Difference between revisions of "Aufgaben:Exercise 2.15Z: Block Error Probability once more"
From LNTwww
m (Text replacement - "[[Stochastische_Signaltheorie/" to "[[Theory_of_Stochastic_Signals/") |
|||
(10 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | {{quiz-Header|Buchseite= | + | {{quiz-Header|Buchseite=Channel_Coding/Error_Probability_and_Areas_of_Application}} |
− | [[File:P_ID2574__KC_Z_2_15.png|right|frame|Binominal | + | [[File:P_ID2574__KC_Z_2_15.png|right|frame|Binominal probabilities]] |
− | + | Using a Reed–Solomon code with the correctability $t$ and [[Channel_Coding/Error_Probability_and_Areas_of_Application#Block_error_probability_for_RSC_and_BDD|"Bounded Distance Decoding"]] $\rm $ $\rm (BDD)$ is obtained for the block error probability with | |
− | + | * the code word length $n$ and | |
− | * | ||
+ | * the symbol falsification probability $\varepsilon_{\rm S}$: | ||
− | + | :$${\rm Pr(block\:error)} = | |
− | :$${\rm Pr( | ||
\sum_{f = t + 1}^{n} {n \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{n-f} \hspace{0.05cm}.$$ | \sum_{f = t + 1}^{n} {n \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{n-f} \hspace{0.05cm}.$$ | ||
− | In | + | In this exercise, the block error probability for the $\rm RSC \, (7, \, 3, \, 5)_8$ and various $\varepsilon_{\rm S}$ values shall be calculated and approximated. |
− | + | *The above equation is reminiscent of the [[Theory_of_Stochastic_Signals/Binomial_Distribution|"Biomial Distribution"]]. | |
+ | *The graph shows the probabilities of the binomial distribution for parameters $n = 7$ ("code word length") and $\varepsilon_{\rm S} = 0.25$ ("symbol falsification probability"). | ||
Line 20: | Line 20: | ||
+ | Hints: | ||
+ | * This exercise belongs to the chapter [[Channel_Coding/Error_Probability_and_Areas_of_Application| "Error Probability and Application Areas"]]. | ||
+ | * For checking, you can use the interactive HTML5/JavaScript applet [[Applets:Binomial_and_Poisson_Distribution_(Applet)|"Binomial and Poisson Distribution"]]. | ||
− | |||
− | |||
− | |||
− | + | ===Questions=== | |
− | === | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {What is the block error probability for $\varepsilon_{\rm S} = 10^{-1}$? |
|type="{}"} | |type="{}"} | ||
− | $\rm Pr( | + | $\rm Pr(block\:error) \ = \ ${ 2.57 3% } $\ \cdot 10^{-2}$ |
− | { | + | {What is the block error probability for $\varepsilon_{\rm S} =10^{-2}$? |
|type="{}"} | |type="{}"} | ||
− | $\rm Pr( | + | $\rm Pr(block\:error) \ = \ ${ 3.396 3% } $\ \cdot 10^{-5}$ |
− | { | + | {What result is obtained for $\varepsilon_{\rm S} =10^{-2}$, considering only the term $f = t + 1$ ? |
|type="{}"} | |type="{}"} | ||
− | $\rm | + | $\rm Approximation \text{:} \hspace{0.2cm} Pr(block\:error) \ \approx \ ${ 3.362 3% } $\ \cdot 10^{-5}$ |
− | { | + | {What result is obtained approximately for $\varepsilon_{\rm S} = 10^{-3}$? |
|type="{}"} | |type="{}"} | ||
− | $\rm Pr( | + | $\rm Pr(block\:error) \ \approx \ ${ 3.49 3% } $\ \cdot 10^{-8}$ |
− | { | + | {What $\varepsilon_{\rm S}$ is needed for the block error probability $10^{-10}$? |
|type="{}"} | |type="{}"} | ||
