Difference between revisions of "Aufgaben:Exercise 3.2: G-matrix of a Convolutional Encoder"

From LNTwww
m (Textersetzung - „* Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
 
(8 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Algebraische und polynomische Beschreibung}}
+
{{quiz-Header|Buchseite=Channel_Coding/Algebraic_and_Polynomial_Description}}
  
[[File:P_ID2614__KC_A_3_1_neu.png|right|frame|Vorgegebener Faltungscodierer]]
+
[[File:P_ID2614__KC_A_3_1_neu.png|right|frame|Predefined convolutional encoder]]
Wir betrachten wie in [[Aufgaben:Aufgabe_3.1:_Analyse_eines_Faltungscodierers| Aufgabe 3.1]] den nebenstehend gezeichneten Faltungscodierer der Rate $3/4$. Dieser wird durch den folgenden Gleichungssatz charakterisiert:
+
We consider as in  [[Aufgaben:Exercise_3.1:_Analysis_of_a_Convolutional_Encoder|$\text{Exercise 3.1}$]]  the convolutional encoder of rate  $3/4$  drawn opposite.  This is characterized by the following set of equations:
 
:$$x_i^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)}  \hspace{0.05cm},$$
 
:$$x_i^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)}  \hspace{0.05cm},$$
 
:$$x_i^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)} + u_{i}^{(2)} + u_{i-1}^{(2)} + u_{i-1}^{(3)} \hspace{0.05cm},$$
 
:$$x_i^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)} + u_{i}^{(2)} + u_{i-1}^{(2)} + u_{i-1}^{(3)} \hspace{0.05cm},$$
Line 8: Line 8:
 
:$$x_i^{(4)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)} + u_{i}^{(2)} + u_{i}^{(3)}+ u_{i-2}^{(3)}\hspace{0.05cm}.$$
 
:$$x_i^{(4)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)} + u_{i}^{(2)} + u_{i}^{(3)}+ u_{i-2}^{(3)}\hspace{0.05cm}.$$
  
Bezieht man sich auf die bei $i = 1$ beginnenden und sich zeitlich bis ins Unendliche erstreckenden Sequenzen
+
Referring to the sequences  $($both starting at  $i = 1$  and extending in time to infinity$)$,
 
:$$\underline{\it u} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left ( \underline{\it u}_1, \underline{\it u}_2, \text{...} \hspace{0.1cm}, \underline{\it u}_i ,\text{...} \hspace{0.1cm} \right )\hspace{0.05cm},$$
 
:$$\underline{\it u} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left ( \underline{\it u}_1, \underline{\it u}_2, \text{...} \hspace{0.1cm}, \underline{\it u}_i ,\text{...} \hspace{0.1cm} \right )\hspace{0.05cm},$$
 
:$$\underline{\it x} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left ( \underline{\it x}_1, \underline{\it x}_2, \text{...} \hspace{0.1cm}, \underline{\it x}_i , \text{...} \hspace{0.1cm} \right )$$
 
:$$\underline{\it x} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left ( \underline{\it x}_1, \underline{\it x}_2, \text{...} \hspace{0.1cm}, \underline{\it x}_i , \text{...} \hspace{0.1cm} \right )$$
  
mit $\underline{u}_i = (u_i^{(1)}, u_i^{(2)}, \ \text{...} \ , u_i^{(k)})$ bzw. $\underline{x}_i = (x_i^{(1)}, x_i^{(2)}, \ \text{...} \ , x_i^{(n)})$, so kann der Zusammenhang zwischen der Informationssequenz $\underline{u}$ und der Codesequenz $\underline{x}$ durch die Generatormatrix $\mathbf{G}$ in folgender Form ausgedrückt werden:
+
with 
 +
:$$\underline{u}_i = (u_i^{(1)}, u_i^{(2)}, \ \text{...} \ , u_i^{(k)}),$$
 +
:$$\underline{x}_i = (x_i^{(1)}, x_i^{(2)}, \ \text{...} \ , x_i^{(n)}),$$  
 +
then the relationship between the information sequence  $\underline{u}$  and the code sequence  $\underline{x}$  can be expressed by the generator matrix  $\mathbf{G}$  in the following form:
 
