Difference between revisions of "Aufgaben:Exercise 2.2Z: Average Code Word Length"

From LNTwww
 
(15 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Informationstheorie/Allgemeine Beschreibung
+
{{quiz-Header|Buchseite=Information_Theory/General_Description
 
}}
 
}}
  
[[File:P_ID2417__Inf_Z_2_2.png|right|frame|Tabellen zur Quellencodierung]]
+
[[File:P_ID2417__Inf_Z_2_2.png|right|frame|Three source coding tables]]
Ziel von Datenkomprimierung ist es, die Nachricht einer Quelle mit möglichst wenigen Binärzeichen darzustellen.
+
The aim of data compression is to represent the message of a source with as few binary characters as possible.
  
Wir betrachten hier eine wertdiskrete Nachrichtenquelle mit dem Symbolvorrat $\rm \{ A, B, C, D\}$   ⇒   Symbolumfang $M = 4$ und den Auftrittswahrscheinlichkeiten
+
We consider here a discrete message source with the symbol set  $\rm \{ A, \ B, \ C, \ D\}$   ⇒   symbol set size  $M = 4$  and the symbol probabilities
:*$p_{\rm A} = p_{\rm B} = p_{\rm C} = p_{\rm D} =  1/4$ (Teilaufgabe 1),
+
:*$p_{\rm A} = p_{\rm B} = p_{\rm C} = p_{\rm D} =  1/4$  $($subtask  $1)$,
:* $p_{\rm A} = 1/2, \,  p_{\rm B} = 1/4, \, p_{\rm C} = p_{\rm D} =  1/8$  (ab Teilaufgabe 2).
+
:* $p_{\rm A} = 1/2, \,  p_{\rm B} = 1/4, \, p_{\rm C} = p_{\rm D} =  1/8$  $($subtask  $2$  to  $5)$.
  
  
Vorausgesetzt wird, dass es zwischen den einzelnen Quellensymbolen keine statistischen Bindungen gibt.
+
It is assumed that there are no statistical Dependencies between the individual source symbols.
  
Ein Maß für die Güte eines Komprimierungsverfahrens ist die mittlere Codewortlänge $L_{\rm M}$ mit der Zusatzeinheit „bit/Quellensymbol”.  
+
Three assignments are given. To be noted:
 +
* Each of these binary codes  $\rm C1$,  $\rm C2$  and  $\rm C3$  is designed for a specific source statistic.
 +
* All codes are prefix-free and thus immediately decodable without further specification.
  
Vorgegeben sind drei Zuordnungen. Anzumerken ist:
 
* Jeder dieser Binärcodes $\rm C1$, $\rm C2$ und $\rm C3$ ist für eine spezielle Quellenstatistik ausgelegt.
 
* Alle Codes sind präfixfrei und somit ohne weitere Angabe sofort decodierbar.
 
  
 +
A measure for the quality of a compression method is the average code word length  $L_{\rm M}$   with the additional unit  "bit/source symbol".
  
  
  
  
''Hinweis:''
+
 
*Die Aufgabe gehört zum  Kapitel [[Informationstheorie/Allgemeine_Beschreibung|Allgemeine Beschreibung der Quellencodierung]].
+
 
 +
 
 +
 
 +
 
 +
Hint:
 +
*The exercise belongs to the chapter  [[Information_Theory/Allgemeine_Beschreibung|General Description of Source Coding]].
 +
 
   
 
   
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Bestimmen Sie die mittlere Codewortlänge $L_{\rm M}$ für $p_{\rm A} = p_{\rm B} = p_{\rm C} = p_{\rm D} =  1/4$.
+
{Determine the average code word length&nbsp; $L_{\rm M}$&nbsp; for&nbsp; $p_{\rm A} = p_{\rm B} = p_{\rm C} = p_{\rm D} =  1/4$.
 
