Difference between revisions of "Aufgaben:Exercise 3.6Z: Transition Diagram at 3 States"

From LNTwww
Line 43: Line 43:
 
===Questions===
 
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Für welche Zustände&nbsp; $S_{\mu}$&nbsp; stehen die Platzhalter&nbsp; $\mathbf{A}$&nbsp; und&nbsp; $\mathbf{F}$?  
+
{For which states&nbsp; $S_{\mu}$&nbsp; do the placeholders&nbsp; $\mathbf{A}$&nbsp; and&nbsp; $\mathbf{F}$ stand?  
 
|type="{}"}
 
|type="{}"}
 
${\rm Zustand} \ \mathbf{A} \ &#8658; \ {\rm Index} \ {\mu} \ = \ ${ 0. }  
 
${\rm Zustand} \ \mathbf{A} \ &#8658; \ {\rm Index} \ {\mu} \ = \ ${ 0. }  
 
${\rm Zustand} \ \mathbf{F} \ &#8658; \ {\rm Index} \ {\mu} \ = \ ${ 7 }  
 
${\rm Zustand} \ \mathbf{F} \ &#8658; \ {\rm Index} \ {\mu} \ = \ ${ 7 }  
  
{Nennen Sie auch die Zuordnungen der anderen Platzhalter zu den Indizes.
+
{Also name the mappings of the other placeholders to the indexes.
 
|type="{}"}
 
|type="{}"}
 
${\rm Zustand} \ \mathbf{B} \ &#8658; \ {\rm Index} \ {\mu} \ = \ ${ 1 }
 
${\rm Zustand} \ \mathbf{B} \ &#8658; \ {\rm Index} \ {\mu} \ = \ ${ 1 }
Line 57: Line 57:
 
${\rm Zustand} \ \mathbf{H} \ &#8658; \ {\rm Index} \ {\mu} \ = \ ${ 4 }   
 
${\rm Zustand} \ \mathbf{H} \ &#8658; \ {\rm Index} \ {\mu} \ = \ ${ 4 }   
  
{Zu welchem Zustand&nbsp; $S_{\mu}$&nbsp; geht der jeweils zweite Pfeil?  
+
{To which state&nbsp; $S_{\mu}$&nbsp; does the second arrow in each case go?  
 
|type="{}"}
 
|type="{}"}
 
${\rm Von \ {\it S}_{\rm 1} \ zum \ Zustand \ mit \ Index \ {\mu}} \ = \ ${ 3 }  
 
${\rm Von \ {\it S}_{\rm 1} \ zum \ Zustand \ mit \ Index \ {\mu}} \ = \ ${ 3 }  
Line 65: Line 65:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
[[File:P_ID2668__KC_Z_3_6b_neu.png|right|frame|Zusammenhang zwischen Platzhalter und Zuständen]]
+
[[File:P_ID2668__KC_Z_3_6b_neu.png|right|frame|Relationship between placeholders and states]]
'''(1)'''&nbsp; Der Platzhalter $\mathbf{A}$ steht für den Zustand $S_0$ &nbsp;&#8658;&nbsp; $u_{i-1} = 0, \ u_{i-2} = 0, \ u_{i-3} = 0$.  
+
'''(1)'''&nbsp; The placeholder $\mathbf{A}$ represents the state $S_0$ &nbsp;&#8658;&nbsp; $u_{i-1} = 0, \ u_{i-2} = 0, \ u_{i-3} = 0$.  
*Dies ist der einzige Zustand $S_{\mu}$, bei dem man durch das Infobit $u_i = 0$ (roter Pfeil) im gleichen Zustand $S_{\mu}$ bleibt.
+
*This is the only state $S_{\mu}$ where one remains in the same state $S_{\mu}$ by the infobit $u_i = 0$ (red arrow).
*Vom Zustand $S_7$ &nbsp;&#8658;&nbsp; $u_{i-1} = 1, \ u_{i-2} = 1, \ u_{i-3} = 1$ kommt man mit $u_i = 1$ (blauer Pfeil) auch wieder zum Zustand $S_7$.  
+
*From the state $S_7$ &nbsp;&#8658;&nbsp; $u_{i-1} = 1, \ u_{i-2} = 1, \ u_{i-3} = 1$ one comes with $u_i = 1$ (blue arrow) also again to the state $S_7$.  
*Einzugeben waren also für $\mathbf{A}$ der Index $\underline{\mu = 0}$ und für $\mathbf{F}$ der Index $\underline{\mu = 7}$.
+
*Thus, for $\mathbf{A}$ the index $\underline{\mu = 0}$ and for $\mathbf{F}$ the index $\underline{\mu = 7}$ had to be entered.
  