$\varepsilon_{\rm S} \ = \ ${ 1.42 3% } $\ \cdot 10^{-4}$ | $\varepsilon_{\rm S} \ = \ ${ 1.42 3% } $\ \cdot 10^{-4}$ | ||
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' For the $\rm RSC \, (7, \, 3, \, 5)_8$, because $d_{\rm min} = 5 \ \Rightarrow \ t = 2$ gives the block error probability: |
− | :$${\rm Pr( | + | :$${\rm Pr(block\:error)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} |
\sum_{f = 3}^{7} {7 \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{7-f} $$ | \sum_{f = 3}^{7} {7 \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{7-f} $$ | ||
− | :$$\Rightarrow \hspace{0.3cm}{\rm Pr( | + | :$$\Rightarrow \hspace{0.3cm}{\rm Pr(block\:error)} ={7 \choose 3} \cdot 0.1^3 \cdot 0.9^4 + {7 \choose 4} \cdot 0.1^4 \cdot 0.9^3 |
+ {7 \choose 5} \cdot 0.1^5 \cdot 0.9^2+ | + {7 \choose 5} \cdot 0.1^5 \cdot 0.9^2+ | ||
{7 \choose 6} \cdot 0.1^6 \cdot 0.9+ {7 \choose 7} \cdot 0.1^7 | {7 \choose 6} \cdot 0.1^6 \cdot 0.9+ {7 \choose 7} \cdot 0.1^7 | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * | + | *According to this calculation, five terms would have to be considered. However, since |
− | :$${\rm Pr( | + | :$${\rm Pr(block\:error)} = |
\sum_{f = 0}^{n} {n \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{n-f} = 1$$ | \sum_{f = 0}^{n} {n \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{n-f} = 1$$ | ||
− | + | :is also valid, the following calculation is faster: | |
− | :$${\rm Pr( | + | :$${\rm Pr(block\:error)} =1 - \big [ {7 \choose 0} \cdot 0.9^7 + {7 \choose 1} \cdot 0.1 \cdot 0.9^6 |
+ {7 \choose 2} \cdot 0.1^2 \cdot 0.9^5 \big ] =1 - \big [ 0.4783 + 0.3720 + 0.1240 \big ] \hspace{0.15cm} \underline{= 2.57 \cdot 10^{-2}} | + {7 \choose 2} \cdot 0.1^2 \cdot 0.9^5 \big ] =1 - \big [ 0.4783 + 0.3720 + 0.1240 \big ] \hspace{0.15cm} \underline{= 2.57 \cdot 10^{-2}} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | '''(2)''' | + | '''(2)''' Analogous to the subtask '''(1)''' one obtains here: |
− | :$${\rm Pr( | + | :$${\rm Pr(block\:error)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 - \big [ 0.99^7 + 7 \cdot 0.01 \cdot 0.99^6 |
+ 21 \cdot 0.01^2 \cdot 0.99^5 \big ] =1 - \big [ 0.9321 + 0.0659 + 0.0020 \big ] \approx 0 | + 21 \cdot 0.01^2 \cdot 0.99^5 \big ] =1 - \big [ 0.9321 + 0.0659 + 0.0020 \big ] \approx 0 | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * | + | *This means: For the probability $\varepsilon_{\rm S} = 0.01$ the simplified calculation is very error-prone, because a value close to $1$ results for the bracket expression. |
− | * | + | |
− | :$${\rm Pr( | + | *The full calculation yields here: |
+ | :$${\rm Pr(block\:error)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} | ||
{7 \choose 3} \cdot 0.01^3 \cdot 0.99^4 + {7 \choose 4} \cdot 0.01^4 \cdot 0.99^3 + | {7 \choose 3} \cdot 0.01^3 \cdot 0.99^4 + {7 \choose 4} \cdot 0.01^4 \cdot 0.99^3 + | ||
{7 \choose 5} \cdot 0.01^5 \cdot 0.99^2+ {7 \choose 6} \cdot 0.01^6 \cdot 0.99+ | {7 \choose 5} \cdot 0.01^5 \cdot 0.99^2+ {7 \choose 6} \cdot 0.01^6 \cdot 0.99+ | ||
{7 \choose 7} \cdot 0.01^7 $$ | {7 \choose 7} \cdot 0.01^7 $$ | ||
− | :$$\Rightarrow \hspace{0.3cm}{\rm Pr( | + | :$$\Rightarrow \hspace{0.3cm}{\rm Pr(block\:error)}= 10^{-6} \cdot |
