Difference between revisions of "Aufgaben:Exercise 2.15Z: Block Error Probability once more"

From LNTwww
 
(4 intermediate revisions by 2 users not shown)
Line 2: Line 2:
  
 
[[File:P_ID2574__KC_Z_2_15.png|right|frame|Binominal probabilities]]
 
[[File:P_ID2574__KC_Z_2_15.png|right|frame|Binominal probabilities]]
Using a Reed–Solomon–code with the correctability  $t$  and  [[Channel_Coding/Error_Probability_and_Areas_of_Application#Block_error_probability_for_RSC_and_BDD|"Bounded Distance Decoding"]]  (BDD) is obtained with
+
Using a Reed–Solomon code with the correctability  $t$  and  [[Channel_Coding/Error_Probability_and_Areas_of_Application#Block_error_probability_for_RSC_and_BDD|"Bounded Distance Decoding"]]  $\rm $  $\rm (BDD)$  is obtained for the block error probability with
 
* the code word length  $n$  and
 
* the code word length  $n$  and
* the symbol corruption probability  $\varepsilon_{\rm S}$
 
  
 +
* the symbol falsification probability  $\varepsilon_{\rm S}$:
  
for the block error probability:
+
:$${\rm Pr(block\:error)}  =
:$${\rm Pr(Block\:error)}  =
 
 
\sum_{f = t + 1}^{n} {n \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{n-f} \hspace{0.05cm}.$$
 
\sum_{f = t + 1}^{n} {n \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{n-f} \hspace{0.05cm}.$$
  
In this exercise, the block error probability for the  $\rm RSC \, (7, \, 3, \, 5)_8$  and various  $\varepsilon_{\rm S}$ values shall be calculated and approximated.  
+
In this exercise,  the block error probability for the  $\rm RSC \, (7, \, 3, \, 5)_8$  and various  $\varepsilon_{\rm S}$  values shall be calculated and approximated.  
 
 
The above equation is reminiscent of the  [[Theory_of_Stochastic_Signals/Binomial_Distribution|"Biomial Distribution"]]. The graph shows the probabilities of the binomial distribution for parameters  $n = 7$  (codeword length) and  $\varepsilon_{\rm S} = 0.25$  (symbol corruption probability).
 
 
 
  
 +
*The above equation is reminiscent of the  [[Theory_of_Stochastic_Signals/Binomial_Distribution|"Biomial Distribution"]]. 
  
 +
*The graph shows the probabilities of the binomial distribution for parameters  $n = 7$  ("code word length") and  $\varepsilon_{\rm S} = 0.25$  ("symbol falsification probability").
  
  
Line 24: Line 22:
 
Hints:
 
Hints:
 
* This exercise belongs to the chapter  [[Channel_Coding/Error_Probability_and_Areas_of_Application| "Error Probability and Application Areas"]].
 
* This exercise belongs to the chapter  [[Channel_Coding/Error_Probability_and_Areas_of_Application| "Error Probability and Application Areas"]].
* For checking, you can use the interactive applet  [[Applets:Binomial-_und_Poissonverteilung_(Applet)|"Binomial and Poisson Distribution"]] .
+
 
 +
* For checking,  you can use the interactive HTML5/JavaScript applet  [[Applets:Binomial_and_Poisson_Distribution_(Applet)|"Binomial and Poisson Distribution"]].
  
  
Line 34: Line 33:
 
{What is the block error probability for  $\varepsilon_{\rm S} = 10^{-1}$?
 
{What is the block error probability for  $\varepsilon_{\rm S} = 10^{-1}$?
 
|type="{}"}
 
|type="{}"}
$\rm Pr(Block\:error) \ = \ ${ 2.57 3% } $\ \cdot 10^{-2}$
+
$\rm Pr(block\:error) \ = \ ${ 2.57 3% } $\ \cdot 10^{-2}$
  
 
{What is the block error probability for  $\varepsilon_{\rm S} =10^{-2}$?
 