:$$\underline{x} = \underline{u} \cdot { \boldsymbol{\rm G}}  \hspace{0.05cm}.$$
 
:$$\underline{x} = \underline{u} \cdot { \boldsymbol{\rm G}}  \hspace{0.05cm}.$$
  
Für die Generatormatrix eines Faltungscoders mit dem Gedächtnis $m$ ist dabei zu setzen:
+
For the generator matrix of a convolutional encoder with memory  $m$  is to be set:
 
:$${ \boldsymbol{\rm G}}=\begin{pmatrix}
 
:$${ \boldsymbol{\rm G}}=\begin{pmatrix}
 
{ \boldsymbol{\rm G}}_0 & { \boldsymbol{\rm G}}_1 & { \boldsymbol{\rm G}}_2 & \cdots  & { \boldsymbol{\rm G}}_m & & & \\
 
{ \boldsymbol{\rm G}}_0 & { \boldsymbol{\rm G}}_1 & { \boldsymbol{\rm G}}_2 & \cdots  & { \boldsymbol{\rm G}}_m & & & \\
Line 23: Line 26:
 
\end{pmatrix}\hspace{0.05cm}.$$
 
\end{pmatrix}\hspace{0.05cm}.$$
  
Hierbei bezeichnen $\mathbf{G}_0, \mathbf{G}_1, \mathbf{G}_2, \ \text{...}$ Teilmatrizen mit jeweils $k$ Zeilen und $n$ Spalten sowie binären Matrixelementen ($0$ oder $1$). Ist das Matrixelement $\mathbf{G}_l(\kappa, j) = 1$, so bedeutet dies, dass das Codebit $x_i^{(j)}$ durch das Informationsbit $u_{i-l}^{(\kappa)}$ beeinflusst wird. Andernfalls ist dieses Matrixelement gleich $0$.  
+
*Hereby denote   $\mathbf{G}_0, \ \mathbf{G}_1, \ \mathbf{G}_2, \ \text{...}$   partial matrices each having  $k$  rows and  $n$  columns and binary matrix elements  $(0$  or  $1)$.
 +
 +
*If the matrix element  $\mathbf{G}_l(\kappa, j) = 1$,  it means that the code bit  $x_i^{(j)}$  is affected by the information bit  $u_{i-l}^{(\kappa)}$ .  
 +
 
 +
*Otherwise,  this matrix element is  $\mathbf{G}_l(\kappa, j) =0$.  
 +
 
  
Ziel dieser Aufgabe ist es, die zur Informationssequenz
+
⇒  The goal of this exercise is to compute the code sequence   $\underline{x}$   belonging to the information sequence
 
:$$\underline{u} = (\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1
 
:$$\underline{u} = (\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1
 
\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm}
 
\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm}
 
,\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm})$$
 
,\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm})$$
  
gehörige Codesequenz $\underline{x}$ entsprechend den obigen Vorgaben zu berechnen. Das Ergebnis müsste mit dem Ergebnis von [[Aufgaben:Aufgabe_3.1:_Analyse_eines_Faltungscodierers| Aufgabe 3.1]] übereinstimmen, das allerdings auf anderem Wege erzielt wurde.
+
according to the above specifications.  The result should match the result of  [[Aufgaben:Exercise_3.1:_Analysis_of_a_Convolutional_Encoder| $\text{Exercise 3.1}$]]  which was obtained in a different way.
 +
 
  
  
Line 36: Line 45:
  
  
''Hinweise:''
+
 
* Die  Aufgabe gehört zum Themengebiet des Kapitels [[Kanalcodierung/Algebraische_und_polynomische_Beschreibung| Algebraische und polynomische Beschreibung]].
+
 
 +
Hints:  This exercise belongs to the chapter  [[Channel_Coding/Algebraic_and_Polynomial_Description| "Algebraic and Polynomial Description"]].
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Aus wie vielen Teilmatrizen $\mathbf{G}_l$ setzt sich die Matrix $\mathbf{G}$ zusammen?
+
{From how many partial matrices&nbsp; $\mathbf{G}_l$&nbsp; is the matrix&nbsp; $\mathbf{G}$&nbsp; composed?
 
