$$\rho_2 = 3/4 \cdot \rho_1 + 9/8 - 3 /8 = 3/4 \cdot \rho_1 + 3/4 \hspace{0.05cm}.$$
  • The decision line is shifted down by  $3/8$  $($black curve,  labeled  "$K = 3$"  in the graphic$)$.  So,  solution 2  is correct.
  1. The first equation describes the optimal decision line for equally probable symbols  $(K = 0$,  dashed gray$)$.
  2. The third equation is valid for  $K = \, –3$.  This results with  $\sigma_n^2 = 1$  for the symbol probabilities  ${\rm Pr}(m_1) \approx 0.817$  and  ${\rm Pr}(m_0) \approx 0.138$  (green curve).
  3. The violet straight line results with  $K = 9$,  i.e. with the same probabilities as for the black curve,  but now with the variance $\sigma_n^2 = 3$.


(5)  The graphic above already shows that both  $A$  and  $B$  now belong to the decision region  $I_0$.  Solutions 1 and 3  are correct.