\big [ 33.6209 + 0.3396 + 0.0021 + ... \big ] \hspace{0.15cm} \underline{ \approx 3.396 \cdot 10^{-5}} | \big [ 33.6209 + 0.3396 + 0.0021 + ... \big ] \hspace{0.15cm} \underline{ \approx 3.396 \cdot 10^{-5}} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
Line 90: | Line 90: | ||
− | '''(3)''' | + | '''(3)''' From the sample solution to the subtask '''(2)''' the result can be read directly: |
− | :$${\rm Pr( | + | :$${\rm Pr(block\:error)} \hspace{0.15cm} \underline{ \approx 3.362 \cdot 10^{-5}} |
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * | + | *The relative error is about $-1\%$. |
− | * | + | |
− | + | *The minus sign indicates that this is only an approximation and not a bound: The approximate value is slightly smaller than the actual value. | |
− | '''(4)''' | + | '''(4)''' Restricting to the relevant term $(f = 3)$, we get $\varepsilon_{\rm S} = 0.001$: |
− | :$${\rm Pr( | + | :$${\rm Pr(block\:error)} \approx |
{7 \choose 3} \cdot [10^{-3}]^3 \cdot 0.999^4 \hspace{0.15cm} \underline{ \approx 3.49 \cdot 10^{-8}} | {7 \choose 3} \cdot [10^{-3}]^3 \cdot 0.999^4 \hspace{0.15cm} \underline{ \approx 3.49 \cdot 10^{-8}} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | * | + | *The relative error here is only about $-0.1\%$. |
− | '''(5)''' | + | '''(5)''' According to the derived approximation, the following holds for the considered code: |
− | :$${\rm Pr( | + | :$${\rm Pr(block\:error)} \approx {7 \choose 3} \cdot {\varepsilon_{\rm S}}^3 = 35 \cdot {\varepsilon_{\rm S}}^3\hspace{0.3cm} |
− | \Rightarrow \hspace{0.3cm} {\rm Pr( | + | \Rightarrow \hspace{0.3cm} {\rm Pr(block\:error)} = 10^{-10}: \hspace{0.4cm} {\varepsilon_{\rm S}} = |
\big ( \frac{10^{-10}}{35} \big )^{1/3} = 2.857^{1/3} \cdot 10^{-4} | \big ( \frac{10^{-10}}{35} \big )^{1/3} = 2.857^{1/3} \cdot 10^{-4} | ||
\hspace{0.15cm} \underline{ \approx 1.42 \cdot 10^{-4}}\hspace{0.05cm}.$$ | \hspace{0.15cm} \underline{ \approx 1.42 \cdot 10^{-4}}\hspace{0.05cm}.$$ | ||
Line 118: | Line 118: | ||
− | [[Category: | + | [[Category:Channel Coding: Exercises|^2.6 Block Error Probability of RS Codes^]] |
Latest revision as of 14:37, 2 November 2022
Using a Reed–Solomon code with the correctability $t$ and "Bounded Distance Decoding" $\rm $ $\rm (BDD)$ is obtained for the block error probability with
- the code word length $n$ and
- the symbol falsification probability $\varepsilon_{\rm S}$:
- $${\rm Pr(block\:error)} = \sum_{f = t + 1}^{n} {n \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{n-f} \hspace{0.05cm}.$$
In this exercise, the block error probability for the $\rm RSC \, (7, \, 3, \, 5)_8$ and various $\varepsilon_{\rm S}$ values shall be calculated and approximated.
- The above equation is reminiscent of the "Biomial Distribution".
- The graph shows the probabilities of the binomial distribution for parameters $n = 7$ ("code word length") and $\varepsilon_{\rm S} = 0.25$ ("symbol falsification probability").
Hints:
- This exercise belongs to the chapter "Error Probability and Application Areas".
- For checking, you can use the interactive HTML5/JavaScript applet "Binomial and Poisson Distribution".
