Difference between revisions of "Channel Coding/Distance Characteristics and Error Probability Bounds"

From LNTwww
 
(92 intermediate revisions by 7 users not shown)
Line 1: Line 1:
 
   
 
   
 
{{Header
 
{{Header
|Untermenü=Faltungscodierung und geeignete Decoder
+
|Untermenü=Convolutional Codes and Their Decoding
|Vorherige Seite=Decodierung von Faltungscodes
+
|Vorherige Seite=Decoding of Convolutional Codes
|Nächste Seite=Soft–in Soft–out Decoder
+
|Nächste Seite=Soft-in Soft-Out Decoder
 
}}
 
}}
  
== Freie Distanz vs. Minimale Distanz ==
+
== Free distance vs. minimum distance ==
 
<br>
 
<br>
Eine äußerst wichtige Kenngröße hinsichtlich der Fehlerwahrscheinlichkeit eines linearen Blockcodes ist die <i>minimale Distanz</i> zwischen zwei Codeworten:
+
An important parameter regarding the error probability of linear block codes is the&nbsp; "minimum distance"&nbsp; between two code words &nbsp; $\underline{x}$ &nbsp; and &nbsp; $\underline{x}\hspace{0.05cm}'$:
  
:<math>d_{\rm min}(\mathcal{C}) =
+
::<math>d_{\rm min}(\mathcal{C}) =
\min_{\substack{\underline{x},\hspace{0.05cm}\underline{x}' \hspace{0.05cm}\in \hspace{0.05cm} \mathcal{C} \\ {\underline{x}} \hspace{0.05cm}\ne \hspace{0.05cm} \underline{x}'}}\hspace{0.1cm}d_{\rm H}(\underline{x}, \hspace{0.05cm}\underline{x}')
+
\min_{\substack{\underline{x},\hspace{0.05cm}\underline{x}\hspace{0.05cm}' \hspace{0.05cm}\in \hspace{0.05cm} \mathcal{C} \\ {\underline{x}} \hspace{0.05cm}\ne \hspace{0.05cm} \underline{x}\hspace{0.05cm}'}}\hspace{0.1cm}d_{\rm H}(\underline{x}, \hspace{0.05cm}\underline{x}\hspace{0.05cm}')
 
=
 
=
 
\min_{\substack{\underline{x} \hspace{0.05cm}\in \hspace{0.05cm} \mathcal{C} \\ {\underline{x}} \hspace{0.05cm}\ne \hspace{0.05cm} \underline{0}}}\hspace{0.1cm}w_{\rm H}(\underline{x})
 
\min_{\substack{\underline{x} \hspace{0.05cm}\in \hspace{0.05cm} \mathcal{C} \\ {\underline{x}} \hspace{0.05cm}\ne \hspace{0.05cm} \underline{0}}}\hspace{0.1cm}w_{\rm H}(\underline{x})
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
Der zweite Gleichungsteil ergibt sich aus der Tatsache, dass jeder lineare Code auch das Nullwort $(\underline{0})$ beinhaltet. Zweckmäßigerweise setzt man deshalb $\underline{x}' = \underline{0}$, so dass die [[Kanalcodierung/Zielsetzung_der_Kanalcodierung#Einige_wichtige_Definitionen_zur_Blockcodierung| Hamming&ndash;Distanz]] $d_{\rm H}(\underline{x}, \ \underline{0})$ das gleiche Ergebnis liefert wie das Hamming&ndash;Gewicht $w_{\rm H}(\underline{x})$.<br>
+
*The second part of the equation arises from the fact that every linear code also includes the zero word &nbsp; &rArr; &nbsp; $(\underline{0})$.  
  