|type="{}"}
 
|type="{}"}
${\rm Anzahl \ der \ Teilmatrizen} \ = \ ${ 3 3% }  
+
$\text{number of partial matrices} \ = \ ${ 3 3% }  
  
{Welche Aussagen treffen für die Teilmatrix $\mathbf{G}_0$ zu?
+
{Which statements are true for the partial matrix&nbsp; $\mathbf{G}_0$?
 
|type="[]"}
 
|type="[]"}
+ Insgesamt beinhaltet $\mathbf{G}_0$ acht Einsen.
+
+ In total,&nbsp; $\mathbf{G}_0$&nbsp; contains eight ones.
+ Die erste Zeile von $\mathbf{G}_0$ lautet $1 \ 1 \ 0 \ 1$.
+
+ The first row of&nbsp; $\mathbf{G}_0$&nbsp; is&nbsp; $1 \ 1 \ 0 \ 1$.
- Die erste Zeile von $\mathbf{G}_0$ lautet $1 \ 0 \ 0$.
+
- The first row of&nbsp; $\mathbf{G}_0$&nbsp; is&nbsp; $1 \ 0 \ 0$.
  
{Welche aussagen treffen für die Teilmatrix $\mathbf{G}_1$ zu?
+
{Which statements are true for the partial matrix&nbsp; $\mathbf{G}_1$&nbsp;?
 
|type="[]"}
 
|type="[]"}
+ Die erste Zeile lautet $0 \ 0 \ 0 \ 0$.
+
+ The first row is&nbsp; $0 \ 0 \ 0 \ 0$.
+ Die zweite Zeile lautet $0 \ 1 \ 1 \ 0$.
+
+ The second row is&nbsp; $0 \ 1 \ 1 \ 0$.
+ Die dritte Zeile lautet $0 \ 1 \ 0 \ 0$.
+
+ The third row is&nbsp; $0 \ 1 \ 0 \ 0$.
  
{Ermitteln Sie die ersten neun Zeilen und zwölf Spalten der Generatormatrix $\mathbf{G}$. Welche Aussagen treffen zu?
+
{Determine the first nine rows and twelve columns of the generator matrix&nbsp; $\mathbf{G}$.&nbsp; Which statements are true?
 
|type="[]"}
 
|type="[]"}
- Es gibt mindestens eine Zeile mit lauter Nullen.
+
- There is at least one row with all zeros.
- Es gibt mindestens eine Zeile mit lauter Einsen.
+
- There is at least one row with all ones.
+ In den Spalten $1, 5, 9$ steht jeweils nur eine einzige Eins.
+
+ In each of the columns&nbsp; $1,\ 5,\ 9$&nbsp; there is only one single one.
  
{Welche Codesequenz $\underline {x}$ ergibt sich für $\underline {u} = (0, 1, 1, 1, 1, 0, 1, 0, 1)$?
+
{What code sequence&nbsp; $\underline {x}$&nbsp; results for&nbsp; $\underline {u} = (0, 1, 1, 1, 1, 0, 1, 0, 1)$?
 
|type="()"}
 
|type="()"}
- Es gilt: $\underline{x} = (1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, \ \text{...})$.
+
- It holds:&nbsp; $\underline{x} = (1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, \ \text{...})$.
+ Es gilt: $\underline{x} = (0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, \ \text{...})$.
+
+ It holds:&nbsp; $\underline{x} = (0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, \ \text{...})$.
- Es gilt: $\underline{x} = (0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, \ \text{...})$.
+
- It holds:&nbsp; $\underline{x} = (0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, \ \text{...})$.
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Das Gedächtnis des betrachteten Faltungscodierers ist $m = 2$. Damit setzt sich die Generatormatrix $\mathbf{G}$ aus den $m + 1 \ \underline {= 3}$ Teilmatrizen $\mathbf{G}_0, \mathbf{G}_1$ und $\mathbf{G}_2$ zusammen.
+
'''(1)'''&nbsp; The memory of the considered convolutional encoder is&nbsp; $m = 2$.  
 +
*Thus,&nbsp; the generator matrix&nbsp; $\mathbf{G}$&nbsp; is composed of the&nbsp; $m + 1 \ \underline {= 3}$ &nbsp; submatrices&nbsp; $\mathbf{G}_0,&nbsp; \mathbf{G}_1$&nbsp; and&nbsp; $\mathbf{G}_2$.
  
