Difference between revisions of "Aufgaben:Exercise 4.6: Product Code Generation"

From LNTwww
(Die Seite wurde neu angelegt: „{{quiz-Header|Buchseite=Kanalcodierung/Grundlegendes zu den Produktcodes }} [[File:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Cho…“)
 
 
(36 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Grundlegendes zu den Produktcodes
+
{{quiz-Header|Buchseite=Channel_Coding/The_Basics_of_Product_Codes}}
  
 +
[[File:EN_KC_A_4_6.png|right|frame|Used component codes]]
 +
A&nbsp; $\rm product\:code \ (42, \ 12)$&nbsp; shall be generated,&nbsp; based on the following component codes:
 +
* the Hamming code&nbsp; $\rm HC \ (7, \ 4, \ 3)$&nbsp; &rArr; &nbsp; $\mathcal{C}_1$,
  
 +
* the truncated Hamming code $\rm HC \ (6, \ 3, \ 3)$ &nbsp; &rArr; &nbsp; $\mathcal{C}_2$.
  
  
 +
Corresponding code tables are given on the right,&nbsp; with three rows incomplete in each case.&nbsp; These are to be completed by you.
  
 +
The code word belonging to an information block&nbsp; $\underline{u}$&nbsp; generally results according to the equation&nbsp;
 +
:$$\underline{x} = \underline{u} \cdot \mathbf{G}.$$
 +
As in&nbsp; [[Aufgaben:Aufgabe_4.6Z:_Grundlagen_der_Produktcodes|$\text{Exercise 4.6Z}$]],&nbsp; the following generator matrices are assumed here:
 +
:$${ \boldsymbol{\rm G}}_1
 +
=  \begin{pmatrix}
 +
1 &0 &0 &0 &1 &0 &1 \\
 +
0 &1 &0 &0 &1 &1 &0 \\
 +
0 &0 &1 &0 &0 &1 &1 \\
 +
0 &0 &0 &1 &1 &1 &1
 +
\end{pmatrix} \hspace{0.05cm},\hspace{0.8cm}
 +
{ \boldsymbol{\rm G}}_2
 +
=  \begin{pmatrix}
 +
1 &0 &0 &1 &1 &0  \\
 +
0 &1 &0 &1 &0 &1  \\
 +
0 &0 &1 &0 &1 &1 
 +
\end{pmatrix} \hspace{0.05cm}.$$
  
 +
Throughout the exercise,&nbsp; apply to the information block:
 +
:$${ \boldsymbol{\rm U}}
 +
=  \begin{pmatrix}
 +
0 &1 &1 &0  \\
 +
0 &0 &0 &0  \\
 +
1 &1 &1 &0 
 +
\end{pmatrix} \hspace{0.05cm}.$$
  
 +
Searched for according to the nomenclature in section&nbsp; [[Channel_Coding/The_Basics_of_Product_Codes#Basic_structure_of_a_product_code|"Basic structure of a product code"]]:
 +
* the parity-check matrix &nbsp; $\mathbf{P}^{(1)}$ &nbsp; with respect to the horizontal code&nbsp; $\mathcal{C}_1$,
  
 +
* the parity-check matrix&nbsp; $\mathbf{P}^{(2)}$&nbsp; with respect to the vertical code&nbsp; $\mathcal{C}_2$,
  
}}
+
* the checks&ndash;on&ndash;checks matrix&nbsp; $\mathbf{P}^{(12)}$.
  
[[File:|right|]]
 
  
  
===Fragebogen===
 
  
 +
 +
<u>Hints:</u>
 +
*This exercise belongs to the chapter&nbsp; [[Channel_Coding/The_Basics_of_Product_Codes|"Basics of Product Code"]].
 +
 +
*Reference is also  made to the section&nbsp; [[Channel_Coding/The_Basics_of_Product_Codes#Basic_structure_of_a_product_code|"Basic structure of a product code"]].
 +
 +
*The two component codes are also covered in the&nbsp; [[Aufgaben:Aufgabe_4.6Z:_Grundlagen_der_Produktcodes|$\text{Exercise 4.6Z}$]]&nbsp;.
 +
 +
 +
 +
 +
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{What are the results of row coding with the&nbsp; $(7, \ 4, \ 3)$ code&nbsp; $\mathcal{C}_1$?
 +
|type="[]"}
 +
+ 1. row: &nbsp; $\underline{u} = (0, \, 1, \, 1, \, 0) \ \Rightarrow \ \underline{x} = (0, \, 1, \, 1, \, 0, \, 1, \, 0, \, 1)$.
 +
- 2. row: &nbsp; $\underline{u} = (0, \, 0, \, 0, \, 0) \ \Rightarrow \ \underline{x} = (1, \, 1, \, 1, \, 1, \, 1, \, 1, \, 1)$.
 +
+ 3. row: &nbsp; $\underline{u} = (1, \, 1, \, 1, \, 0) \ \Rightarrow \ \underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, 0)$.
 +
 