|type="{}"}
 
|type="{}"}
$\text{C1:}\ \ L_{\rm M} \ = \ $  { 2 1% } $\ \rm bit/Quellensymbol$
+
$\text{C1:}\ \ L_{\rm M} \ = \ $  { 2 1% } $\ \rm bit/source\hspace{0.15cm} symbol$
$\text{C2:}\ \ L_{\rm M} \ =  \ $  { 2.25 1% } $\ \rm bit/Quellensymbol$
+
$\text{C2:}\ \ L_{\rm M} \ =  \ $  { 2.25 1% } $\ \rm bit/source\hspace{0.15cm} symbol$
$\text{C3:}\ \ L_{\rm M} \ =  \ $  { 2.25 1% } $\ \rm bit/Quellensymbol$
+
$\text{C3:}\ \ L_{\rm M} \ =  \ $  { 2.25 1% } $\ \rm bit/source\hspace{0.15cm} symbol$
  
  
{Welche Werte ergeben sich für $p_{\rm A} = 1/2, \,  p_{\rm B} = 1/4, \, p_{\rm C} = p_{\rm D} =  1/8$?
+
{Which values result for&nbsp; $p_{\rm A} = 1/2, \,  p_{\rm B} = 1/4, \, p_{\rm C} = p_{\rm D} =  1/8$?
 
|type="{}"}
 
|type="{}"}
$\text{C1:}\ \ L_{\rm M} \ =  \ $  { 2 1% } $\ \rm bit/Quellensymbol$
+
$\text{C1:}\ \ L_{\rm M} \ =  \ $  { 2 1% } $\ \rm bit/source\hspace{0.15cm} symbol$
$\text{C2:}\ \ L_{\rm M} \ =  \ $  { 1.75 1% } $\ \rm bit/Quellensymbol$
+
$\text{C2:}\ \ L_{\rm M} \ =  \ $  { 1.75 1% } $\ \rm bit/source\hspace{0.15cm} symbol$
$\text{C3:}\ \ L_{\rm M} \ =  \ $  { 2.5 1% } $\ \rm bit/Quellensymbol$
+
$\text{C3:}\ \ L_{\rm M} \ =  \ $  { 2.5 1% } $\ \rm bit/source\hspace{0.15cm} symbol$
  
  
{Woran erkennt man präfixfreie Codes?
+
{How can you recognise prefix-free codes?
 
|type="[]"}
 
|type="[]"}
+ Kein Codewort ist der Beginn eines anderen Codewortes.
+
+ No code word is the beginning of another code word.
- Alle Codeworte haben gleiche Länge.
+
- All code words have the same length.
  
  
{Für die spezielle Quellensymbolfolge $\rm ADBDCBCBADCA$ ergibt sich die Codesymbolfolge $\rm 001101111001100100111000$.  
+
{For the special source symbol sequence&nbsp; $\rm ADBDCBCBADCA$&nbsp;, the encoded sequence&nbsp; $\rm 001101111001100100111000$&nbsp; results.  
<br>Welcher Code wurde verwendet?
+
<br>Which code was used?
|type="[]"}
+
|type="()"}
+ der Code $\rm C1$,
+
+ The code&nbsp; $\rm C1$,
- der Code $\rm C2$.
+
- the code&nbsp; $\rm C2$.
  
  
{Nach Codierung mit $\rm C3$ erhält man $\rm 001101111001100100111000$. Wie lautet die zugehörige Quellensymbolfolge?
+
{After coding with&nbsp; $\rm C3$,&nbsp; you get&nbsp; $\rm 001101111001100100111000$.&nbsp; What is the corresponding source symbol sequence?
|type="[]"}
+
|type="()"}
 
- $\rm AACDBACABADAAA$ ...
 
- $\rm AACDBACABADAAA$ ...
 
+ $\rm ACBCCCACAACCD$ ...
 
+ $\rm ACBCCCACAACCD$ ...
Line 67: Line 73:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die mittlere Codewortlänge ergibt sich allgemein zu
+
'''(1)'''&nbsp; The average code word length is generally given by
 
:$$L_{\rm M} = p_{\rm A} \cdot L_{\rm A} + p_{\rm B} \cdot L_{\rm B}+ p_{\rm C} \cdot L_{\rm C} + p_{\rm D} \cdot L_{\rm D}
 
