Difference between revisions of "Aufgaben:Exercise 3.10Z: Maximum Likelihood Decoding of Convolutional Codes"
From LNTwww
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Channel_Coding/Decoding_of_Convolutional_Codes}} |
− | [[File:P_ID2678__KC_Z_3_10.png|right|frame| | + | [[File:P_ID2678__KC_Z_3_10.png|right|frame|Overall system model <br>enoder – channel – Viterbi]] |
− | + | The Viterbi algorithm represents the best known realization form for the maximum likelihood decoding of a convolutional code. We assume the following model here: | |
* Die Informationssequenz $\underline{u}$ wird durch einen Faltungscode in die Codesequenz $\underline{x}$ umgesetzt. Es gelte $u_i ∈ \{0, \, 1\}$. Dagegen werden die Codesymbole bipolar dargestellt ⇒ $x_i ∈ \{–1, \, +1\}$. | * Die Informationssequenz $\underline{u}$ wird durch einen Faltungscode in die Codesequenz $\underline{x}$ umgesetzt. Es gelte $u_i ∈ \{0, \, 1\}$. Dagegen werden die Codesymbole bipolar dargestellt ⇒ $x_i ∈ \{–1, \, +1\}$. | ||
− | * Der Kanal sei durch das [[Channel_Coding/ | + | * Der Kanal sei durch das [[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Symmetric_Channel_.E2.80.93_BSC| "BSC–Modell"]] gegeben ⇒ $y_i ∈ \{–1, \, +1\}$ oder es wird der [[Channel_Coding/Channel_Models_and_Decision_Structures#AWGN_channel_at_Binary_Input| "AWGN–Kanal"]] vorausgesetzt ⇒ reellwertige Empfangswerte $y_i$. |
* Bei gegebener Empfangssequenz $\underline{y}$ entscheidet sich der Viterbi–Algorithmus für die Codesequenz $\underline{z}$ gemäß | * Bei gegebener Empfangssequenz $\underline{y}$ entscheidet sich der Viterbi–Algorithmus für die Codesequenz $\underline{z}$ gemäß | ||
:$$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.03cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} |\hspace{0.05cm} \underline{y} ) \hspace{0.05cm}.$$ | :$$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.03cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} |\hspace{0.05cm} \underline{y} ) \hspace{0.05cm}.$$ | ||
− | *Dies entspricht dem [[Channel_Coding/ | + | *Dies entspricht dem [[Channel_Coding/Channel_Models_and_Decision_Structures#Criteria_.C2.BBMaximum-a-posteriori.C2.AB_and_.C2.BBMaximum-Likelihood.C2.AB| "Maximum–a–posteriori"]] (MAP)–Kriterium. Sind alle Informationssequenzen $\underline{u}$ gleichwahrscheinlich, so geht dieses in das etwas einfachere [[Channel_Coding/Channel_Models_and_Decision_Structures#Criteria_.C2.BBMaximum-a-posteriori.C2.AB_and_.C2.BBMaximum-Likelihood.C2.AB| "Maximum–Likelihood–Kriterium"]] über: |
:$$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) \hspace{0.05cm}.$$ | :$$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) \hspace{0.05cm}.$$ | ||
Line 14: | Line 14: | ||
− | In dieser Aufgabe soll der Zusammenhang zwischen der [[Channel_Coding/ | + | In dieser Aufgabe soll der Zusammenhang zwischen der [[Channel_Coding/Objective_of_Channel_Coding#Important_definitions_for_block_coding| "Hamming–Distanz"]] $d_{\rm H}(\underline{x}, \, \underline{y})$ sowie der [[Channel_Coding/Channel_Models_and_Decision_Structures#Maximum-likelihood_decision_at_the_AWGN_channel| "Euklidischen Distanz"]] |
:$$d_{\rm E}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) = | :$$d_{\rm E}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) = | ||
\sqrt{\sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2}\hspace{0.05cm}$$ | \sqrt{\sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2}\hspace{0.05cm}$$ | ||
Line 21: | Line 21: | ||
* der Hamming–Distanz $d_{\rm H}(\underline{x}, \, \underline{y})$, | * der Hamming–Distanz $d_{\rm H}(\underline{x}, \, \underline{y})$, | ||
* der Euklidischen Distanz $d_{\rm E}(\underline{x}, \, \underline{y})$, und | * der Euklidischen Distanz $d_{\rm E}(\underline{x}, \, \underline{y})$, und | ||
− | * dem [[Channel_Coding/ | + | * dem [[Channel_Coding/Decoding_of_Convolutional_Codes#Relationship_between_Hamming_distance_and_correlation| "Korrelationswert"]] $〈 x \cdot y 〉$. |
Revision as of 20:58, 18 October 2022
The Viterbi algorithm represents the best known realization form for the maximum likelihood decoding of a convolutional code. We assume the following model here:
- Die Informationssequenz $\underline{u}$ wird durch einen Faltungscode in die Codesequenz $\underline{x}$ umgesetzt. Es gelte $u_i ∈ \{0, \, 1\}$. Dagegen werden die Codesymbole bipolar dargestellt ⇒ $x_i ∈ \{–1, \, +1\}$.