  
'''(2)'''&nbsp; Richtigsind die u>Aussage 1 und 2</u>:
+
 
*Aus  den angegebenen Gleichungen
+
'''(2)'''&nbsp; Correct are&nbsp; <u>statement 1 and 2</u>:
 +
*From the given equations
 
:$$x_i^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)}  \hspace{0.05cm},$$
 
:$$x_i^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)}  \hspace{0.05cm},$$
 
:$$x_i^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)} + u_{i}^{(2)} + u_{i-1}^{(2)} + u_{i-1}^{(3)} \hspace{0.05cm},$$
 
:$$x_i^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)} + u_{i}^{(2)} + u_{i-1}^{(2)} + u_{i-1}^{(3)} \hspace{0.05cm},$$
 
:$$x_i^{(3)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(2)} + u_{i}^{(3)}+ u_{i-1}^{(2)} + u_{i-2}^{(3)} \hspace{0.05cm},$$
 
:$$x_i^{(3)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(2)} + u_{i}^{(3)}+ u_{i-1}^{(2)} + u_{i-2}^{(3)} \hspace{0.05cm},$$
:$$x_i^{(4)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)} + u_{i}^{(2)} + u_{i}^{(3)}+ u_{i-2}^{(3)}$$
+
:$$x_i^{(4)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)} + u_{i}^{(2)} + u_{i}^{(3)}+ u_{i-2}^{(3)},$$
 +
 
 +
it can be seen that in the whole equation set an input value&nbsp; $u_i^{(j)}$&nbsp; with&nbsp; $j &#8712; \{1,\ 2,\ 3\}$&nbsp; occurs exactly eight times &nbsp; &#8658; &nbsp; Statement 1 is true.
 +
 +
*The input value&nbsp; $u_i^{(1)}$&nbsp; influences the outputs&nbsp; $x_i^{(1)}$,&nbsp; $x_i^{(2)}$&nbsp; and&nbsp; $x_i^{(4)}$.&nbsp; Thus,&nbsp; the first row of&nbsp; $\mathbf{G}_0 \text{ is} \, 1 \ 1 \ 0 \ 1$ &nbsp; &#8658; &nbsp; Statement 2 is true too.
 +
 +
*In contrast,&nbsp; statement 3 is false:&nbsp; It is not the first row of&nbsp; $\mathbf{G}_0$&nbsp; that is&nbsp; $1 \ 0 \ 0$,&nbsp; but the first column.&nbsp;
 +
 
 +
*This says that&nbsp; $x_i^{(1)}$&nbsp; depends only&nbsp; on $u_i^{(1)}$,&nbsp; but not on&nbsp; $u_i^{(2)}$&nbsp; or on&nbsp; $u_i^{(3)}$.&nbsp; It is a systematic code.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; <u>All statements are accurate</u>:
 +
*In the equation set,&nbsp; an input value&nbsp; $u_{i&ndash;1}^{(j)}$&nbsp; with&nbsp; $j &#8712; \{1,\ 2,\ 3\}$&nbsp; occurs three times.&nbsp; Thus,&nbsp; $\mathbf{G}_1$&nbsp; contains a total of three ones.
  
erkennt man, dass im gesamten Gleichungssatz genau achtmal ein Eingangswert $u_i^{(j)}$ mit $j &#8712; \{1, 2, 3\}$ vorkommt &nbsp; &#8658; &nbsp; Aussage 1 trifft zu.
+
*The input value&nbsp; $u_{i-1}^{(2)}$&nbsp; influences the outputs&nbsp; $x_i^{(2)}$&nbsp; and&nbsp; $x_i^{(3)}$,&nbsp; while&nbsp; $u_{i-1}^{(3)}$&nbsp; is used only for the calculation of&nbsp; $x_i^{(2)}$.  
*Der Eingangswert $u_i^{(1)}$ beeinflusst die Ausgänge $x_i^{(1)}$, $x_i^{(2)}$ und $x_i^{(4)}$. Damit lautet die erste Zeile von $\mathbf{G}_0 \text{:} \, 1 \ 1 \ 0 \ 1$  &nbsp; &#8658;  &nbsp; auch Aussage 2 trifft zu.
 
