Difference between revisions of "Aufgaben:Exercise 5.4Z: OVSF Codes"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Modulationsverfahren/Spreizfolgen für CDMA }} [[File:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choice Frage |ty…“)
 
 
(23 intermediate revisions by 5 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Modulationsverfahren/Spreizfolgen für CDMA
+
{{quiz-Header|Buchseite=Modulation_Methods/Spreading_Sequences_for_CDMA
 
}}
 
}}
  
[[File:|right|]]
+
[[File:EN_Mod_Z_5_4.png|right|frame|Construction of an OVSF code]]
 +
The spreading codes for &nbsp;[[Examples_of_Communication_Systems/Allgemeine_Beschreibung_von_UMTS|UMTS]]&nbsp; should
 +
* all be orthogonal to each other in order to avoid mutual interference between subscribers,
 +
* additionally allow a flexible realization of different spreading factors &nbsp;$J$.&nbsp;
  
  
===Fragebogen===
+
One example of this is the so-called &nbsp;[[Modulation_Methods/Spreading_Sequences_for_CDMA#Codes_with_variable_spreading_factor_.28OVSF_codes.29|"Orthogonal Variable Spreading Factor" code]],&nbsp; which provide spreading codes with lengths from &nbsp;$J = 4$&nbsp; to &nbsp;$J = 512$.&nbsp;
 +
 
 +
These can be created using a code tree,&nbsp; as shown in the diagram.&nbsp; In this process,&nbsp; two new codes &nbsp;$(+C \ +C)$&nbsp; and &nbsp;$(+C \ -C)$&nbsp; are created from a code&nbsp; $C$&nbsp; at each branching.
 +
 
 +
The diagram illustrates the principle given here with the example &nbsp;$J = 4$:&nbsp;
 +
*If the spreading sequences are numbered from &nbsp;$0$&nbsp; to &nbsp;$J -1$&nbsp; the spreading sequences are as follows
 +
:$$\langle c_\nu^{(0)}\rangle  =  {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$
 +
:$$\langle c_\nu^{(2)}\rangle  =  {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$
 +
*According to this nomenclature,&nbsp; for the spreading factor &nbsp;$J = 8$&nbsp; there are the spreading sequences &nbsp;$\langle c_\nu^{(0)}\rangle $,&nbsp; ... ,&nbsp; $\langle c_\nu^{(7)}\rangle $.
 +
*Note that no predecessor and successor of a code may be used for another participant.
 +
*So,&nbsp; in the example,&nbsp; four spreading codes with spreading factor &nbsp;$J = 4$&nbsp; could be used or the three codes highlighted in yellow – once with &nbsp;$J = 2$&nbsp; and twice with &nbsp;$J = 4$.
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
Notes:
 +
*The exercise belongs to the chapter&nbsp; [[Modulation_Methods/Spreizfolgen_für_CDMA|Spreading Sequences for CDMA]].
 +
*Reference is made in particular to the section&nbsp; [[Modulation_Methods/Spreading_Sequences_for_CDMA#Codes_with_variable_spreading_factor_.28OVSF_codes.29|Codes with variable spreading factor (OVSF codes)]]&nbsp; in the theory part.
 +
* We would also like to draw your attention to the&nbsp; (German language)&nbsp; interactive SWF module &nbsp;[[Applets:OVSF-Codes_(Applet)|OVSF]].&nbsp;
 +
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{Construct the tree diagram for &nbsp;$J = 8$.&nbsp; What are the resulting OVSF codes?
 
|type="[]"}
 
|type="[]"}
- Falsch
+
+ '''Code word 1:''' &nbsp; $ \langle c_\nu^{(1)}\rangle  =  {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm}{-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm}{-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$
+ Richtig
+
- '''Code word 3:''' &nbsp; $ \langle c_\nu^{(3)}\rangle  =  {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm}{+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm}{-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1}$ ,
 +
+ '''Code word 5:''' &nbsp; $ \langle c_\nu^{(5)}\rangle  =  {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm}{+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm}{+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm}$,
 +
+ '''Code word 7:''' &nbsp; $ \langle c_\nu^{(7)}\rangle  =  {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm}{-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm}{+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm}$.
  
