Difference between revisions of "Aufgaben:Exercise 3.6Z: Transition Diagram at 3 States"

From LNTwww
 
Line 60: Line 60:
 
{To which state  $S_{\mu}$  does the second arrow in each case go?  
 
{To which state  $S_{\mu}$  does the second arrow in each case go?  
 
|type="{}"}
 
|type="{}"}
${\rm From \ {\it S}_{\rm 1} \ to \ the state \ with \ index \ {\mu}} \ = \ ${ 3 }  
+
${\rm From \ {\it S}_{\rm 1} \ to \ the\ state \ with \ index \ {\mu}} \ = \ ${ 3 }  
${\rm From \ {\it S}_{\rm 3} \ to \ the state \ with \ index \ {\mu}} \ = \ ${ 6 }
+
${\rm From \ {\it S}_{\rm 3} \ to \ the\ state \ with \ index \ {\mu}} \ = \ ${ 6 }
${\rm From \ {\it S}_{\rm 5} \ to \ the state \ with \ index \ {\mu}} \ = \ ${ 2 }
+
${\rm From \ {\it S}_{\rm 5} \ to \ the\ state \ with \ index \ {\mu}} \ = \ ${ 2 }
${\rm From \ {\it S}_{\rm 7} \ to \ the state \ with \ index \ {\mu}} \ = \ ${ 6 }
+
${\rm From \ {\it S}_{\rm 7} \ to \ the\ state \ with \ index \ {\mu}} \ = \ ${ 6 }
 
</quiz>
 
</quiz>
  
Line 69: Line 69:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
 
[[File:P_ID2668__KC_Z_3_6b_neu.png|right|frame|Relationship between placeholders and states]]
 
[[File:P_ID2668__KC_Z_3_6b_neu.png|right|frame|Relationship between placeholders and states]]
'''(1)'''&nbsp; The placeholder $\mathbf{A}$ represents the state $S_0$ &nbsp;&#8658;&nbsp; $u_{i-1} = 0, \ u_{i-2} = 0, \ u_{i-3} = 0$.  
+
[[File:P_ID2669__KC_Z_3_6c.png|right|frame|State transition diagram with $2^3$ states]]
*This is the only state $S_{\mu}$ where one remains in the same state $S_{\mu}$ by the infobit $u_i = 0$ (red arrow).
+
 
*From the state $S_7$ &nbsp;&#8658;&nbsp; $u_{i-1} = 1, \ u_{i-2} = 1, \ u_{i-3} = 1$ one comes with $u_i = 1$ (blue arrow) also again to the state $S_7$.  
+
'''(1)'''&nbsp; The placeholder&nbsp; $\mathbf{A}$&nbsp; represents the state&nbsp; $S_0$ &nbsp; &#8658; &nbsp; $u_{i-1} = 0, \ u_{i-2} = 0, \ u_{i-3} = 0$.
*Thus, for $\mathbf{A}$ the index $\underline{\mu = 0}$ and for $\mathbf{F}$ the index $\underline{\mu = 7}$ had to be entered.
+
 +
*This is the only state&nbsp; $S_{\mu}$&nbsp; where one remains in the same state&nbsp; $S_{\mu}$&nbsp; by the info-bit&nbsp; $u_i = 0$&nbsp; (red arrow).
 +
 
 +
*From the state&nbsp; $S_7$ &nbsp; &#8658; &nbsp; $u_{i-1} = 1, \ u_{i-2} = 1, \ u_{i-3} = 1$&nbsp; one comes with&nbsp; $u_i = 1$&nbsp; (blue arrow)&nbsp; also again to the state&nbsp; $S_7$.
 +
 +
*Thus,&nbsp; for $\mathbf{A}$&nbsp; the index&nbsp; $\underline{\mu = 0}$&nbsp; and for&nbsp; $\mathbf{F}$&nbsp; the index $\underline{\mu = 7}$&nbsp; had to be entered.
  