:$$L_{\rm M} = p_{\rm A} \cdot L_{\rm A} + p_{\rm B} \cdot L_{\rm B}+ p_{\rm C} \cdot L_{\rm C} + p_{\rm D} \cdot L_{\rm D}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
Sind die vier Quellensymbole gleichwahrscheinlich (alle Wahrscheinlichkeiten genau $1/4$), so kann dafür auch geschrieben werden:
+
If the four source symbols are equally probable&nbsp; $($all probabilities exactly&nbsp; $1/4)$, then for this we can also write:
 
:$$L_{\rm M} = 1/4 \cdot ( L_{\rm A} + L_{\rm B}+ L_{\rm C} + L_{\rm D})
 
:$$L_{\rm M} = 1/4 \cdot ( L_{\rm A} + L_{\rm B}+ L_{\rm C} + L_{\rm D})
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
* $\text{Code C1:}$&nbsp;&nbsp;&nbsp; $L_{\rm M} \hspace{0.15cm}\underline{= 2.00}\ \rm bit/Quellensymbol$,
+
* $\text{Code C1:}$&nbsp;&nbsp;&nbsp; $L_{\rm M} \hspace{0.15cm}\underline{= 2.00}\ \rm bit/source\hspace{0.15cm} symbol$,
* $\text{Code C2:}$&nbsp;&nbsp;&nbsp; $L_{\rm M} \hspace{0.15cm}\underline{= 2.25}\ \rm bit/Quellensymbol$
+
* $\text{Code C2:}$&nbsp;&nbsp;&nbsp; $L_{\rm M} \hspace{0.15cm}\underline{= 2.25}\ \rm bit/source\hspace{0.15cm} symbol$
* $\text{Code C3:}$&nbsp;&nbsp;&nbsp; $L_{\rm M} \hspace{0.15cm}\underline{= 2.25}\ \rm bit/Quellensymbol$.
+
* $\text{Code C3:}$&nbsp;&nbsp;&nbsp; $L_{\rm M} \hspace{0.15cm}\underline{= 2.25}\ \rm bit/source\hspace{0.15cm} symbol$.
  
  
  
'''(2)'''&nbsp; Mit der Codetabelle $\text{C1}$ ergibt sich unabhängig von den Symbolwahrscheinlichkeiten stets die mittlere Codewortlänge $L_{\rm M} \hspace{0.15cm}\underline{= 2}\ \rm bit/Quellensymbol$.  
+
'''(2)'''&nbsp; With the code table&nbsp; $\text{C1}$&nbsp;, the average code word length&nbsp; $L_{\rm M} \hspace{0.15cm}\underline{= 2}\ \rm bit/source\hspace{0.15cm} symbol$&nbsp; is always obtained, independent of the symbol probabilities.
  
Für die beiden anderen Codes erhält man:
+
For the other two codes one obtains:
* $\text{Code C2:}$&nbsp;&nbsp;&nbsp; $L_{\rm M} = 1/2 \cdot 1 + 1/4 \cdot 2 + 1/8 \cdot 3 + 1/8 \cdot 3 \hspace{0.15cm}\underline{= 1.75}\ \rm bit/Quellensymbol$,
+
* $\text{Code C2:}$&nbsp;&nbsp;&nbsp; $L_{\rm M} = 1/2 \cdot 1 + 1/4 \cdot 2 + 1/8 \cdot 3 + 1/8 \cdot 3 \hspace{0.15cm}\underline{= 1.75}\ \rm bit/source\hspace{0.15cm} symbol$,
* $\text{Code C3:}$&nbsp;&nbsp;&nbsp; $L_{\rm M} = 1/2 \cdot 3 + 1/4 \cdot 2 + 1/8 \cdot 1 + 1/8 \cdot 3 \hspace{0.15cm}\underline{= 2.50}\ \rm bit/Quellensymbol$.
+
* $\text{Code C3:}$&nbsp;&nbsp;&nbsp; $L_{\rm M} = 1/2 \cdot 3 + 1/4 \cdot 2 + 1/8 \cdot 1 + 1/8 \cdot 3 \hspace{0.15cm}\underline{= 2.50}\ \rm bit/source\hspace{0.15cm} symbol$.
  