- Der Kanal sei durch das "BSC–Modell" gegeben ⇒ $y_i ∈ \{–1, \, +1\}$ oder es wird der "AWGN–Kanal" vorausgesetzt ⇒ reellwertige Empfangswerte $y_i$.
- Bei gegebener Empfangssequenz $\underline{y}$ entscheidet sich der Viterbi–Algorithmus für die Codesequenz $\underline{z}$ gemäß
- $$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.03cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} |\hspace{0.05cm} \underline{y} ) \hspace{0.05cm}.$$
- Dies entspricht dem "Maximum–a–posteriori" (MAP)–Kriterium. Sind alle Informationssequenzen $\underline{u}$ gleichwahrscheinlich, so geht dieses in das etwas einfachere "Maximum–Likelihood–Kriterium" über:
- $$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{y} \hspace{0.05cm}|\hspace{0.05cm} \underline{x}_{\hspace{0.03cm}i} ) \hspace{0.05cm}.$$
- Als weiteres Ergebnis gibt der Viterbi–Algorithmus zusätzlich die Sequenz $\underline{v}$ als Schätzung für die Informationssequenz $\underline{u}$ aus.
In dieser Aufgabe soll der Zusammenhang zwischen der "Hamming–Distanz" $d_{\rm H}(\underline{x}, \, \underline{y})$ sowie der "Euklidischen Distanz"
- $$d_{\rm E}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) = \sqrt{\sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2}\hspace{0.05cm}$$
ermittelt werden. Anschließend ist das obige ML–Kriterium zu formulieren mit
- der Hamming–Distanz $d_{\rm H}(\underline{x}, \, \underline{y})$,
- der Euklidischen Distanz $d_{\rm E}(\underline{x}, \, \underline{y})$, und
- dem "Korrelationswert" $〈 x \cdot y 〉$.
Hinweise:
- Die Aufgabe bezieht sich auf das Kapitel Decodierung von Faltungscodes.
- Bezug genommen wird insbesondere auf die Seite Viterbi–Algorithmus – basierend auf Korrelation und Metriken.
- Zur Vereinfachung wird auf "Tilde" und "Apostroph" verzichtet.
- Weitere Informationen zu diesem Thema finden Sie auf folgenden Seiten dieses Buches:
Fragebogen
Musterlösung
(1) Richtig ist der Lösungsvorschlag 3:
- Die zwei Binärfolgen seien $\underline{x}$ und $\underline{y}$ mit $x_i ∈ \{-1, \, +1\}, \ y_i ∈ \{-1, \, +1\}$. Die Folgenlänge sei jeweils $L$.
- Die Hamming–Distanz $d_{\rm H}(\underline{x}, \, \underline{y})$ gibt die Anzahl der Bit an, in denen sich $\underline{x}$ und $\underline{y}$ unterscheiden, für die also $x_i \, - y_i = ±2$ ⇒ $ (x_i \, - y_i)^2 = 4$ gilt.