  
  
'''(2)'''&nbsp; Ausgehend vom Zustand $\mathbf{A} = S_0$ kommt man entsprechend der Ausgangsgrafik im Uhrzeigersinn mit den roten Pfeilen $(u_i = 0)$ bzw. den blauen Pfeilen $(u_i = 1)$ zu folgenden Zuständen:  
+
'''(2)'''&nbsp; Starting from the state $\mathbf{A} = S_0$, one arrives at the following states according to the initial graph in a clockwise direction with the red arrows $(u_i = 0)$ or the blue arrows $(u_i = 1)$:  
 
:$$u_{i&ndash;3} = 0, \ u_{i&ndash;2} = 0, \ u_{i&ndash;1} = 0, \ u_i = 1 &#8658; s_{i+1} = \mathbf{B} = S_1,$$
 
:$$u_{i&ndash;3} = 0, \ u_{i&ndash;2} = 0, \ u_{i&ndash;1} = 0, \ u_i = 1 &#8658; s_{i+1} = \mathbf{B} = S_1,$$
 
:$$u_{i&ndash;3} = 0, \ u_{i&ndash;2} = 0, \ u_{i&ndash;1} = 1, \ u_i = 0 &#8658; s_{i+1} = \mathbf{C} = S_2,$$
 
:$$u_{i&ndash;3} = 0, \ u_{i&ndash;2} = 0, \ u_{i&ndash;1} = 1, \ u_i = 0 &#8658; s_{i+1} = \mathbf{C} = S_2,$$
Line 85: Line 85:
 
:$$u_{i&ndash;3} = 1, \ u_{i&ndash;2} = 0, \ u_{i&ndash;1} = 0, \ u_i = 0 &#8658; s_{i+1} = \mathbf{A} = S_0.$$
 
:$$u_{i&ndash;3} = 1, \ u_{i&ndash;2} = 0, \ u_{i&ndash;1} = 0, \ u_i = 0 &#8658; s_{i+1} = \mathbf{A} = S_0.$$
  
*Einzugeben sind also die Indizes $\mu$ in der <u>Reihenfolge 1, 2, 5, 3, 6, 4</u>.  
+
*So the indices $\mu$ are to be entered in the <u>order 1, 2, 5, 3, 6, 4</u>.  
*Die Grafik zeigt den Zusammenhang zwischen den Platzhaltern und den Zuständen $S_{\mu}$.
+
*The graphic shows the connection between the placeholders and the states $S_{\mu}$.
  
  
  
'''(3)'''&nbsp; Vom Zustand $S_1$ &#8658; $u_{i&ndash;1} = 1, \ u_{i&ndash;2} = 0, \ u_{i&ndash;3} = 0$ kommt man mit $u_i = 0$ (roter Pfeil) zum Zustand $S_2$. Dagegen landet man mit $u_i = 1$ (blauer Pfeil) beim Zustand $S_3$ &#8658; $u_{i&ndash;1} = 1, \ u_{i&ndash;2} = 1, \ u_{i&ndash;3} = 0$.
+
'''(3)'''&nbsp; From state $S_1$ &#8658; $u_{i&ndash;1} = 1, \ u_{i&ndash;2} = 0, \ u_{i&ndash;3} = 0$ one arrives with $u_i = 0$ (red arrow) at state $S_2$. On the other hand, with $u_i = 1$ (blue arrow) one ends up at the state $S_3$ &#8658; $u_{i&ndash;1} = 1, \ u_{i&ndash;2} = 1, \ u_{i&ndash;3} = 0$.
  