  
{Input-Box Frage
+
{What is the maximum number of UMTS subscribers &nbsp;$(K_{\rm max})$&nbsp; that can be served with &nbsp;$J = 8$&nbsp;?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$K_{\rm max} \ = \ $ { 8 }
 
 
  
 +
{How many subscribers &nbsp;$(K)$&nbsp; can be served if three of these subscribers are to use a spreading code with &nbsp;$J = 4$&nbsp;?
 +
|type="{}"}
 +
$K \ = \ $ { 5 }
  
 +
{Assume a tree structure for &nbsp;$J = 32$.&nbsp;&nbsp;  Is the following assignment feasible:<br>Twice &nbsp;$J = 4$,&nbsp; once &nbsp;$J = 8$,&nbsp; twice &nbsp;$J = 16$&nbsp; and eight times &nbsp;$J = 32$?
 +
|type="()"}
 +
+ Yes.
 +
- No.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
[[File:P_ID1892__Mod_Z_5_4a.png|right|frame|OVSF tree structure for &nbsp;$J = 8$]]
'''2.'''
+
'''(1)'''&nbsp; The diagram shows the OVSF tree structure for &nbsp;$J = 8$ users.&nbsp; From this it can be seen that&nbsp; <u>solutions 1, 3 and 4</u>&nbsp; apply,&nbsp; but not the second one.
'''3.'''
+
 
'''4.'''
+
 
'''5.'''
+
 
'''6.'''
+
'''(2)'''&nbsp; If each user is assigned a spreading code with&nbsp; $J = 8$,&nbsp;&nbsp; $K_{\rm max}\hspace{0.15cm}\underline{ = 8}$&nbsp; subscribers can be served.
'''7.'''
+
 
 +
 
 +
 
 +
'''(3)'''&nbsp; When three subscribers are served by&nbsp; $J = 4$ <br>&nbsp; &rArr; &nbsp; only two subscribers can still be served by a spreading sequence with&nbsp; $J = 8$&nbsp; (see exemplary yellow background in the diagram) &nbsp; ⇒ &nbsp; $K\hspace{0.15cm}\underline{ = 5}$.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; We denote by
 +
* $K_4 = 2$&nbsp; the number of spreading sequences with&nbsp; $J = 4$,
 +
* $K_8 = 1$&nbsp; the number of spreading sequences with&nbsp; $J = 8$,
 +
* $K_{16} = 2$&nbsp; the number of spreading sequences with&nbsp; $J = 16$,
 +
* $K_{32} = 8$&nbsp; the number of spreading sequences with&nbsp; $J = 32$.
 +
 
 +
 
 +
Then the following condition must be satisfied:
 +
:$$K_4 \cdot \frac{32}{4} + K_8 \cdot \frac{32}{8} +K_{16} \cdot \frac{32}{16} +K_{32} \cdot \frac{32}{32} \le 32 \hspace{0.3cm}
 +
\Rightarrow \hspace{0.3cm} K_4 \cdot8 + K_8 \cdot 4 +K_{16} \cdot 2 +K_{32} \cdot1 \le 32 \hspace{0.05cm}.$$
 +
 
 +
*Because of &nbsp;$2 · 8 + 1 · 4 + 2 · 2 + 8 = 32$,&nbsp; the desired occupancy is just allowed &nbsp; ⇒ &nbsp; <u>answer YES</u>.  
 +
*For example,&nbsp; supplying the spreading factor &nbsp;$J = 4$&nbsp; twice blocks the upper half of the tree.
 +
*After providing one spreading &nbsp;$J = 8$,&nbsp; three of the eight branches remain to be occupied on the&nbsp; $J = 8$&nbsp; level, and so on.
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Modulationsverfahren|^5.3 Spreizfolgen für CDMA^]]
+
[[Category:Modulation Methods: Exercises|^5.3 Spread Sequences for CDMA^]]

Latest revision as of 17:13, 1 November 2022

Construction of an OVSF code

The spreading codes for  UMTS  should

  • all be orthogonal to each other in order to avoid mutual interference between subscribers,
  • additionally allow a flexible realization of different spreading factors  $J$. 