  
  
'''(2)'''&nbsp; Starting from the state $\mathbf{A} = S_0$, one arrives at the following states according to the initial graph in a clockwise direction with the red arrows $(u_i = 0)$ or the blue arrows $(u_i = 1)$:  
+
'''(2)'''&nbsp; Starting from the state&nbsp; $\mathbf{A} = S_0$,&nbsp; one arrives at the following states according to the initial graph in a clockwise direction with the red arrows&nbsp; $(u_i = 0)$&nbsp; or the blue arrows&nbsp; $(u_i = 1)$:  
 
:$$u_{i&ndash;3} = 0, \ u_{i&ndash;2} = 0, \ u_{i&ndash;1} = 0, \ u_i = 1 &#8658; s_{i+1} = \mathbf{B} = S_1,$$
 
:$$u_{i&ndash;3} = 0, \ u_{i&ndash;2} = 0, \ u_{i&ndash;1} = 0, \ u_i = 1 &#8658; s_{i+1} = \mathbf{B} = S_1,$$
 
:$$u_{i&ndash;3} = 0, \ u_{i&ndash;2} = 0, \ u_{i&ndash;1} = 1, \ u_i = 0 &#8658; s_{i+1} = \mathbf{C} = S_2,$$
 
:$$u_{i&ndash;3} = 0, \ u_{i&ndash;2} = 0, \ u_{i&ndash;1} = 1, \ u_i = 0 &#8658; s_{i+1} = \mathbf{C} = S_2,$$
Line 86: Line 91:
 
:$$u_{i&ndash;3} = 1, \ u_{i&ndash;2} = 0, \ u_{i&ndash;1} = 0, \ u_i = 0 &#8658; s_{i+1} = \mathbf{A} = S_0.$$
 
:$$u_{i&ndash;3} = 1, \ u_{i&ndash;2} = 0, \ u_{i&ndash;1} = 0, \ u_i = 0 &#8658; s_{i+1} = \mathbf{A} = S_0.$$
  
*So the indices $\mu$ are to be entered in the <u>order 1, 2, 5, 3, 6, 4</u>.  
+
*So the indices&nbsp; $\mu$&nbsp; are to be entered in the&nbsp; <u>order 1,&nbsp; 2,&nbsp; 5,&nbsp; 3,&nbsp; 6,&nbsp; 4</u>.
*The graphic shows the connection between the placeholders and the states $S_{\mu}$.
+
 +
*The graphic shows the connection between the placeholders and the states&nbsp; $S_{\mu}$.
 +
 
  
  
 +
'''(3)'''&nbsp; From state &nbsp; $S_1$ &#8658; $u_{i&ndash;1} = 1, \ u_{i&ndash;2} = 0, \ u_{i&ndash;3} = 0$ &nbsp; one arrives with&nbsp; $u_i = 0$&nbsp; (red arrow)&nbsp; at state&nbsp; $S_2$.&nbsp; On the other hand,&nbsp; with&nbsp; $u_i = 1$&nbsp; (blue arrow)&nbsp; one ends up at the state&nbsp; $S_3$ &nbsp; &#8658; &nbsp; $u_{i&ndash;1} = 1, \ u_{i&ndash;2} = 1, \ u_{i&ndash;3} = 0$.
  
'''(3)'''&nbsp; From state $S_1$ &#8658; $u_{i&ndash;1} = 1, \ u_{i&ndash;2} = 0, \ u_{i&ndash;3} = 0$ one arrives with $u_i = 0$ (red arrow) at state $S_2$. On the other hand, with $u_i = 1$ (blue arrow) one ends up at the state $S_3$ &#8658; $u_{i&ndash;1} = 1, \ u_{i&ndash;2} = 1, \ u_{i&ndash;3} = 0$.
 
  
[[File:P_ID2669__KC_Z_3_6c.png|right|frame|State transition diagram with $2^3$ states]]
+
The adjacent graphic shows the state transition diagram with all transitions.&nbsp; From this it can be read:
 +
* From state&nbsp; $S_3$&nbsp; one comes with&nbsp; $u_i = 0$&nbsp; to state&nbsp; $S_6$.
 +
 
 +
* From state&nbsp; $S_5$&nbsp; one comes with&nbsp; $u_i = 0$&nbsp; to the state&nbsp; $S_2$.
  