{{Beispiel}}''':''' Die nachfolgende Tabelle zeigt die 16 Codeworte des [[Kanalcodierung/Allgemeine_Beschreibung_linearer_Blockcodes#Einige_Eigenschaften_des_.287.2C_4.2C_3.29.E2.80.93Hamming.E2.80.93Codes| (7, 4, 3)&ndash;Hamming&ndash;Codes]].<br>
+
*It is therefore convenient to set&nbsp; $\underline{x}\hspace{0.05cm}' = \underline{0}$,&nbsp; so that the&nbsp; [[Channel_Coding/Objective_of_Channel_Coding#Important_definitions_for_block_coding| $\text{Hamming  distance}$]] &nbsp; $d_{\rm H}(\underline{x}, \ \underline{0})$ &nbsp; gives the same result as the Hamming weight &nbsp; $w_{\rm H}(\underline{x})$.<br>
  
[[File:P ID2684 KC T 3 5 S1 neu.png|center|frame| Codewort des $(7, 4, 3)$–Hamming–Codes|class=fit]]<br>
 
  
Alle Codeworte außer dem Nullwort $(\underline{0})$ beinhalten mindestens drei Einsen&nbsp;&#8658;&nbsp; $d_{\rm min} = 3$. Es gibt sieben Codeworte mit drei Einsen, sieben mit vier Einsen und je eines ohne Einsen bzw. mit sieben Einsen.{{end}}<br>
+
{{GraueBox|TEXT=
 +
$\text{Example 1:}$&nbsp; The table shows the&nbsp; $16$&nbsp; code words of of an exemplary&nbsp; [[Channel_Coding/Examples_of_Binary_Block_Codes#Hamming_Codes|$\text{HC (7, 4, 3)}$]]&nbsp; $($see &nbsp;$\text{Examples 6 and 7})$.<br>
 +
[[File:P ID2684 KC T 3 5 S1 neu.png|right|frame| Code words of the considered&nbsp; $(7, 4, 3)$ Hamming code|class=fit]]
  
Die <b>freie Distanz</b> $d_{\rm F}$ eines Faltungscodes (<i>Convolution Code</i> &#8658; ${\rm CC}$) unterscheidet sich formelmäßig nicht von der minimalen Distanz eines linearen Blockcodes:
+
You can see:
 +
*All code words except the null word&nbsp; $(\underline{0})$&nbsp; contain at least three ones &nbsp; &#8658; &nbsp; $d_{\rm min} = 3$.
 +
 +
*There are
 +
:#seven code words with three&nbsp; "ones"&nbsp; $($highlighted in yellow$)$,
 +
:#seven with four&nbsp; "ones"&nbsp; $($highlighted in green$)$,&nbsp; and
 +
:#one each with no&nbsp; "ones" and seven&nbsp; "ones".}}
 +
<br clear=all>
  
:<math>d_{\rm F}(\mathcal{CC}) =
+
The&nbsp; &raquo;<b>free distance</b>&laquo;&nbsp; $d_{\rm F}$&nbsp; of a convolutional code&nbsp;  $(\mathcal{CC})$&nbsp; is formulaically no different from the minimum distance of a linear block code:
\min_{\substack{\underline{x},\hspace{0.05cm}\underline{x}' \hspace{0.05cm}\in \hspace{0.05cm} \mathcal{CC} \\ {\underline{x}} \hspace{0.05cm}\ne \hspace{0.05cm} \underline{x}'}}\hspace{0.1cm}d_{\rm H}(\underline{x}, \hspace{0.05cm}\underline{x}')
+
 
 +
::<math>d_{\rm F}(\mathcal{CC}) =
 +
\min_{\substack{\underline{x},\hspace{0.05cm}\underline{x}\hspace{0.05cm}' \hspace{0.05cm}\in \hspace{0.05cm} \mathcal{CC} \\ {\underline{x}} \hspace{0.05cm}\ne \hspace{0.05cm} \underline{x}\hspace{0.05cm}'}}\hspace{0.1cm}d_{\rm H}(\underline{x}, \hspace{0.05cm}\underline{x}\hspace{0.05cm}')
 
=
 
=
 
\min_{\substack{\underline{x} \hspace{0.05cm}\in \hspace{0.05cm} \mathcal{CC} \\ {\underline{x}} \hspace{0.05cm}\ne \hspace{0.05cm} \underline{0}}}\hspace{0.1cm}w_{\rm H}(\underline{x})
 