[[File:P_ID2669__KC_Z_3_6c.png|right|frame|Zustandsübergangsdiagramm mit $2^3$ Zuständen]]
+
[[File:P_ID2669__KC_Z_3_6c.png|right|frame|State transition diagram with $2^3$ states]]
  
Nebenstehende Grafik zeigt das Zustandsübergangsdiagramm mit allen Übergängen. Aus diesem kann abgelesen werden:
+
The adjacent graphic shows the state transition diagram with all transitions. From this it can be read:
* Vom Zustand $S_3$ kommt man mit $u_i = 0$ zum Zustand $S_6$.
+
* From state $S_3$ one comes with $u_i = 0$ to state $S_6$.
* Vom Zustand $S_5$ kommt man mit $u_i = 0$ zum Zustand $S_2$.
+
* From the state $S_5$ one comes with $u_i = 0$ to the state $S_2$.
* Vom Zustand $S_7$ kommt man mit $u_i = 0$ zum Zustand $S_6$.
+
* From the state $S_7$ one comes with $u_i = 0$ to the state $S_6$.
  
  
Einzugeben sind also die Indizes in der <u>Reihenfolge 3, 6, 2, 6</u>.
+
Thus, the indices are to be entered in the <u>order 3, 6, 2, 6</u>.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 14:52, 3 October 2022

State transition diagram for  $m = 3$  (incomplete)

In the state transition diagram of an encoder with memory  $m$  there are  $2^m$  states. Therefore, the diagram shown with eight states describes a convolutional encoder with memory  $m = 3$.

Usually the states are denoted by  $S_0, \ \text{...} \ , \ S_{\mu}, \ \text{...} \ , \ S_7$, where the index  $\mu$  is determined from the occupancy of the shift register (contents from left to right:   $u_{i-1}, u_{i-2}, u_{i-3})$ :

$$\mu = \sum_{l = 1}^{m} \hspace{0.1cm}2\hspace{0.03cm}^{l-1} \cdot u_{i-l} \hspace{0.05cm}.$$

The state  $S_0$  therefore results for the shift register content "$000$", the state  $S_1$  for "$100$" and the state  $S_7$  for "$111$".

However, in the above graphic, for the states  $S_0, \, \text{...} \, , \, S_7$  placeholder names  $\mathbf{A}, \, \text{...} \, , \, \mathbf{H}$  used. In the subtasks (1) and (2) you should clarify which placeholder stands for which state.

For convolutional encoders of rate  $1/n$, which will be exclusively considered here, two arrows depart from each state  $S_{\mu}$ ,

  • one red one for the current information bit  $u_i = 0$  and.
  • a blue one for  $u_i = 1$.


This is another reason why the state transition diagram shown is not complete. It is to be mentioned furthermore:

  • At each state also two arrows arrive, whereby these can be absolutely of the same color.
  • Next to the arrows there are usually the  $n$  code bits. This was also omitted here.





Hints:



Questions

1

For which states  $S_{\mu}$  do the placeholders  $\mathbf{A}$  and  $\mathbf{F}$ stand?

${\rm Zustand} \ \mathbf{A} \ ⇒ \ {\rm Index} \ {\mu} \ = \ $

${\rm Zustand} \ \mathbf{F} \ ⇒ \ {\rm Index} \ {\mu} \ = \ $

2

Also name the mappings of the other placeholders to the indexes.

${\rm Zustand} \ \mathbf{B} \ ⇒ \ {\rm Index} \ {\mu} \ = \ $

${\rm Zustand} \ \mathbf{C} \ ⇒ \ {\rm Index} \ {\mu} \ = \ $

${\rm Zustand} \ \mathbf{D} \ ⇒ \ {\rm Index} \ {\mu} \ = \ $

${\rm Zustand} \ \mathbf{E} \ ⇒ \ {\rm Index} \ {\mu} \ = \ $

${\rm Zustand} \ \mathbf{G} \ ⇒ \ {\rm Index} \ {\mu} \ = \ $

${\rm Zustand} \ \mathbf{H} \ ⇒ \ {\rm Index} \ {\mu} \ = \ $

3

To which state  $S_{\mu}$  does the second arrow in each case go?