 +
{What are the results of column coding with the&nbsp; $(6, \ 3, \ 3)$ code&nbsp; $\mathcal{C}_2$?
 
|type="[]"}
 
|type="[]"}
- Falsch
+
+ 1. column: &nbsp; $\underline{u} = (0, \, 0, \, 1) \ \Rightarrow \ \underline{x} = (0, \, 0, \, 1, \, 0, \, 1, \, 1)$.
+ Richtig
+
+ 2. column: &nbsp; $\underline{u} = (1, \, 0, \, 1) \ \Rightarrow \ \underline{x} = (1, \, 0, \, 1, \, 1, \, 0, \, 1)$.
 +
- 3. column: &nbsp; $\underline{u} = (1, \, 0, \, 1) \ \Rightarrow \ \underline{x} = (1, \, 1, \, 0, \, 0, \, 1, \, 1)$.
 +
+ 4. column: &nbsp; $\underline{u} = (0, \, 0, \, 0) \ \Rightarrow \ \underline{x} = (0, \, 0, \, 0, \, 0, \,0, \, 0)$.
  
 +
{What statements apply to the checks&ndash;on&ndash;checks matrix?
 +
|type="[]"}
 +
+ The first row is&nbsp; $(1, \, 0, \, 1)$&nbsp; and the first column is&nbsp; $(1, \, 1, \, 0)$.
 +
+ The second row is&nbsp; $(1, \, 0, \, 1)$&nbsp; and the second column is&nbsp; $(0, \, 0, \, 0)$.
 +
- The third row is&nbsp; $(0, \, 0, \, 0)$&nbsp; and the third column is&nbsp; $(0, \, 0, \, 0)$.
 +
</quiz>
  
{Input-Box Frage
+
===Solution===
|type="{}"}
+
{{ML-Kopf}}
$\alpha$ = { 0.3 }
+
'''(1)'''&nbsp; Correct are the&nbsp; <u>proposed solutions 1 and 3</u>:&nbsp; In general:&nbsp;
 +
:$$\underline{x} = \underline{u} \cdot \mathbf{G}.$$
 +
From this follows for
 +
:* the first row vector:
 +
:$$\begin{pmatrix}
 +
0 &1 &1 &0 
 +
\end{pmatrix}  \cdot
 +
  \begin{pmatrix}
 +
1 &0 &0 &0 &1 &0 &1 \\
 +
0 &1 &0 &0 &1 &1 &0 \\
 +
0 &0 &1 &0 &0 &1 &1 \\
 +
0 &0 &0 &1 &1 &1 &1
 +
\end{pmatrix}
 +
=\begin{pmatrix}
 +
0 &1 &1 &0 &1 &0 &1
 +
\end{pmatrix} \hspace{0.05cm},$$
  
 +
:* the second row vector:
 +
:$$\begin{pmatrix}
 +
0 &0 &0 &0 
 +
\end{pmatrix}  \cdot
 +
  \begin{pmatrix}
 +
1 &0 &0 &0 &1 &0 &1 \\
 +
0 &1 &0 &0 &1 &1 &0 \\
 +
0 &0 &1 &0 &0 &1 &1 \\
 +
0 &0 &0 &1 &1 &1 &1
 +
\end{pmatrix}
 +
=\begin{pmatrix}
 +
0 &0 &0 &0 &0 &0 &0
 +
\end{pmatrix} \hspace{0.05cm},$$
  