{What is the block error probability for  $\varepsilon_{\rm S} =10^{-2}$?
 
|type="{}"}
 
|type="{}"}
$\rm Pr(Block\:error) \ = \ ${ 3.396 3% } $\ \cdot 10^{-5}$
+
$\rm Pr(block\:error) \ = \ ${ 3.396 3% } $\ \cdot 10^{-5}$
  
{What result is obtained for  $\varepsilon_{\rm S} =10^{-2}$, considering only the term  $f = t + 1$ ?
+
{What result is obtained for  $\varepsilon_{\rm S} =10^{-2}$,  considering only the term  $f = t + 1$ ?
 
|type="{}"}
 
|type="{}"}
$\rm Näherung \text{:} \hspace{0.2cm} Pr(Block\:error) \ \approx \ ${ 3.362 3% } $\ \cdot 10^{-5}$
+
$\rm Approximation \text{:} \hspace{0.2cm} Pr(block\:error) \ \approx \ ${ 3.362 3% } $\ \cdot 10^{-5}$
  
 
{What result is obtained approximately for  $\varepsilon_{\rm S} = 10^{-3}$?
 
{What result is obtained approximately for  $\varepsilon_{\rm S} = 10^{-3}$?
 
|type="{}"}
 
|type="{}"}
$\rm Pr(Block\:error) \ \approx \ ${ 3.49 3% } $\ \cdot 10^{-8}$
+
$\rm Pr(block\:error) \ \approx \ ${ 3.49 3% } $\ \cdot 10^{-8}$
  
 
{What  $\varepsilon_{\rm S}$  is needed for the block error probability  $10^{-10}$?
 
{What  $\varepsilon_{\rm S}$  is needed for the block error probability  $10^{-10}$?
Line 55: Line 54:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  For the $\rm RSC \, (7, \, 3, \, 5)_8$, because $d_{\rm min} = 5 \ \Rightarrow \ t = 2$ gives the block error probability:
+
'''(1)'''  For the  $\rm RSC \, (7, \, 3, \, 5)_8$,  because  $d_{\rm min} = 5 \ \Rightarrow \ t = 2$  gives the block error probability:
:$${\rm Pr(Block\:error)}  \hspace{-0.15cm} \ = \ \hspace{-0.15cm}
+
:$${\rm Pr(block\:error)}  \hspace{-0.15cm} \ = \ \hspace{-0.15cm}
 
\sum_{f = 3}^{7} {7 \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{7-f} $$
 
\sum_{f = 3}^{7} {7 \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{7-f} $$
:$$\Rightarrow \hspace{0.3cm}{\rm Pr(Block\:error)} ={7 \choose 3} \cdot 0.1^3 \cdot 0.9^4 + {7 \choose 4} \cdot 0.1^4 \cdot 0.9^3
+
:$$\Rightarrow \hspace{0.3cm}{\rm Pr(block\:error)} ={7 \choose 3} \cdot 0.1^3 \cdot 0.9^4 + {7 \choose 4} \cdot 0.1^4 \cdot 0.9^3
 
+ {7 \choose 5} \cdot 0.1^5 \cdot 0.9^2+
 
+ {7 \choose 5} \cdot 0.1^5 \cdot 0.9^2+
 
  {7 \choose 6} \cdot 0.1^6 \cdot 0.9+ {7 \choose 7} \cdot 0.1^7
 
  {7 \choose 6} \cdot 0.1^6 \cdot 0.9+ {7 \choose 7} \cdot 0.1^7
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*According to this calculation, five terms would have to be considered. However, since
+
*According to this calculation,  five terms would have to be considered.  However,  since
:$${\rm Pr(Block\:error)}  =
+
:$${\rm Pr(block\:error)}  =
 
\sum_{f = 0}^{n} {n \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{n-f} = 1$$
 
\sum_{f = 0}^{n} {n \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{n-f} = 1$$
  
is also valid, the following calculation is faster:
+
:is also valid,  the following calculation is faster:
:$${\rm Pr(Block\:error)} =1 - \big [ {7 \choose 0}  \cdot 0.9^7 + {7 \choose 1} \cdot 0.1 \cdot 0.9^6
+
:$${\rm Pr(block\:error)} =1 - \big [ {7 \choose 0}  \cdot 0.9^7 + {7 \choose 1} \cdot 0.1 \cdot 0.9^6
 
+ {7 \choose 2} \cdot 0.1^2 \cdot 0.9^5 \big ] =1 - \big [ 0.4783 + 0.3720 + 0.1240  \big ] \hspace{0.15cm} \underline{= 2.57 \cdot 10^{-2}}
 