\min_{\substack{\underline{x} \hspace{0.05cm}\in \hspace{0.05cm} \mathcal{CC} \\ {\underline{x}} \hspace{0.05cm}\ne \hspace{0.05cm} \underline{0}}}\hspace{0.1cm}w_{\rm H}(\underline{x})
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
In der Literatur wird anstelle von $d_{\rm F}$ teilweise auch $d_{&#8734;}$ verwendet.
+
[[File:P ID2685 KC T 3 5 S1c v1.png|right|frame| Some paths wih&nbsp; $w(\underline{x}) = d_{\rm F} = 5$|class=fit]]
*Wesentlicher Unterschied zur minimalen Distanz ist, dass bei Faltungscodes nicht Informations&ndash; und Codeworte zu betrachten sind, sondern Sequenzen mit der Eigenschaft [[Kanalcodierung/Grundlagen_der_Faltungscodierung#Voraussetzungen_und_Definitionen semi&ndash;infinite]].<br>
+
In the literature instead of&nbsp; "$d_{\rm F}$"&nbsp; sometimes is also used&nbsp; "$d_{&#8734;}$".
 +
 
 +
The graph shows three of the infinite paths with the minimum Hamming weight&nbsp; $w_{\rm H, \ min}(\underline{x}) = d_{\rm F} = 5$.<br>
 +
 
 +
*Major difference to the minimal distance&nbsp; $d_{\rm min}$&nbsp; of other codes is
 +
:#that in convolutional codes not information words and code words are to be considered,&nbsp;
 +
:#but sequences with the property&nbsp; [[Channel_Coding/Basics_of_Convolutional_Coding#Requirements_and_definitions| &raquo;$\text{semi&ndash;infinite}$&laquo;]].&nbsp;
 +
 
 +
*Each encoded sequence&nbsp; $\underline{x}$&nbsp; describes a path through the trellis.
 +
 +
*The&nbsp; "free distance"&nbsp; is the smallest possible Hamming weight of such a path&nbsp; $($except for the zero path$)$.<br>
  
*Jede Codesequenz $\underline{x}$ beschreibt einen Pfad durch das Trellis. Die freie Distanz ist dabei das kleinstmögliche Hamming&ndash;Gewicht eines solchen Pfades (mit Ausnahme des Nullpfades).<br>
 
  
[[File:P ID2685 KC T 3 5 S1c v1.png|center|frame| Einige Pfade mit $w(\underline{x}) = d_{\rm F}$|class=fit]]<br>
 
  
Die Grafik zeigt drei der unendlich vielen Pfade mit dem minimalen Hamming&ndash;Gewicht $w_{\rm H}(\underline{x}) = d_{\rm F} = 5$.<br>
 
  
== Pfadgewichtsfunktion (1) ==
+
== Path weighting enumerator function==
 
<br>
 
<br>
Für jeden linearen Blockcode lässt sich wegen der endlichen Anzahl an Codeworten $\underline{x}$ in einfacher Weise eine Gewichtsfunktion angeben. Für das Beispiel auf der [[Kanalcodierung/Distanzeigenschaften_und_Fehlerwahrscheinlichkeitsschranken#Freie_Distanz_vs._Minimale_Distanz| letzten Seite]] lautet diese:
+
For any linear block code,&nbsp; a weight enumerator function can be given in a simple way because of the finite number of code words&nbsp; $\underline{x}$.&nbsp;
  
:<math>W(X) = 1 + 7 \cdot X^{3} + 7 \cdot X^{4} + X^{7}\hspace{0.05cm}.</math>
+
For the&nbsp; [[Channel_Coding/Distance_Characteristics_and_Error_Probability_Bounds#Free_distance_vs._minimum_distance|$\text{Example 1}$]]&nbsp; in the previous section this is:
  
Bei einem (nicht terminierten) Faltungscode kann keine solche Gewichtsfunktion angegegeben werden, da es unendlich viele, unendlich lange Codesequenzen $\underline{x}$ gibt, und damit auch unendlich viele Trellispfade. Um dieses Problem in den Griff zu bekommen, gehen wir nun von folgenden Voraussetzungen aus:
+
::<math>W(X) = 1 + 7 \cdot X^{3} + 7 \cdot X^{4} + X^{7}\hspace{0.05cm}.</math>
*Als Bezugsgröße für das Trellisdiagramm wählen wir stets den Pfad der Codesequenz $\underline{x} = \underline{0}$ und nennen diesen den <i>Nullpfad</i> $\varphi_0$.<br>
+
[[File:P ID2686 KC T 3 5 S2a v1.png|right|frame|Some paths and their path weightings|class=fit]]
  