One example of this is the so-called  "Orthogonal Variable Spreading Factor" code,  which provide spreading codes with lengths from  $J = 4$  to  $J = 512$. 

These can be created using a code tree,  as shown in the diagram.  In this process,  two new codes  $(+C \ +C)$  and  $(+C \ -C)$  are created from a code  $C$  at each branching.

The diagram illustrates the principle given here with the example  $J = 4$: 

  • If the spreading sequences are numbered from  $0$  to  $J -1$  the spreading sequences are as follows
$$\langle c_\nu^{(0)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$
$$\langle c_\nu^{(2)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm} \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$
  • According to this nomenclature,  for the spreading factor  $J = 8$  there are the spreading sequences  $\langle c_\nu^{(0)}\rangle $,  ... ,  $\langle c_\nu^{(7)}\rangle $.
  • Note that no predecessor and successor of a code may be used for another participant.
  • So,  in the example,  four spreading codes with spreading factor  $J = 4$  could be used or the three codes highlighted in yellow – once with  $J = 2$  and twice with  $J = 4$.




Notes:


Questions

1

Construct the tree diagram for  $J = 8$.  What are the resulting OVSF codes?

Code word 1:   $ \langle c_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm}{-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm}{-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$
Code word 3:   $ \langle c_\nu^{(3)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm}{+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm}{-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1}$ ,
Code word 5:   $ \langle c_\nu^{(5)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm}{+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm}{+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm}$,
Code word 7:   $ \langle c_\nu^{(7)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm}{-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm}{+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm}$.

2

What is the maximum number of UMTS subscribers  $(K_{\rm max})$  that can be served with  $J = 8$ ?

$K_{\rm max} \ = \ $

3

How many subscribers  $(K)$  can be served if three of these subscribers are to use a spreading code with  $J = 4$ ?

$K \ = \ $

4

Assume a tree structure for  $J = 32$.   Is the following assignment feasible:
Twice  $J = 4$,  once  $J = 8$,  twice  $J = 16$  and eight times  $J = 32$?

Yes.
No.


Solution

OVSF tree structure for  $J = 8$

(1)  The diagram shows the OVSF tree structure for  $J = 8$ users.  From this it can be seen that  solutions 1, 3 and 4  apply,  but not the second one.


(2)  If each user is assigned a spreading code with  $J = 8$,   $K_{\rm max}\hspace{0.15cm}\underline{ = 8}$  subscribers can be served.


(3)  When three subscribers are served by  $J = 4$
  ⇒   only two subscribers can still be served by a spreading sequence with  $J = 8$  (see exemplary yellow background in the diagram)   ⇒   $K\hspace{0.15cm}\underline{ = 5}$.


(4)  We denote by

  • $K_4 = 2$  the number of spreading sequences with  $J = 4$,
  • $K_8 = 1$  the number of spreading sequences with  $J = 8$,
  • $K_{16} = 2$  the number of spreading sequences with  $J = 16$,
  • $K_{32} = 8$  the number of spreading sequences with  $J = 32$.


Then the following condition must be satisfied:

$$K_4 \cdot \frac{32}{4} + K_8 \cdot \frac{32}{8} +K_{16} \cdot \frac{32}{16} +K_{32} \cdot \frac{32}{32} \le 32 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} K_4 \cdot8 + K_8 \cdot 4 +K_{16} \cdot 2 +K_{32} \cdot1 \le 32 \hspace{0.05cm}.$$
  • Because of  $2 · 8 + 1 · 4 + 2 · 2 + 8 = 32$,  the desired occupancy is just allowed   ⇒   answer YES.
  • For example,  supplying the spreading factor  $J = 4$  twice blocks the upper half of the tree.
  • After providing one spreading  $J = 8$,  three of the eight branches remain to be occupied on the  $J = 8$  level, and so on.