  
Man erkennt aus dem Beispiel das Prinzip:  
+
From the example you can see the principle:
*Wahrscheinliche Symbole werden durch wenige Binärsymbole dargestellt und unwahrscheinliche durch mehr.  
+
*Probable symbols are represented by a few binary symbols, improbable ones by more.
*Bei gleichwahrscheinlichen Symbolen wählt man am besten auch die Codewortlängen gleich.
+
*In the case of equally probable symbols, it is best to choose the same code word lengths.
  
  
  
'''(3)'''&nbsp; Richtig ist <u>Lösungsvorschlag 1</u>:
 
*Der Code $\text{C1}$ mit einheitlicher Länge aller Codeworte ist präfixfrei,
 
*aber auch andere Codes können präfixfrei sein, zum Beispiel die Codes  $\text{C2}$ und  $\text{C3}$.
 
  
 +
'''(3)'''&nbsp; <u>Solution suggestion 1</u> is correct:
 +
*The code&nbsp; $\text{C1}$&nbsp; with uniform length of all code words is prefix-free,
 +
*but other codes can also be prefix-free, for example the codes&nbsp;  $\text{C2}$&nbsp; and&nbsp;  $\text{C3}$.
  
  
'''(4)'''&nbsp; Richtig ist <u>Lösungsvorschlag 1</u>:
 
*Bereits aus &bdquo;00&rdquo; am Anfang erkennt man, dass der Code $\text{C2}$ hier nicht in Frage kommt, da sonst die Quellensymbolfolge mit &bdquo;AA&rdquo; beginnen müsste.
 
*Tatsächlich wurde der Code $\text{C1}$ verwendet.
 
  
 +
'''(4)'''&nbsp; <u>Solution suggestion 1</u> is correct:
 +
*Already from&nbsp; "00"&nbsp; at the beginning one can see that the code&nbsp; $\text{C2}$&nbsp; is out of the question here, <br>because otherwise the source symbol sequence would have to begin with&nbsp; "AA".
 +
*In fact, the code&nbsp; $\text{C1}$&nbsp; was used.
  
  
'''(5)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>:
+
 
*Der erste Lösungsvorschlag gibt dagegen die Quellensymbolfolge für den Code $\text{C2}$ an, wenn die Codesymbolfolge $\rm 001101111001100100111000$ lauten würde.
+
'''(5)'''&nbsp; <u>Solution suggestion 2</u> is correct.
 +
 +
The first suggested solution gives the source symbol sequence for code&nbsp; $\text{C2}$&nbsp; if the encoded sequence would be &nbsp; "$\rm 001101111001100100111000$".
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Informationstheorie|^2.1 Allgemeine Beschreibung^]]
+
[[Category:Information Theory: Exercises|^2.1 General Description^]]

Latest revision as of 15:53, 1 November 2022

Three source coding tables

The aim of data compression is to represent the message of a source with as few binary characters as possible.

We consider here a discrete message source with the symbol set  $\rm \{ A, \ B, \ C, \ D\}$   ⇒   symbol set size  $M = 4$  and the symbol probabilities

  • $p_{\rm A} = p_{\rm B} = p_{\rm C} = p_{\rm D} = 1/4$  $($subtask  $1)$,
  • $p_{\rm A} = 1/2, \, p_{\rm B} = 1/4, \, p_{\rm C} = p_{\rm D} = 1/8$  $($subtask  $2$  to  $5)$.


It is assumed that there are no statistical Dependencies between the individual source symbols.

Three assignments are given. To be noted:

  • Each of these binary codes  $\rm C1$,  $\rm C2$  and  $\rm C3$  is designed for a specific source statistic.
  • All codes are prefix-free and thus immediately decodable without further specification.


A measure for the quality of a compression method is the average code word length  $L_{\rm M}$  with the additional unit  "bit/source symbol".





Hint:



Questions

1

Determine the average code word length  $L_{\rm M}$  for  $p_{\rm A} = p_{\rm B} = p_{\rm C} = p_{\rm D} = 1/4$.