+ {7 \choose 2} \cdot 0.1^2 \cdot 0.9^5 \big ] =1 - \big [ 0.4783 + 0.3720 + 0.1240  \big ] \hspace{0.15cm} \underline{= 2.57 \cdot 10^{-2}}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
  
'''(2)'''  Analogous to the subtask '''(1)''' one obtains here:
+
'''(2)'''  Analogous to the subtask  '''(1)'''  one obtains here:
:$${\rm Pr(Block\:error)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 - \big [ 0.99^7 + 7 \cdot 0.01 \cdot 0.99^6
+
:$${\rm Pr(block\:error)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 - \big [ 0.99^7 + 7 \cdot 0.01 \cdot 0.99^6
 
+ 21 \cdot 0.01^2 \cdot 0.99^5 \big ] =1 - \big [ 0.9321 + 0.0659 + 0.0020  \big ] \approx 0
 
+ 21 \cdot 0.01^2 \cdot 0.99^5 \big ] =1 - \big [ 0.9321 + 0.0659 + 0.0020  \big ] \approx 0
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*This means:   For the probability $\varepsilon_{\rm S} = 0.01$ the simplified calculation is very error-prone, because a value close to $1$ results for the bracket expression.  
+
*This means:   For the probability  $\varepsilon_{\rm S} = 0.01$  the simplified calculation is very error-prone,  because a value close to  $1$  results for the bracket expression.
 +
 
*The full calculation yields here:
 
*The full calculation yields here:
:$${\rm Pr(Block\:error)}  \hspace{-0.15cm} \ = \ \hspace{-0.15cm}
+
:$${\rm Pr(block\:error)}  \hspace{-0.15cm} \ = \ \hspace{-0.15cm}
 
{7 \choose 3} \cdot 0.01^3 \cdot 0.99^4 + {7 \choose 4} \cdot 0.01^4 \cdot 0.99^3 +  
 
{7 \choose 3} \cdot 0.01^3 \cdot 0.99^4 + {7 \choose 4} \cdot 0.01^4 \cdot 0.99^3 +  
 
{7 \choose 5} \cdot 0.01^5 \cdot 0.99^2+  {7 \choose 6} \cdot 0.01^6 \cdot 0.99+
 
{7 \choose 5} \cdot 0.01^5 \cdot 0.99^2+  {7 \choose 6} \cdot 0.01^6 \cdot 0.99+
 
{7 \choose 7} \cdot 0.01^7 $$
 
{7 \choose 7} \cdot 0.01^7 $$
:$$\Rightarrow \hspace{0.3cm}{\rm Pr(Blockfehler)}= 10^{-6} \cdot  
+
:$$\Rightarrow \hspace{0.3cm}{\rm Pr(block\:error)}= 10^{-6} \cdot  
 
\big [ 33.6209 +  0.3396 + 0.0021 + ... \big ] \hspace{0.15cm} \underline{ \approx  3.396 \cdot 10^{-5}}
 
\big [ 33.6209 +  0.3396 + 0.0021 + ... \big ] \hspace{0.15cm} \underline{ \approx  3.396 \cdot 10^{-5}}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
Line 90: Line 90:
  
  
'''(3)'''  From the sample solution to the subtask '''(2)''' the result can be read directly:
+
'''(3)'''  From the sample solution to the subtask  '''(2)'''  the result can be read directly:
:$${\rm Pr(Block\:error)} \hspace{0.15cm}  \underline{ \approx  3.362 \cdot 10^{-5}}
+
:$${\rm Pr(block\:error)} \hspace{0.15cm}  \underline{ \approx  3.362 \cdot 10^{-5}}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*The relative error is about $-1\%$.  
+
*The relative error is about  $-1\%$.  
*The minus sign indicates that this is only an approximation and not a bound:  
+
 
*The approximate value is slightly smaller than the actual value.
+
*The minus sign indicates that this is only an approximation and not a bound:  The approximate value is slightly smaller than the actual value.
  