*Dagegen ist die Aussage 3 falsch: Nicht die erste Zeile von $\mathbf{G}_0$ lautet $1 \ 0 \ 0$, sondern die erste Spalte. Dies besagt, dass $x_i^{(1)}$ nur von $u_i^{(1)}$ abhängt, aber nicht von $u_i^{(2)}$ oder von $u_i^{(3)}$. Es handelt sich um einen systematischen Code.
 
  
  
'''(3)'''&nbsp; <u>Alle Aussagen sind zutreffend</u>:
 
*Im Gleichungssatz kommt dreimal ein Eingangswert $u_{i&ndash;1}^{(j)}$ mit $j &#8712; \{1, 2, 3\}$ vor. Somit beinhaltet $\mathbf{G}_1$ insgesamt drei Einsen.
 
*Der Eingangswert $u_{i-1}^{(2)}$ beeinflusst die Ausgänge $x_i^{(2)}$ und $x_i^{(3)}$, während $u_{i-1}^{(3)}$ nur für die Berechnung von $x_i^{(2)}$ herangezogen wird.
 
  
 +
[[File:P_ID2615__KC_A_3_2d_v1.png|right|frame|Generator matrix of a convolutional code with&nbsp; $k = 4, \ n = 4, \ m = 2$.]]
 +
'''(4)'''&nbsp; Only <u>statement 3</u>&nbsp; is correct:
 +
*The following graph shows the upper left beginning&nbsp; $($rows 1 to 9 and columns 1 to 12$)$&nbsp; of the generator matrix&nbsp; $\mathbf{G}$.
 +
 +
*From this it can be seen that the first two statements are false.
 +
 +
*This result holds for any systematic code with parameters&nbsp; $k = 3$&nbsp; and&nbsp; $n = 4$.
  
'''(4)'''&nbsp; Richtig ist nur die <u> Aussage 3</u>:
 
*Die folgende Grafik zeigt den linken oberen Beginn (die Zeilen 1 bis 9 sowie die Spalten 1 bis 12) der Generatormatrix $\mathbf{G}$.
 
*Daraus ist ersichtlich, dass die beiden ersten Aussagen falsch sind .
 
*Dieses Ergebnis gilt für jeden systematischen Code mit den Parametern $k = 3$ und $n = 4$.
 
  
[[File:P_ID2615__KC_A_3_2d_v1.png|center|frame|Generatormatrix eines Faltungscodes: $k = 4, \ n = 4, \ m = 2$]]
 
  
'''(5)'''&nbsp; Richtig ist die <u> Aussage 2</u>:
+
'''(5)'''&nbsp; Correct is&nbsp; <u>statement 2</u>:
*Allgemein gilt $\underline{x} = \underline{u} \cdot \mathbf{G}$, wobei $\underline{u}$ und $\underline{x}$ Sequenzen sind, das heißt, dass sie sich bis ins Unendliche fortsetzen. Entsprechend ist die Generatormatrix $\mathbf{G}$ weder nach unten noch nach rechts begrenzt.
+
*Generally,&nbsp; $\underline{x} = \underline{u} \cdot \mathbf{G}$,&nbsp; where&nbsp; $\underline{u}$&nbsp; and&nbsp; $\underline{x}$&nbsp; are sequences,&nbsp; that is,&nbsp; they continue to infinity.&nbsp;
*Bei begrenzter Informationssequenz $\underline{u}$ (hier auf $9$ Bit) ist auch die Codesequenz $\underline{x}$ begrenzt.  
+
 