$\text{C1:}\ \ L_{\rm M} \ = \ $

$\ \rm bit/source\hspace{0.15cm} symbol$
$\text{C2:}\ \ L_{\rm M} \ = \ $

$\ \rm bit/source\hspace{0.15cm} symbol$
$\text{C3:}\ \ L_{\rm M} \ = \ $

$\ \rm bit/source\hspace{0.15cm} symbol$

2

Which values result for  $p_{\rm A} = 1/2, \, p_{\rm B} = 1/4, \, p_{\rm C} = p_{\rm D} = 1/8$?

$\text{C1:}\ \ L_{\rm M} \ = \ $

$\ \rm bit/source\hspace{0.15cm} symbol$
$\text{C2:}\ \ L_{\rm M} \ = \ $

$\ \rm bit/source\hspace{0.15cm} symbol$
$\text{C3:}\ \ L_{\rm M} \ = \ $

$\ \rm bit/source\hspace{0.15cm} symbol$

3

How can you recognise prefix-free codes?

No code word is the beginning of another code word.
All code words have the same length.

4

For the special source symbol sequence  $\rm ADBDCBCBADCA$ , the encoded sequence  $\rm 001101111001100100111000$  results.
Which code was used?

The code  $\rm C1$,
the code  $\rm C2$.

5

After coding with  $\rm C3$,  you get  $\rm 001101111001100100111000$.  What is the corresponding source symbol sequence?

$\rm AACDBACABADAAA$ ...
$\rm ACBCCCACAACCD$ ...


Solution

(1)  The average code word length is generally given by

$$L_{\rm M} = p_{\rm A} \cdot L_{\rm A} + p_{\rm B} \cdot L_{\rm B}+ p_{\rm C} \cdot L_{\rm C} + p_{\rm D} \cdot L_{\rm D} \hspace{0.05cm}.$$

If the four source symbols are equally probable  $($all probabilities exactly  $1/4)$, then for this we can also write:

$$L_{\rm M} = 1/4 \cdot ( L_{\rm A} + L_{\rm B}+ L_{\rm C} + L_{\rm D}) \hspace{0.05cm}.$$
  • $\text{Code C1:}$    $L_{\rm M} \hspace{0.15cm}\underline{= 2.00}\ \rm bit/source\hspace{0.15cm} symbol$,
  • $\text{Code C2:}$    $L_{\rm M} \hspace{0.15cm}\underline{= 2.25}\ \rm bit/source\hspace{0.15cm} symbol$
  • $\text{Code C3:}$    $L_{\rm M} \hspace{0.15cm}\underline{= 2.25}\ \rm bit/source\hspace{0.15cm} symbol$.


(2)  With the code table  $\text{C1}$ , the average code word length  $L_{\rm M} \hspace{0.15cm}\underline{= 2}\ \rm bit/source\hspace{0.15cm} symbol$  is always obtained, independent of the symbol probabilities.

For the other two codes one obtains:

  • $\text{Code C2:}$    $L_{\rm M} = 1/2 \cdot 1 + 1/4 \cdot 2 + 1/8 \cdot 3 + 1/8 \cdot 3 \hspace{0.15cm}\underline{= 1.75}\ \rm bit/source\hspace{0.15cm} symbol$,
  • $\text{Code C3:}$    $L_{\rm M} = 1/2 \cdot 3 + 1/4 \cdot 2 + 1/8 \cdot 1 + 1/8 \cdot 3 \hspace{0.15cm}\underline{= 2.50}\ \rm bit/source\hspace{0.15cm} symbol$.


From the example you can see the principle:

  • Probable symbols are represented by a few binary symbols, improbable ones by more.
  • In the case of equally probable symbols, it is best to choose the same code word lengths.



(3)  Solution suggestion 1 is correct:

  • The code  $\text{C1}$  with uniform length of all code words is prefix-free,
  • but other codes can also be prefix-free, for example the codes  $\text{C2}$  and  $\text{C3}$.


(4)  Solution suggestion 1 is correct:

  • Already from  "00"  at the beginning one can see that the code  $\text{C2}$  is out of the question here,
    because otherwise the source symbol sequence would have to begin with  "AA".
  • In fact, the code  $\text{C1}$  was used.


(5)  Solution suggestion 2 is correct.

The first suggested solution gives the source symbol sequence for code  $\text{C2}$  if the encoded sequence would be   "$\rm 001101111001100100111000$".