  
  
'''(4)'''  Restricting to the relevant term $(f = 3)$, we get $\varepsilon_{\rm S} = 0.001$:
+
'''(4)'''  Restricting to the relevant term  $(f = 3)$,  we get  $\varepsilon_{\rm S} = 0.001$:
:$${\rm Pr(Block\:error)}  \approx
+
:$${\rm Pr(block\:error)}  \approx
 
{7 \choose 3} \cdot [10^{-3}]^3 \cdot 0.999^4  \hspace{0.15cm} \underline{ \approx  3.49 \cdot 10^{-8}}
 
{7 \choose 3} \cdot [10^{-3}]^3 \cdot 0.999^4  \hspace{0.15cm} \underline{ \approx  3.49 \cdot 10^{-8}}
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
  
*The relative error here is also only about $-0.1\%$.
+
*The relative error here is only about  $-0.1\%$.
  
  
'''(5)'''  According to the derived approximation, the following holds for the considered code:
+
'''(5)'''  According to the derived approximation,  the following holds for the considered code:
:$${\rm Pr(Block\:error)}  \approx {7 \choose 3} \cdot {\varepsilon_{\rm S}}^3 = 35 \cdot {\varepsilon_{\rm S}}^3\hspace{0.3cm}  
+
:$${\rm Pr(block\:error)}  \approx {7 \choose 3} \cdot {\varepsilon_{\rm S}}^3 = 35 \cdot {\varepsilon_{\rm S}}^3\hspace{0.3cm}  
\Rightarrow  \hspace{0.3cm} {\rm Pr(Blockfehler)} = 10^{-10}: \hspace{0.4cm} {\varepsilon_{\rm S}} =  
+
\Rightarrow  \hspace{0.3cm} {\rm Pr(block\:error)} = 10^{-10}: \hspace{0.4cm} {\varepsilon_{\rm S}} =  
 
\big ( \frac{10^{-10}}{35} \big )^{1/3} = 2.857^{1/3} \cdot 10^{-4}  
 
\big ( \frac{10^{-10}}{35} \big )^{1/3} = 2.857^{1/3} \cdot 10^{-4}  
 
\hspace{0.15cm} \underline{ \approx  1.42 \cdot 10^{-4}}\hspace{0.05cm}.$$
 
\hspace{0.15cm} \underline{ \approx  1.42 \cdot 10^{-4}}\hspace{0.05cm}.$$

Latest revision as of 14:37, 2 November 2022

Binominal probabilities

Using a Reed–Solomon code with the correctability  $t$  and  "Bounded Distance Decoding"  $\rm $  $\rm (BDD)$  is obtained for the block error probability with

  • the code word length  $n$  and
  • the symbol falsification probability  $\varepsilon_{\rm S}$:
$${\rm Pr(block\:error)} = \sum_{f = t + 1}^{n} {n \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{n-f} \hspace{0.05cm}.$$

In this exercise,  the block error probability for the  $\rm RSC \, (7, \, 3, \, 5)_8$  and various  $\varepsilon_{\rm S}$  values shall be calculated and approximated.

  • The graph shows the probabilities of the binomial distribution for parameters  $n = 7$  ("code word length") and  $\varepsilon_{\rm S} = 0.25$  ("symbol falsification probability").



Hints:



Questions

1

What is the block error probability for  $\varepsilon_{\rm S} = 10^{-1}$?

$\rm Pr(block\:error) \ = \ $

$\ \cdot 10^{-2}$

2

What is the block error probability for  $\varepsilon_{\rm S} =10^{-2}$?

$\rm Pr(block\:error) \ = \ $

$\ \cdot 10^{-5}$

3

What result is obtained for  $\varepsilon_{\rm S} =10^{-2}$,  considering only the term  $f = t + 1$ ?

$\rm Approximation \text{:} \hspace{0.2cm} Pr(block\:error) \ \approx \ $

$\ \cdot 10^{-5}$

4

What result is obtained approximately for  $\varepsilon_{\rm S} = 10^{-3}$?

$\rm Pr(block\:error) \ \approx \ $

$\ \cdot 10^{-8}$

5

What  $\varepsilon_{\rm S}$  is needed for the block error probability  $10^{-10}$?