Questions
Solution
(1) For the $\rm RSC \, (7, \, 3, \, 5)_8$, because $d_{\rm min} = 5 \ \Rightarrow \ t = 2$ gives the block error probability:
- $${\rm Pr(block\:error)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \sum_{f = 3}^{7} {7 \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{7-f} $$
- $$\Rightarrow \hspace{0.3cm}{\rm Pr(block\:error)} ={7 \choose 3} \cdot 0.1^3 \cdot 0.9^4 + {7 \choose 4} \cdot 0.1^4 \cdot 0.9^3 + {7 \choose 5} \cdot 0.1^5 \cdot 0.9^2+ {7 \choose 6} \cdot 0.1^6 \cdot 0.9+ {7 \choose 7} \cdot 0.1^7 \hspace{0.05cm}.$$
- According to this calculation, five terms would have to be considered. However, since
- $${\rm Pr(block\:error)} = \sum_{f = 0}^{n} {n \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{n-f} = 1$$
- is also valid, the following calculation is faster:
- $${\rm Pr(block\:error)} =1 - \big [ {7 \choose 0} \cdot 0.9^7 + {7 \choose 1} \cdot 0.1 \cdot 0.9^6 + {7 \choose 2} \cdot 0.1^2 \cdot 0.9^5 \big ] =1 - \big [ 0.4783 + 0.3720 + 0.1240 \big ] \hspace{0.15cm} \underline{= 2.57 \cdot 10^{-2}} \hspace{0.05cm}.$$
(2) Analogous to the subtask (1) one obtains here:
- $${\rm Pr(block\:error)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 - \big [ 0.99^7 + 7 \cdot 0.01 \cdot 0.99^6 + 21 \cdot 0.01^2 \cdot 0.99^5 \big ] =1 - \big [ 0.9321 + 0.0659 + 0.0020 \big ] \approx 0 \hspace{0.05cm}.$$
- This means: For the probability $\varepsilon_{\rm S} = 0.01$ the simplified calculation is very error-prone, because a value close to $1$ results for the bracket expression.
- The full calculation yields here:
- $${\rm Pr(block\:error)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {7 \choose 3} \cdot 0.01^3 \cdot 0.99^4 + {7 \choose 4} \cdot 0.01^4 \cdot 0.99^3 + {7 \choose 5} \cdot 0.01^5 \cdot 0.99^2+ {7 \choose 6} \cdot 0.01^6 \cdot 0.99+ {7 \choose 7} \cdot 0.01^7 $$
- $$\Rightarrow \hspace{0.3cm}{\rm Pr(block\:error)}= 10^{-6} \cdot \big [ 33.6209 + 0.3396 + 0.0021 + ... \big ] \hspace{0.15cm} \underline{ \approx 3.396 \cdot 10^{-5}} \hspace{0.05cm}.$$
(3) From the sample solution to the subtask (2) the result can be read directly:
- $${\rm Pr(block\:error)} \hspace{0.15cm} \underline{ \approx 3.362 \cdot 10^{-5}} \hspace{0.05cm}.$$
- The relative error is about $-1\%$.
- The minus sign indicates that this is only an approximation and not a bound: The approximate value is slightly smaller than the actual value.
(4) Restricting to the relevant term $(f = 3)$, we get $\varepsilon_{\rm S} = 0.001$:
- $${\rm Pr(block\:error)} \approx {7 \choose 3} \cdot [10^{-3}]^3 \cdot 0.999^4 \hspace{0.15cm} \underline{ \approx 3.49 \cdot 10^{-8}} \hspace{0.05cm}.$$
- The relative error here is only about $-0.1\%$.
(5) According to the derived approximation, the following holds for the considered code:
- $${\rm Pr(block\:error)} \approx {7 \choose 3} \cdot {\varepsilon_{\rm S}}^3 = 35 \cdot {\varepsilon_{\rm S}}^3\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Pr(block\:error)} = 10^{-10}: \hspace{0.4cm} {\varepsilon_{\rm S}} = \big ( \frac{10^{-10}}{35} \big )^{1/3} = 2.857^{1/3} \cdot 10^{-4} \hspace{0.15cm} \underline{ \approx 1.42 \cdot 10^{-4}}\hspace{0.05cm}.$$