${\rm Von \ {\it S}_{\rm 1} \ zum \ Zustand \ mit \ Index \ {\mu}} \ = \ $

${\rm Von \ {\it S}_{\rm 3} \ zum \ Zustand \ mit \ Index \ {\mu}} \ = \ $

${\rm Von \ {\it S}_{\rm 5} \ zum \ Zustand \ mit \ Index \ {\mu}} \ = \ $

${\rm Von \ {\it S}_{\rm 7} \ zum \ Zustand \ mit \ Index \ {\mu}} \ = \ $


Solution

Relationship between placeholders and states

(1)  The placeholder $\mathbf{A}$ represents the state $S_0$  ⇒  $u_{i-1} = 0, \ u_{i-2} = 0, \ u_{i-3} = 0$.

  • This is the only state $S_{\mu}$ where one remains in the same state $S_{\mu}$ by the infobit $u_i = 0$ (red arrow).
  • From the state $S_7$  ⇒  $u_{i-1} = 1, \ u_{i-2} = 1, \ u_{i-3} = 1$ one comes with $u_i = 1$ (blue arrow) also again to the state $S_7$.
  • Thus, for $\mathbf{A}$ the index $\underline{\mu = 0}$ and for $\mathbf{F}$ the index $\underline{\mu = 7}$ had to be entered.


(2)  Starting from the state $\mathbf{A} = S_0$, one arrives at the following states according to the initial graph in a clockwise direction with the red arrows $(u_i = 0)$ or the blue arrows $(u_i = 1)$:

$$u_{i–3} = 0, \ u_{i–2} = 0, \ u_{i–1} = 0, \ u_i = 1 ⇒ s_{i+1} = \mathbf{B} = S_1,$$
$$u_{i–3} = 0, \ u_{i–2} = 0, \ u_{i–1} = 1, \ u_i = 0 ⇒ s_{i+1} = \mathbf{C} = S_2,$$
$$u_{i–3} = 0, \ u_{i–2} = 1, \ u_{i–1} = 0, \ u_i = 1 ⇒ s_{i+1} = \mathbf{D} = S_5,$$
$$u_{i–3} = 1, \ u_{i–2} = 0, \ u_{i–1} = 1, \ u_i = 1 ⇒ s_{i+1} = \mathbf{E} = S_3,$$
$$u_{i–3} = 0, \ u_{i–2} = 1, \ u_{i–1} = 1, \ u_i = 1 ⇒ s_{i+1} = \mathbf{F} = S_7,$$
$$u_{i–3} = 1, \ u_{i–2} = 1, \ u_{i–1} = 1, \ u_i = 0 ⇒ s_{i+1} = \mathbf{G} = S_6,$$
$$u_{i–3} = 1, \ u_{i–2} = 1, \ u_{i–1} = 0, \ u_i = 0 ⇒ s_{i+1} = \mathbf{H} = S_4,$$
$$u_{i–3} = 1, \ u_{i–2} = 0, \ u_{i–1} = 0, \ u_i = 0 ⇒ s_{i+1} = \mathbf{A} = S_0.$$
  • So the indices $\mu$ are to be entered in the order 1, 2, 5, 3, 6, 4.
  • The graphic shows the connection between the placeholders and the states $S_{\mu}$.


(3)  From state $S_1$ ⇒ $u_{i–1} = 1, \ u_{i–2} = 0, \ u_{i–3} = 0$ one arrives with $u_i = 0$ (red arrow) at state $S_2$. On the other hand, with $u_i = 1$ (blue arrow) one ends up at the state $S_3$ ⇒ $u_{i–1} = 1, \ u_{i–2} = 1, \ u_{i–3} = 0$.

State transition diagram with $2^3$ states

The adjacent graphic shows the state transition diagram with all transitions. From this it can be read:

  • From state $S_3$ one comes with $u_i = 0$ to state $S_6$.
  • From the state $S_5$ one comes with $u_i = 0$ to the state $S_2$.
  • From the state $S_7$ one comes with $u_i = 0$ to the state $S_6$.


Thus, the indices are to be entered in the order 3, 6, 2, 6.