$\varepsilon_{\rm S} \ = \ $

$\ \cdot 10^{-4}$


Solution

(1)  For the  $\rm RSC \, (7, \, 3, \, 5)_8$,  because  $d_{\rm min} = 5 \ \Rightarrow \ t = 2$  gives the block error probability:

$${\rm Pr(block\:error)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \sum_{f = 3}^{7} {7 \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{7-f} $$
$$\Rightarrow \hspace{0.3cm}{\rm Pr(block\:error)} ={7 \choose 3} \cdot 0.1^3 \cdot 0.9^4 + {7 \choose 4} \cdot 0.1^4 \cdot 0.9^3 + {7 \choose 5} \cdot 0.1^5 \cdot 0.9^2+ {7 \choose 6} \cdot 0.1^6 \cdot 0.9+ {7 \choose 7} \cdot 0.1^7 \hspace{0.05cm}.$$
  • According to this calculation,  five terms would have to be considered.  However,  since
$${\rm Pr(block\:error)} = \sum_{f = 0}^{n} {n \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{n-f} = 1$$
is also valid,  the following calculation is faster:
$${\rm Pr(block\:error)} =1 - \big [ {7 \choose 0} \cdot 0.9^7 + {7 \choose 1} \cdot 0.1 \cdot 0.9^6 + {7 \choose 2} \cdot 0.1^2 \cdot 0.9^5 \big ] =1 - \big [ 0.4783 + 0.3720 + 0.1240 \big ] \hspace{0.15cm} \underline{= 2.57 \cdot 10^{-2}} \hspace{0.05cm}.$$


(2)  Analogous to the subtask  (1)  one obtains here:

$${\rm Pr(block\:error)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 - \big [ 0.99^7 + 7 \cdot 0.01 \cdot 0.99^6 + 21 \cdot 0.01^2 \cdot 0.99^5 \big ] =1 - \big [ 0.9321 + 0.0659 + 0.0020 \big ] \approx 0 \hspace{0.05cm}.$$
  • This means:   For the probability  $\varepsilon_{\rm S} = 0.01$  the simplified calculation is very error-prone,  because a value close to  $1$  results for the bracket expression.
  • The full calculation yields here:
$${\rm Pr(block\:error)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} {7 \choose 3} \cdot 0.01^3 \cdot 0.99^4 + {7 \choose 4} \cdot 0.01^4 \cdot 0.99^3 + {7 \choose 5} \cdot 0.01^5 \cdot 0.99^2+ {7 \choose 6} \cdot 0.01^6 \cdot 0.99+ {7 \choose 7} \cdot 0.01^7 $$
$$\Rightarrow \hspace{0.3cm}{\rm Pr(block\:error)}= 10^{-6} \cdot \big [ 33.6209 + 0.3396 + 0.0021 + ... \big ] \hspace{0.15cm} \underline{ \approx 3.396 \cdot 10^{-5}} \hspace{0.05cm}.$$


(3)  From the sample solution to the subtask  (2)  the result can be read directly:

$${\rm Pr(block\:error)} \hspace{0.15cm} \underline{ \approx 3.362 \cdot 10^{-5}} \hspace{0.05cm}.$$
  • The relative error is about  $-1\%$.
  • The minus sign indicates that this is only an approximation and not a bound:  The approximate value is slightly smaller than the actual value.


(4)  Restricting to the relevant term  $(f = 3)$,  we get  $\varepsilon_{\rm S} = 0.001$:

$${\rm Pr(block\:error)} \approx {7 \choose 3} \cdot [10^{-3}]^3 \cdot 0.999^4 \hspace{0.15cm} \underline{ \approx 3.49 \cdot 10^{-8}} \hspace{0.05cm}.$$
  • The relative error here is only about  $-0.1\%$.


(5)  According to the derived approximation,  the following holds for the considered code:

$${\rm Pr(block\:error)} \approx {7 \choose 3} \cdot {\varepsilon_{\rm S}}^3 = 35 \cdot {\varepsilon_{\rm S}}^3\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Pr(block\:error)} = 10^{-10}: \hspace{0.4cm} {\varepsilon_{\rm S}} = \big ( \frac{10^{-10}}{35} \big )^{1/3} = 2.857^{1/3} \cdot 10^{-4} \hspace{0.15cm} \underline{ \approx 1.42 \cdot 10^{-4}}\hspace{0.05cm}.$$