*Desweiteren betrachten wir nur noch solche Pfade $\varphi_j &#8712; {\it \Phi}$, die alle zu einer vorgegebenen Zeit $t$ vom Nullpfad abweichen und irgendwann wieder zu diesem zurückkehren.<br><br>
+
In the case of a&nbsp; $($non-terminated$)$&nbsp; convolutional code,&nbsp; no such weight function can be given,&nbsp; since there are infinitely many,&nbsp; infinitely long encoded sequences&nbsp; $\underline{x}$&nbsp; and thus also infinitely many trellis paths.  
  
Obwohl nur ein Bruchteil aller Trellispfade zu dieser Menge ${\it \Phi}$ gehören, beinhaltet ${\it \Phi} = \{\varphi_1, \ \varphi_2, \ \varphi_3, \ ...\}$ noch immer eine unbegrenzte Menge an Pfaden. $\varphi_0$ gehört nicht zu dieser Menge.<br>
+
To get a grip on this problem,&nbsp; we now assume the following:
 +
*As a reference for the trellis diagram,&nbsp; we always choose the path of the encoded sequence&nbsp; $\underline{x} = \underline{0}$&nbsp; and call this the&nbsp; "zero path"&nbsp; $\varphi_0$.<br>
  
[[File:P ID2686 KC T 3 5 S2a v1.png|center|frame|Einige Pfade und ihre Pfadgewichte|class=fit]]<br>
+
*We now consider only paths &nbsp; $\varphi_j &#8712; {\it \Phi}$&nbsp; that all deviate from the zero path at a given time&nbsp; $t$&nbsp; and return to it at some point later.<br>
  
Im obigen Trellis sind einige Pfade $\varphi_j &#8712; {\it \Phi}$ eingezeichnet:
+
*Although only a fraction of all paths belong to the set&nbsp; ${\it \Phi}$,&nbsp; contains the remainder quantity&nbsp; ${\it \Phi} = \{\varphi_1, \ \varphi_2, \ \varphi_3, \ \text{...} \}$&nbsp; still an unbounded set of paths&nbsp; $\varphi_0$&nbsp; is not one of them.<br>
*Der gelbe Pfad $\varphi_1$ gehört zur Sequenz $\underline{x}_1 = (11, 10, 11)$ mit dem Hamming&ndash;Gewicht $w_{\rm H}(\underline{x}_1) = 5$. Damit ist auch das  Pfadgewicht $w(\varphi_1) = 5$. Aufgrund der Festlegung des Abzweigzeitpunktes $t$ hat nur noch dieser einzige Pfad $\varphi_1$ die freie Distanz $d_{\rm F} = 5$ zum Nullpfad &nbsp;&#8658;&nbsp; $A_5 = 1$.<br>
 
  
*Für die beiden grünen Pfade  mit den korrespondierenden Sequenzen $\underline{x}_2 = (11, 01, 01, 11)$ bzw. $\underline{x}_3 = (11, 10, 00, 10, 11)$ gilt $w(\varphi_2) = w(\varphi_3) = 6$. Kein anderer Pfad weist das Pfadgewicht $6$ auf. Wir berücksichtigen diese Tatsache  durch den Koeffizienten $A_6 = 2$.<br>
 