 +
:* the third row vector:
 +
:$$\begin{pmatrix}
 +
1 &1 &1 &0 
 +
\end{pmatrix}  \cdot
 +
  \begin{pmatrix}
 +
1 &0 &0 &0 &1 &0 &1 \\
 +
0 &1 &0 &0 &1 &1 &0 \\
 +
0 &0 &1 &0 &0 &1 &1 \\
 +
0 &0 &0 &1 &1 &1 &1
 +
\end{pmatrix}
 +
=\begin{pmatrix}
 +
1 &1 &1 &0 &0 &0 &0
 +
\end{pmatrix} \hspace{0.05cm}.$$
  
</quiz>
 
  
===Musterlösung===
+
'''(2)'''&nbsp; Correct are the&nbsp; <u>proposed solutions 1, 2 and 4</u>:
{{ML-Kopf}}
+
:$$\begin{pmatrix}
'''1.'''
+
0 &0 &1 
'''2.'''
+
\end{pmatrix}  \cdot
'''3.'''
+
  \begin{pmatrix}
'''4.'''
+
1 &0 &0 &1 &1 &0  \\
'''5.'''
+
0 &1 &0 &1 &0 &1  \\
'''6.'''
+
0 &0 &1 &0 &1 &1
'''7.'''
+
\end{pmatrix}
{{ML-Fuß}}
+
=\begin{pmatrix}
 +
0 &0 &1 &0 &1 &1
 +
\end{pmatrix} \hspace{0.05cm},$$
 +
:$$\begin{pmatrix}
 +
1 &0 &1 
 +
\end{pmatrix}  \cdot
 +
  \begin{pmatrix}
 +
1 &0 &0 &1 &1 &0  \\
 +
0 &1 &0 &1 &0 &1  \\
 +
0 &0 &1 &0 &1 &1
 +
\end{pmatrix}  
 +
=\begin{pmatrix}
 +
1 &0 &1 &1 &0 &1  
 +
\end{pmatrix} \hspace{0.05cm}.$$
 +
 
 +
To this subtask is to be noted further:
 +
# The given first column is correct if only because it coincides with a row&nbsp; $($the third$)$&nbsp; of the generator matrix $\mathbf{G}_2$.
 +
# The third column of the two-dimensional code word should be identical to the second column,&nbsp; since the same code word&nbsp; $(1, \, 0, \, 1)$&nbsp; is assumed.
 +
# However,&nbsp; the given vector&nbsp; $(1, \, 1, \, 0, \, 0, \, 1, \, 1)$&nbsp; cannot be correct if only because&nbsp; $\mathcal{C}_2$&nbsp; is a systematic code just like&nbsp; $\mathcal{C}_1$.
 +
# Also the truncated&nbsp; $(6, \ 3, \ 3)$&nbsp; Hamming code $C_2$&nbsp; is linear,&nbsp; so that the assignment&nbsp; $\underline{u} = (0, \, 0, \, 0) \ \Rightarrow \ \ \underline{x} = (0, \, 0, \, 0, \, 0)$&nbsp; can be stated without calculation.
  
  
 +
[[File:EN_KC_A_4_6_c.png|right|frame|Complete code tables]]
 +
'''(3)'''&nbsp; Given on the right are the complete code tables
  
[[Category:Aufgaben zu Kanalcodierung|^4.2 Grundlegendes zu den Produktcodes
+
* of the Hamming code $(7, \ 4, \ 3)$,&nbsp; and
 +
   
 +
* of the truncated Hamming code $(6, \ 3, \ 3)$.  
  
  
 +
One can see from this&nbsp; $($without it being of interest for this exercise$)$&nbsp; that the codes considered here each have Hamming distance&nbsp; $d_{\rm min} = 3$.
  
 +
[[File:P_ID3012__KC_A_4_6d_v3.png|left|frame|Wanted product code]]
 +
<br><br>
 +
*The left graph shows the result of the whole coding.
  
 +
*At the bottom right you can see the checks&ndash;on&ndash;checks matrix of dimension&nbsp; $3 &times 3$.
 +
<br clear=all>
 +
Concerning the subtask&nbsp; '''(3)'''&nbsp; the&nbsp; <u>suggested solutions 1 and 2</u>&nbsp; are correct:
 +
*It is a coincidence that here in the checks&ndash;on&ndash;checks matrix two rows and two columns are identical.
  