- Gleiche Symbole $(x_i = y_i)$ tragen zur Hamming–Distanz nicht bei und ergeben $(x_i \, – y_i)^2 = 0$. Nach dem Lösungsvorschlag 3 kann daher geschrieben werden:
- $$ d_{\rm H}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) = \frac{1}{4} \cdot \sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2= \frac{1}{4} \cdot d_{\rm E}^2(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y})\hspace{0.05cm}.$$
(2) Alle Lösungsvorschläge sind richtig:
- Beim BSC–Modell ist es allgemein üblich, zum gegebenen Empfangsvektor $\underline{y}$ das Codewort $\underline{x}$ mit der kleinsten Hamming–Distanz $d_{\rm H}(\underline{x}, \, \underline{y})$ auszuwählen:
- $$\underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm H}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y})\hspace{0.05cm}.$$
- Entsprechend der Teilaufgabe (1) gilt aber auch:
- $$\underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm E}^{\hspace{0.15cm}2}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y})/4 \hspace{0.2cm}\Rightarrow \hspace{0.2cm} \underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm E}^{\hspace{0.15cm}2}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) \hspace{0.2cm}\Rightarrow \hspace{0.2cm} \underline{z} = {\rm arg} \min_{\underline{x} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm E}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) \hspace{0.05cm}.$$
- Der Faktor $1/4$ spielt für die Minimierung keine Rolle. Da $d_{\rm E}(\underline{x}, \, \underline{y}) ≥ 0$ ist, ist es auch egal, ob die Minimierung hinsichtlich $d_{\rm E}(\underline{x}, \, \underline{y})$ oder $d_{\rm E}^2(\underline{x}, \, \underline{y})$ erfolgt.
(3) Richtig ist der Lösungsvorschlag 2:
- Das Quadrat der Euklidischen Distanz kann wie folgt ausgedrückt werden:
- $$d_{\rm E}^{\hspace{0.15cm}2}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) = \sum_{i=1}^{L} \hspace{0.2cm}(x_i - y_i)^2 = \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} x_i^{\hspace{0.15cm}2} \hspace{0.1cm}+ \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} y_i^{\hspace{0.15cm}2} \hspace{0.1cm}-2 \cdot \sum_{i=1}^{L} \hspace{0.1cm} x_i \cdot y_i \hspace{0.05cm}.$$
- Die beiden ersten Summanden sind jeweils gleich $L$ und müssen für die Minimierung nicht berücksichtigt werden.
- Für den letzten Ausdruck in dieser Gleichung kann $–2 \cdot 〈 \underline{x}, \, \underline{y} 〉$ geschrieben werden.
- Aufgrund des negativen Vorzeichens wird aus der Minimierung eine Maximierung ⇒ Antwort 2.
(4) Richtig sind die Lösungsvorschläge 2 und 3.:
- Für den AWGN–Kanal kann im Gegensatz zum BSC keine Hamming–Distanz angegeben werden.
- Ausgehend von der Gleichung
- $$d_{\rm E}^{\hspace{0.15cm}2}(\underline{x} \hspace{0.05cm}, \hspace{0.1cm}\underline{y}) = \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} x_i^{\hspace{0.15cm}2} \hspace{0.1cm}+ \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} y_i^{\hspace{0.15cm}2} \hspace{0.1cm}-2 \cdot \sum_{i=1}^{L} \hspace{0.1cm} x_i \cdot y_i$$
- gelten für den ersten und letzten Summanden die gleichen Aussagen wie für das BSC–Modell – siehe Teilaufgabe (3).
- Für den mittleren Summanden gilt mit $y_i = x_i + n_i$ und $x_i ∈ \{–1, \, +1\}$:
- $$\sum_{i=1}^{L} \hspace{0.1cm} y_i^{\hspace{0.15cm}2} = \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} x_i^{\hspace{0.15cm}2} \hspace{0.1cm}+ \hspace{0.1cm}\sum_{i=1}^{L} \hspace{0.1cm} n_i^{\hspace{0.15cm}2} \hspace{0.1cm}+2 \cdot \sum_{i=1}^{L} \hspace{0.1cm} x_i \cdot n_i \hspace{0.05cm}.$$
- Der erste Summand ergibt wieder $L$, der zweite ist proportional zur Rauschleistung und der letzte Term verschwindet, da $\underline{x}$ und $\underline{n}$ unkorreliert sind.
- Für die Minimerung von $d_{\rm E}(\underline{x}, \, \underline{y})$ muss also die Summe über $y_i^2$ nicht berücksichtigt werden, da kein Bezug zu den Codesequenzen $\underline{x}$ besteht.