*Interessiert man sich nur für die ersten Bits, so genügt es, nur den linken oberen Ausschnitt der Generatormatrix wie in der Musterlösung zur Teilaufgabe (4) zu betrachten.  
+
*Accordingly,&nbsp; the generator matrix&nbsp; $\mathbf{G}$ is not limited downward or to the right.
*Anhand dieser Grafik kann auch das Ergebnis der Matrizengleichung $\underline{x} = \underline{u} \cdot \mathbf{G}$ abgelesen werden. Richtig ist $\underline{x} = (0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, \ ...)$ und damit Antwort 2.  
+
 
 +
*If the information sequence&nbsp; $\underline{u}$&nbsp; is limited&nbsp; $($here to&nbsp; $9$&nbsp; bits$)$,&nbsp; the code sequence&nbsp; $\underline{x}$&nbsp; is also limited.
 +
 +
*If one is only interested in the first bits,&nbsp; it is sufficient to look only at the upper left section of the generator matrix as in the sample solution to subtask&nbsp; '''(4)'''.
 +
 +
*Using this graph,&nbsp; the result of the matrix equation&nbsp; $\underline{x} = \underline{u} \cdot \mathbf{G}$&nbsp; can be read off.
 +
 +
*Correct is&nbsp; $\underline{x} = (0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, \ ...)$&nbsp; and thus answer 2.  
 +
 
  
 +
We obtained the same result in the; subtask&nbsp; '''(4)'''&nbsp of&nbsp; [[Aufgaben:Exercise_3.1:_Analysis_of_a_Convolutional_Encoder|$\text{Exercise 3.1}$]].
  
Das gleiche Ergebnis haben wir in der Teilaufgabe (4) von  [[Aufgaben:Aufgabe_3.1:_Analyse_eines_Faltungscodierers| Aufgabe 3.1]] erhalten.
+
*Shown here are only&nbsp; $9$&nbsp; information bits and&nbsp; $9 \cdot n/k = 12$&nbsp; code bits.  
  
*Dargestellt sind hier nur $9$ Informationsbits und $9 \cdot n/k = 12$ Codebits. Aufgrund der Teilmatrizen $\mathbf{G}_1$ und $\mathbf{G}_2$ würden sich hier aber auch die Codebits 13 bis 20 noch (teilweise) Einsen ergeben.
+
*Due to the partial matrices&nbsp; $\mathbf{G}_1$&nbsp; and&nbsp; $\mathbf{G}_2$,&nbsp; however,&nbsp; (partial) ones would still result here for the code bits 13 to 20.
  
*Die Codesequenz $\underline{x}$ setzt sich aus den vier Teilsequenzen $\underline{x}^{(1)}, \ \text{...} \ , \ \underline{x}^{(4)}$ zusammen, die in der Grafik aufgrund unterschiedlicher Farbgebung abgelesen werden können.
+
*The code sequence&nbsp; $\underline{x}$&nbsp; is composed of the four subsequences&nbsp; $\underline{x}^{(1)}, \ \text{...} \ , \ \underline{x}^{(4)}$,&nbsp; which can be read in the graphic due to different coloring.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
[[Category:Aufgaben zu  Kanalcodierung|^3.2 Polynomische Beschreibung^]]
+
[[Category:Channel Coding: Exercises|^3.2 Polynomial Description^]]

Latest revision as of 15:31, 9 November 2022

Predefined convolutional encoder

We consider as in  $\text{Exercise 3.1}$  the convolutional encoder of rate  $3/4$  drawn opposite.  This is characterized by the following set of equations:

$$x_i^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)} \hspace{0.05cm},$$
$$x_i^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)} + u_{i}^{(2)} + u_{i-1}^{(2)} + u_{i-1}^{(3)} \hspace{0.05cm},$$
$$x_i^{(3)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(2)} + u_{i}^{(3)}+ u_{i-1}^{(2)} + u_{i-2}^{(3)} \hspace{0.05cm},$$
$$x_i^{(4)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)} + u_{i}^{(2)} + u_{i}^{(3)}+ u_{i-2}^{(3)}\hspace{0.05cm}.$$