 +
*It doesn't matter whether rows 4 to 6 of the total matrix are obtained using the code&nbsp; $\mathcal{C}_1$&nbsp; or columns 5 to 7 are obtained using the code&nbsp; $\mathcal{C}_2$.
 +
{{ML-Fuß}}
  
  
  
^]]
+
[[Category:Channel Coding: Exercises|^4.2 About the Product Codes^]]

Latest revision as of 17:09, 6 December 2022

Used component codes

A  $\rm product\:code \ (42, \ 12)$  shall be generated,  based on the following component codes:

  • the Hamming code  $\rm HC \ (7, \ 4, \ 3)$  ⇒   $\mathcal{C}_1$,
  • the truncated Hamming code $\rm HC \ (6, \ 3, \ 3)$   ⇒   $\mathcal{C}_2$.


Corresponding code tables are given on the right,  with three rows incomplete in each case.  These are to be completed by you.

The code word belonging to an information block  $\underline{u}$  generally results according to the equation 

$$\underline{x} = \underline{u} \cdot \mathbf{G}.$$

As in  $\text{Exercise 4.6Z}$,  the following generator matrices are assumed here:

$${ \boldsymbol{\rm G}}_1 = \begin{pmatrix} 1 &0 &0 &0 &1 &0 &1 \\ 0 &1 &0 &0 &1 &1 &0 \\ 0 &0 &1 &0 &0 &1 &1 \\ 0 &0 &0 &1 &1 &1 &1 \end{pmatrix} \hspace{0.05cm},\hspace{0.8cm} { \boldsymbol{\rm G}}_2 = \begin{pmatrix} 1 &0 &0 &1 &1 &0 \\ 0 &1 &0 &1 &0 &1 \\ 0 &0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.05cm}.$$

Throughout the exercise,  apply to the information block:

$${ \boldsymbol{\rm U}} = \begin{pmatrix} 0 &1 &1 &0 \\ 0 &0 &0 &0 \\ 1 &1 &1 &0 \end{pmatrix} \hspace{0.05cm}.$$

Searched for according to the nomenclature in section  "Basic structure of a product code":

  • the parity-check matrix   $\mathbf{P}^{(1)}$   with respect to the horizontal code  $\mathcal{C}_1$,
  • the parity-check matrix  $\mathbf{P}^{(2)}$  with respect to the vertical code  $\mathcal{C}_2$,
  • the checks–on–checks matrix  $\mathbf{P}^{(12)}$.



Hints:



Questions

1

What are the results of row coding with the  $(7, \ 4, \ 3)$ code  $\mathcal{C}_1$?

1. row:   $\underline{u} = (0, \, 1, \, 1, \, 0) \ \Rightarrow \ \underline{x} = (0, \, 1, \, 1, \, 0, \, 1, \, 0, \, 1)$.
2. row:   $\underline{u} = (0, \, 0, \, 0, \, 0) \ \Rightarrow \ \underline{x} = (1, \, 1, \, 1, \, 1, \, 1, \, 1, \, 1)$.
3. row:   $\underline{u} = (1, \, 1, \, 1, \, 0) \ \Rightarrow \ \underline{x} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, 0)$.

2

What are the results of column coding with the  $(6, \ 3, \ 3)$ code  $\mathcal{C}_2$?

1. column:   $\underline{u} = (0, \, 0, \, 1) \ \Rightarrow \ \underline{x} = (0, \, 0, \, 1, \, 0, \, 1, \, 1)$.
2. column:   $\underline{u} = (1, \, 0, \, 1) \ \Rightarrow \ \underline{x} = (1, \, 0, \, 1, \, 1, \, 0, \, 1)$.
3. column:   $\underline{u} = (1, \, 0, \, 1) \ \Rightarrow \ \underline{x} = (1, \, 1, \, 0, \, 0, \, 1, \, 1)$.
4. column:   $\underline{u} = (0, \, 0, \, 0) \ \Rightarrow \ \underline{x} = (0, \, 0, \, 0, \, 0, \,0, \, 0)$.

3

What statements apply to the checks–on–checks matrix?

The first row is  $(1, \, 0, \, 1)$  and the first column is  $(1, \, 1, \, 0)$.
The second row is  $(1, \, 0, \, 1)$  and the second column is  $(0, \, 0, \, 0)$.
The third row is  $(0, \, 0, \, 0)$  and the third column is  $(0, \, 0, \, 0)$.