The adjacent graphic shows the state transition diagram with all transitions. From this it can be read:
+
* From the state&nbsp; $S_7$&nbsp; one comes with&nbsp; $u_i = 0$&nbsp; to the state&nbsp; $S_6$.
* From state $S_3$ one comes with $u_i = 0$ to state $S_6$.
 
* From the state $S_5$ one comes with $u_i = 0$ to the state $S_2$.
 
* From the state $S_7$ one comes with $u_i = 0$ to the state $S_6$.
 
  
  
Thus, the indices are to be entered in the <u>order 3, 6, 2, 6</u>.
+
Thus,&nbsp; the indices are to be entered in the <u>order 3,&nbsp; 6,&nbsp; 2,&nbsp; 6</u>.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Latest revision as of 15:43, 14 November 2022

State transition diagram for  $m = 3$  $($incomplete$)$

In the state transition diagram of an encoder with memory  $m$  there are  $2^m$  states.  Therefore,  the diagram shown with eight states describes a convolutional encoder with memory  $m = 3$.

Usually the states are denoted by  $S_0, \ \text{...} \ , \ S_{\mu}, \ \text{...} \ , \ S_7$,  where the index  $\mu$  is determined from the occupancy of the shift register  $($contents from left to right:   $u_{i-1}, u_{i-2}, u_{i-3})$ :

$$\mu = \sum_{l = 1}^{m} \hspace{0.1cm}2\hspace{0.03cm}^{l-1} \cdot u_{i-l} \hspace{0.05cm}.$$

The state  $S_0$  therefore results for the shift register content  "$000$",  the state  $S_1$  for  "$100$"  and the state  $S_7$  for  "$111$".

However,  in the above graphic,  for the states  $S_0, \, \text{...} \, , \, S_7$  only placeholder names  $\mathbf{A}, \, \text{...} \, , \, \mathbf{H}$  are used.  In the subtasks  (1)  and  (2)  you should clarify which placeholder stands for which state.

For convolutional encoders of rate  $1/n$,  which will be exclusively considered here,  two arrows depart from each state  $S_{\mu}$ ,

  • a red one for the current information bit  $u_i = 0$  and
  • a blue one for  $u_i = 1$.


This is another reason why the state transition diagram shown is not complete.  It is to be mentioned furthermore:

  • At each state also two arrows arrive,  whereby these can be absolutely of the same color.
  • Next to the arrows there are usually the  $n$  code bits. This was also omitted here.



Hints:

  • In  $\text{Exercise 3.7Z}$  two convolutional codes with memory  $m = 3$  are examined,  both of which can be described by the transition diagram analyzed here.
  • Please include the appropriate index  $\mu$  for all questions.
  • Reference is made in particular to the sections 



Questions

1

For which states  $S_{\mu}$  do the placeholders  $\mathbf{A}$  and  $\mathbf{F}$ stand?

${\rm state} \ \mathbf{A} \ ⇒ \ {\rm index} \ {\mu} \ = \ $

${\rm state} \ \mathbf{F} \ ⇒ \ {\rm index} \ {\mu} \ = \ $

2

Also name the mappings of the other placeholders to the indexes.

${\rm state} \ \mathbf{B} \ ⇒ \ {\rm index} \ {\mu} \ = \ $

${\rm state} \ \mathbf{C} \ ⇒ \ {\rm index} \ {\mu} \ = \ $

${\rm state} \ \mathbf{D} \ ⇒ \ {\rm index} \ {\mu} \ = \ $

${\rm state} \ \mathbf{E} \ ⇒ \ {\rm index} \ {\mu} \ = \ $

${\rm state} \ \mathbf{G} \ ⇒ \ {\rm index} \ {\mu} \ = \ $

${\rm state} \ \mathbf{H} \ ⇒ \ {\rm index} \ {\mu} \ = \ $

3

To which state  $S_{\mu}$  does the second arrow in each case go?