Referring to the sequences  $($both starting at  $i = 1$  and extending in time to infinity$)$,

$$\underline{\it u} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left ( \underline{\it u}_1, \underline{\it u}_2, \text{...} \hspace{0.1cm}, \underline{\it u}_i ,\text{...} \hspace{0.1cm} \right )\hspace{0.05cm},$$
$$\underline{\it x} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left ( \underline{\it x}_1, \underline{\it x}_2, \text{...} \hspace{0.1cm}, \underline{\it x}_i , \text{...} \hspace{0.1cm} \right )$$

with 

$$\underline{u}_i = (u_i^{(1)}, u_i^{(2)}, \ \text{...} \ , u_i^{(k)}),$$
$$\underline{x}_i = (x_i^{(1)}, x_i^{(2)}, \ \text{...} \ , x_i^{(n)}),$$

then the relationship between the information sequence  $\underline{u}$  and the code sequence  $\underline{x}$  can be expressed by the generator matrix  $\mathbf{G}$  in the following form:

$$\underline{x} = \underline{u} \cdot { \boldsymbol{\rm G}} \hspace{0.05cm}.$$

For the generator matrix of a convolutional encoder with memory  $m$  is to be set:

$${ \boldsymbol{\rm G}}=\begin{pmatrix} { \boldsymbol{\rm G}}_0 & { \boldsymbol{\rm G}}_1 & { \boldsymbol{\rm G}}_2 & \cdots & { \boldsymbol{\rm G}}_m & & & \\ & { \boldsymbol{\rm G}}_0 & { \boldsymbol{\rm G}}_1 & { \boldsymbol{\rm G}}_2 & \cdots & { \boldsymbol{\rm G}}_m & &\\ & & { \boldsymbol{\rm G}}_0 & { \boldsymbol{\rm G}}_1 & { \boldsymbol{\rm G}}_2 & \cdots & { \boldsymbol{\rm G}}_m &\\ & & & \ddots & \ddots & & & \ddots \end{pmatrix}\hspace{0.05cm}.$$
  • Hereby denote   $\mathbf{G}_0, \ \mathbf{G}_1, \ \mathbf{G}_2, \ \text{...}$   partial matrices each having  $k$  rows and  $n$  columns and binary matrix elements  $(0$  or  $1)$.
  • If the matrix element  $\mathbf{G}_l(\kappa, j) = 1$,  it means that the code bit  $x_i^{(j)}$  is affected by the information bit  $u_{i-l}^{(\kappa)}$ .
  • Otherwise,  this matrix element is  $\mathbf{G}_l(\kappa, j) =0$.


⇒  The goal of this exercise is to compute the code sequence   $\underline{x}$   belonging to the information sequence

$$\underline{u} = (\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1 \hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm} ,\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm})$$

according to the above specifications.  The result should match the result of  $\text{Exercise 3.1}$  which was obtained in a different way.





Hints:  This exercise belongs to the chapter  "Algebraic and Polynomial Description".



Questions

1

From how many partial matrices  $\mathbf{G}_l$  is the matrix  $\mathbf{G}$  composed?

$\text{number of partial matrices} \ = \ $

2

Which statements are true for the partial matrix  $\mathbf{G}_0$?

In total,  $\mathbf{G}_0$  contains eight ones.
The first row of  $\mathbf{G}_0$  is  $1 \ 1 \ 0 \ 1$.
The first row of  $\mathbf{G}_0$  is  $1 \ 0 \ 0$.

3

Which statements are true for the partial matrix  $\mathbf{G}_1$ ?

The first row is  $0 \ 0 \ 0 \ 0$.
The second row is  $0 \ 1 \ 1 \ 0$.
The third row is  $0 \ 1 \ 0 \ 0$.

4

Determine the first nine rows and twelve columns of the generator matrix  $\mathbf{G}$.  Which statements are true?

There is at least one row with all zeros.
There is at least one row with all ones.
In each of the columns  $1,\ 5,\ 9$  there is only one single one.

5

What code sequence  $\underline {x}$  results for  $\underline {u} = (0, 1, 1, 1, 1, 0, 1, 0, 1)$?

It holds:  $\underline{x} = (1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, \ \text{...})$.
It holds:  $\underline{x} = (0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, \ \text{...})$.
It holds:  $\underline{x} = (0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, \ \text{...})$.