  
*Eingezeichnet ist auch der graue Pfad $\varphi_4$, assoziiert mit der Sequenz $\underline{x}_4 = (11, 01, 10, 01, 11)$ &nbsp;&#8658;&nbsp; $w(\varphi_4) = 7$. Auch die Sequenzen $\underline{x}_5 = (11, 01, 01, 00, 10, 11), \ \underline{x}_6 = (11, 10, 00, 01, 01, 11)$ und $\underline{x}_7 = (11, 10, 00, 10, 00, 10, 11)$ weisen jeweils das gleiche Pfadgewicht $7$ auf &nbsp;&#8658;&nbsp; $A_7 = 4$.<br><br>
+
In the above trellis some paths&nbsp; $\varphi_j &#8712; {\it \Phi}$&nbsp; are drawn:
 +
*The yellow path&nbsp; $\varphi_1$&nbsp; belongs to the sequence&nbsp; $\underline{x}_1 = (11, 10, 11)$&nbsp; with Hamming weight&nbsp; $w_{\rm H}(\underline{x}_1) = 5$.&nbsp; Thus,&nbsp; the path weighting&nbsp; $w(\varphi_1) = 5$.&nbsp; Due to the definition of the branching time&nbsp; $t$&nbsp; only this single path&nbsp; $\varphi_1$&nbsp; has the free distance&nbsp; $d_{\rm F} = 5$&nbsp; to the zero path &nbsp; &#8658; &nbsp; $A_5 = 1$.<br>
  
Damit lautet die Pfadgewichtsfunktion (englisch: <i>Path Weight Enumerator Function</i>, PWEF):
+
*For the two green paths with corresponding sequences&nbsp; $\underline{x}_2 = (11, 01, 01, 11)$&nbsp; resp. &nbsp; $\underline{x}_3 = (11, 10, 00, 10, 11)$ &nbsp;  &rArr; &nbsp; $w(\varphi_2) = w(\varphi_3) = 6$.&nbsp; No other path exhibits the path weighting&nbsp; $6$.&nbsp; We take this fact into account by the coefficient&nbsp; $A_6 = 2$.<br>
  
:<math>T(X) = A_5 \cdot X^5 + A_6 \cdot X^6  + A_7 \cdot X^7 + ... \hspace{0.1cm}=  X^5 + 2 \cdot X^6  + 4 \cdot X^7+ ... \hspace{0.1cm}
+
*Also drawn is the gray path&nbsp; $\varphi_4$,&nbsp; associated with the sequence&nbsp; $\underline{x}_4 = (11, 01, 10, 01, 11)$ &nbsp; &#8658; &nbsp; $w(\varphi_4) = 7$.&nbsp; Also,&nbsp; the sequences&nbsp; $\underline{x}_5 = (11, 01, 01, 00, 10, 11)$,&nbsp; $\underline{x}_6 = (11, 10, 00, 01, 01, 11)$&nbsp; and&nbsp; $\underline{x}_7 = (11, 10, 00, 10, 00, 10, 11)$&nbsp; have the same path weighting&nbsp; "$7$"&nbsp; &nbsp; &#8658; &nbsp; $A_7 = 4$.<br><br>
 +
 
 +
Thus,&nbsp; the path weighting enumerator function is for this example:
 +
 
 +
::<math>T(X) = A_5 \cdot X^5 + A_6 \cdot X^6  + A_7 \cdot X^7 + \text{...} \hspace{0.1cm}=  X^5 + 2 \cdot X^6  + 4 \cdot X^7+ \text{...}\hspace{0.1cm}
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
Die Definition dieser Funktion $T(X)$ wird auf der nächsten Seite nachgeliefert.<br>
+
The definition of this function&nbsp; $T(X)$&nbsp; follows.<br>
  
== Pfadgewichtsfunktion (2) ==
+
{{BlaueBox|TEXT=
<br>
+
$\text{Definition:}$&nbsp; For the&nbsp; &raquo;<b>path weighting enumerator function</b>&laquo;&nbsp; of a convolutional code holds:
{{Definition}}''':''' Für die <b>Pfadgewichtsfunktion</b> (englisch: <i>Path Weight Enumerator Function</i>, PWEF) eines Faltungscodes gilt:
 