Solution

(1)  Correct are the  proposed solutions 1 and 3:  In general: 

$$\underline{x} = \underline{u} \cdot \mathbf{G}.$$

From this follows for

  • the first row vector:
$$\begin{pmatrix} 0 &1 &1 &0 \end{pmatrix} \cdot \begin{pmatrix} 1 &0 &0 &0 &1 &0 &1 \\ 0 &1 &0 &0 &1 &1 &0 \\ 0 &0 &1 &0 &0 &1 &1 \\ 0 &0 &0 &1 &1 &1 &1 \end{pmatrix} =\begin{pmatrix} 0 &1 &1 &0 &1 &0 &1 \end{pmatrix} \hspace{0.05cm},$$
  • the second row vector:
$$\begin{pmatrix} 0 &0 &0 &0 \end{pmatrix} \cdot \begin{pmatrix} 1 &0 &0 &0 &1 &0 &1 \\ 0 &1 &0 &0 &1 &1 &0 \\ 0 &0 &1 &0 &0 &1 &1 \\ 0 &0 &0 &1 &1 &1 &1 \end{pmatrix} =\begin{pmatrix} 0 &0 &0 &0 &0 &0 &0 \end{pmatrix} \hspace{0.05cm},$$
  • the third row vector:
$$\begin{pmatrix} 1 &1 &1 &0 \end{pmatrix} \cdot \begin{pmatrix} 1 &0 &0 &0 &1 &0 &1 \\ 0 &1 &0 &0 &1 &1 &0 \\ 0 &0 &1 &0 &0 &1 &1 \\ 0 &0 &0 &1 &1 &1 &1 \end{pmatrix} =\begin{pmatrix} 1 &1 &1 &0 &0 &0 &0 \end{pmatrix} \hspace{0.05cm}.$$


(2)  Correct are the  proposed solutions 1, 2 and 4:

$$\begin{pmatrix} 0 &0 &1 \end{pmatrix} \cdot \begin{pmatrix} 1 &0 &0 &1 &1 &0 \\ 0 &1 &0 &1 &0 &1 \\ 0 &0 &1 &0 &1 &1 \end{pmatrix} =\begin{pmatrix} 0 &0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.05cm},$$
$$\begin{pmatrix} 1 &0 &1 \end{pmatrix} \cdot \begin{pmatrix} 1 &0 &0 &1 &1 &0 \\ 0 &1 &0 &1 &0 &1 \\ 0 &0 &1 &0 &1 &1 \end{pmatrix} =\begin{pmatrix} 1 &0 &1 &1 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$

To this subtask is to be noted further:

  1. The given first column is correct if only because it coincides with a row  $($the third$)$  of the generator matrix $\mathbf{G}_2$.
  2. The third column of the two-dimensional code word should be identical to the second column,  since the same code word  $(1, \, 0, \, 1)$  is assumed.
  3. However,  the given vector  $(1, \, 1, \, 0, \, 0, \, 1, \, 1)$  cannot be correct if only because  $\mathcal{C}_2$  is a systematic code just like  $\mathcal{C}_1$.
  4. Also the truncated  $(6, \ 3, \ 3)$  Hamming code $C_2$  is linear,  so that the assignment  $\underline{u} = (0, \, 0, \, 0) \ \Rightarrow \ \ \underline{x} = (0, \, 0, \, 0, \, 0)$  can be stated without calculation.


Complete code tables

(3)  Given on the right are the complete code tables

  • of the Hamming code $(7, \ 4, \ 3)$,  and
  • of the truncated Hamming code $(6, \ 3, \ 3)$.


One can see from this  $($without it being of interest for this exercise$)$  that the codes considered here each have Hamming distance  $d_{\rm min} = 3$.

Wanted product code



  • The left graph shows the result of the whole coding.
  • At the bottom right you can see the checks–on–checks matrix of dimension  $3 × 3$.


Concerning the subtask  (3)  the  suggested solutions 1 and 2  are correct:

  • It is a coincidence that here in the checks–on–checks matrix two rows and two columns are identical.
  • It doesn't matter whether rows 4 to 6 of the total matrix are obtained using the code  $\mathcal{C}_1$  or columns 5 to 7 are obtained using the code  $\mathcal{C}_2$.