Solution

(1)  The memory of the considered convolutional encoder is  $m = 2$.

  • Thus,  the generator matrix  $\mathbf{G}$  is composed of the  $m + 1 \ \underline {= 3}$   submatrices  $\mathbf{G}_0,  \mathbf{G}_1$  and  $\mathbf{G}_2$.


(2)  Correct are  statement 1 and 2:

  • From the given equations
$$x_i^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)} \hspace{0.05cm},$$
$$x_i^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)} + u_{i}^{(2)} + u_{i-1}^{(2)} + u_{i-1}^{(3)} \hspace{0.05cm},$$
$$x_i^{(3)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(2)} + u_{i}^{(3)}+ u_{i-1}^{(2)} + u_{i-2}^{(3)} \hspace{0.05cm},$$
$$x_i^{(4)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)} + u_{i}^{(2)} + u_{i}^{(3)}+ u_{i-2}^{(3)},$$

it can be seen that in the whole equation set an input value  $u_i^{(j)}$  with  $j ∈ \{1,\ 2,\ 3\}$  occurs exactly eight times   ⇒   Statement 1 is true.

  • The input value  $u_i^{(1)}$  influences the outputs  $x_i^{(1)}$,  $x_i^{(2)}$  and  $x_i^{(4)}$.  Thus,  the first row of  $\mathbf{G}_0 \text{ is} \, 1 \ 1 \ 0 \ 1$   ⇒   Statement 2 is true too.
  • In contrast,  statement 3 is false:  It is not the first row of  $\mathbf{G}_0$  that is  $1 \ 0 \ 0$,  but the first column. 
  • This says that  $x_i^{(1)}$  depends only  on $u_i^{(1)}$,  but not on  $u_i^{(2)}$  or on  $u_i^{(3)}$.  It is a systematic code.


(3)  All statements are accurate:

  • In the equation set,  an input value  $u_{i–1}^{(j)}$  with  $j ∈ \{1,\ 2,\ 3\}$  occurs three times.  Thus,  $\mathbf{G}_1$  contains a total of three ones.
  • The input value  $u_{i-1}^{(2)}$  influences the outputs  $x_i^{(2)}$  and  $x_i^{(3)}$,  while  $u_{i-1}^{(3)}$  is used only for the calculation of  $x_i^{(2)}$.


Generator matrix of a convolutional code with  $k = 4, \ n = 4, \ m = 2$.

(4)  Only statement 3  is correct:

  • The following graph shows the upper left beginning  $($rows 1 to 9 and columns 1 to 12$)$  of the generator matrix  $\mathbf{G}$.
  • From this it can be seen that the first two statements are false.
  • This result holds for any systematic code with parameters  $k = 3$  and  $n = 4$.


(5)  Correct is  statement 2:

  • Generally,  $\underline{x} = \underline{u} \cdot \mathbf{G}$,  where  $\underline{u}$  and  $\underline{x}$  are sequences,  that is,  they continue to infinity. 
  • Accordingly,  the generator matrix  $\mathbf{G}$ is not limited downward or to the right.
  • If the information sequence  $\underline{u}$  is limited  $($here to  $9$  bits$)$,  the code sequence  $\underline{x}$  is also limited.
  • If one is only interested in the first bits,  it is sufficient to look only at the upper left section of the generator matrix as in the sample solution to subtask  (4).
  • Using this graph,  the result of the matrix equation  $\underline{x} = \underline{u} \cdot \mathbf{G}$  can be read off.
  • Correct is  $\underline{x} = (0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, \ ...)$  and thus answer 2.


We obtained the same result in the; subtask  (4)&nbsp of  $\text{Exercise 3.1}$.

  • Shown here are only  $9$  information bits and  $9 \cdot n/k = 12$  code bits.
  • Due to the partial matrices  $\mathbf{G}_1$  and  $\mathbf{G}_2$,  however,  (partial) ones would still result here for the code bits 13 to 20.
  • The code sequence  $\underline{x}$  is composed of the four subsequences  $\underline{x}^{(1)}, \ \text{...} \ , \ \underline{x}^{(4)}$,  which can be read in the graphic due to different coloring.