${\rm From \ {\it S}_{\rm 1} \ to \ the\ state \ with \ index \ {\mu}} \ = \ $

${\rm From \ {\it S}_{\rm 3} \ to \ the\ state \ with \ index \ {\mu}} \ = \ $

${\rm From \ {\it S}_{\rm 5} \ to \ the\ state \ with \ index \ {\mu}} \ = \ $

${\rm From \ {\it S}_{\rm 7} \ to \ the\ state \ with \ index \ {\mu}} \ = \ $


Solution

Relationship between placeholders and states
State transition diagram with $2^3$ states

(1)  The placeholder  $\mathbf{A}$  represents the state  $S_0$   ⇒   $u_{i-1} = 0, \ u_{i-2} = 0, \ u_{i-3} = 0$.

  • This is the only state  $S_{\mu}$  where one remains in the same state  $S_{\mu}$  by the info-bit  $u_i = 0$  (red arrow).
  • From the state  $S_7$   ⇒   $u_{i-1} = 1, \ u_{i-2} = 1, \ u_{i-3} = 1$  one comes with  $u_i = 1$  (blue arrow)  also again to the state  $S_7$.
  • Thus,  for $\mathbf{A}$  the index  $\underline{\mu = 0}$  and for  $\mathbf{F}$  the index $\underline{\mu = 7}$  had to be entered.


(2)  Starting from the state  $\mathbf{A} = S_0$,  one arrives at the following states according to the initial graph in a clockwise direction with the red arrows  $(u_i = 0)$  or the blue arrows  $(u_i = 1)$:

$$u_{i–3} = 0, \ u_{i–2} = 0, \ u_{i–1} = 0, \ u_i = 1 ⇒ s_{i+1} = \mathbf{B} = S_1,$$
$$u_{i–3} = 0, \ u_{i–2} = 0, \ u_{i–1} = 1, \ u_i = 0 ⇒ s_{i+1} = \mathbf{C} = S_2,$$
$$u_{i–3} = 0, \ u_{i–2} = 1, \ u_{i–1} = 0, \ u_i = 1 ⇒ s_{i+1} = \mathbf{D} = S_5,$$
$$u_{i–3} = 1, \ u_{i–2} = 0, \ u_{i–1} = 1, \ u_i = 1 ⇒ s_{i+1} = \mathbf{E} = S_3,$$
$$u_{i–3} = 0, \ u_{i–2} = 1, \ u_{i–1} = 1, \ u_i = 1 ⇒ s_{i+1} = \mathbf{F} = S_7,$$
$$u_{i–3} = 1, \ u_{i–2} = 1, \ u_{i–1} = 1, \ u_i = 0 ⇒ s_{i+1} = \mathbf{G} = S_6,$$
$$u_{i–3} = 1, \ u_{i–2} = 1, \ u_{i–1} = 0, \ u_i = 0 ⇒ s_{i+1} = \mathbf{H} = S_4,$$
$$u_{i–3} = 1, \ u_{i–2} = 0, \ u_{i–1} = 0, \ u_i = 0 ⇒ s_{i+1} = \mathbf{A} = S_0.$$
  • So the indices  $\mu$  are to be entered in the  order 1,  2,  5,  3,  6,  4.
  • The graphic shows the connection between the placeholders and the states  $S_{\mu}$.


(3)  From state   $S_1$ ⇒ $u_{i–1} = 1, \ u_{i–2} = 0, \ u_{i–3} = 0$   one arrives with  $u_i = 0$  (red arrow)  at state  $S_2$.  On the other hand,  with  $u_i = 1$  (blue arrow)  one ends up at the state  $S_3$   ⇒   $u_{i–1} = 1, \ u_{i–2} = 1, \ u_{i–3} = 0$.


The adjacent graphic shows the state transition diagram with all transitions.  From this it can be read:

  • From state  $S_3$  one comes with  $u_i = 0$  to state  $S_6$.
  • From state  $S_5$  one comes with  $u_i = 0$  to the state  $S_2$.
  • From the state  $S_7$  one comes with  $u_i = 0$  to the state  $S_6$.


Thus,  the indices are to be entered in the order 3,  6,  2,  6.