  
:<math>T(X) = \sum_{\varphi_j \in {\it \Phi}}\hspace{0.1cm}  X^{w(\varphi_j)} \hspace{0.1cm}=\hspace{0.1cm} \sum_{w = d_{\rm F}}^{\infty}\hspace{0.1cm}  A_w \cdot X^w  
+
::<math>T(X) = \sum_{\varphi_j \in {\it \Phi} }\hspace{0.1cm}  X^{w(\varphi_j) } \hspace{0.1cm}=\hspace{0.1cm} \sum_{w\hspace{0.05cm}  =\hspace{0.05cm} d_{\rm F} }^{\infty}\hspace{0.1cm}  A_w \cdot X^w  
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
*${\it \Phi}$ bezeichnet die Menge aller Pfade an, die den Nullpfad $\varphi_0$ genau zum festgelegten Zeitpunkt $t$ verlassen und (irgendwann) später zu diesem zurückkehren.<br>
+
# &nbsp; ${\it \Phi}$&nbsp; denotes the set of all paths that leave the zero path&nbsp; $\varphi_0$&nbsp; exactly at the specified time&nbsp; $t$&nbsp; and return to it&nbsp; $($sometime$)$&nbsp; later.<br>
 +
# &nbsp; According to the second equation part,&nbsp; the summands are ordered by their path weightings&nbsp; $w$&nbsp; where&nbsp; $A_w$&nbsp; denotes the number of paths with weighting&nbsp; $w$.
 +
# &nbsp; The sum starts with&nbsp; $w = d_{\rm F}$.<br>
 +
# &nbsp; The path weighting&nbsp; $w(\varphi_j)$&nbsp; is equal to the Hamming weight&nbsp; $($number of&nbsp; "ones"$)$&nbsp; of the encoded sequence $\underline{x}_j$&nbsp; associated to the path&nbsp; $\varphi_j$:&nbsp; $w({\varphi_j) = w_{\rm H}(\underline {x} }_j) \hspace{0.05cm}.$}}
  
*Gemäß der zweiten Gleichung sind die Summanden nach ihren Pfadgewichten $w$ geordnet, wobei $A_w$ die Anzahl der Pfade mit Pfadgewicht $w$ bezeichnet. Die Summe beginnt mit $w = d_{\rm F}$.<br>
 
  
*Das Pfadgewicht $w(\varphi_j)$ ist gleich dem Hamming&ndash;Gewicht (also der Anzahl der Einsen) der zum Pfad $\varphi_j$ assoziierten Codesequenz $\underline{x}_j$:
+
<u>Note:</u>&nbsp; The weight enumerator function&nbsp; $W(X)$&nbsp; defined for linear block codes and the path weight function&nbsp; $T(X)$&nbsp; of convolutional codes have many similarities;&nbsp; however,&nbsp; they are not identical. &nbsp; &nbsp; We consider again
 +
*the weight enumerator function of the&nbsp; $(7, 4, 3)$ Hamming code:  
  
::<math>w({\varphi_j) = w_{\rm H}(\underline {x}}_j)
+
::<math>W(X) = 1 + 7 \cdot X^{3} + 7 \cdot X^{4} + X^{7},</math>
\hspace{0.05cm}.</math>{{end}}<br>
 
  
<i>Hinweis:</i> Die für die linearen Blockcodes definierte Gewichtsfunktion $W(X)$ und die hier
+
* and the path weighting enumerator function of our&nbsp; "standard convolutional encoder":  
definierte Pfadgewichtsfunktion $T(X)$ weisen viele Gemeinsamkeiten auf, sie sind jedoch nicht identisch.<br>
 
  
Betrachten wir nochmals die Gewichtsfunktion
+
::<math>T(X) =  X^5 + 2 \cdot X^6  + 4 \cdot X^7+ 8 \cdot X^8+ \text{...} </math>
  
:<math>W(X) = 1 + 7 \cdot X^{3} + 7 \cdot X^{4} + X^{7}</math>
+
# &nbsp; Noticeable is the&nbsp; "$1$"&nbsp; in the first equation,&nbsp; which is missing in the second one.&nbsp; That is:  
 +
# &nbsp; For the linear block codes,&nbsp; the reference code word&nbsp; $\underline{x}_i = \underline{0}$&nbsp; is counted.
 +
# &nbsp; But the zero encoded sequence&nbsp; $\underline{x}_i = \underline{0}$&nbsp; and the zero path&nbsp; $\varphi_0$&nbsp; are excluded by definition for convolutional codes.
  
des $(7, 4, 3)$&ndash;Hamming&ndash;Codes und die Pfadgewichtsfunktion
 
  
:<math>T(X) =  X^5 + 2 \cdot X^6  + 4 \cdot X^7+ 8 \cdot X^8+ ... </math>
+
{{GraueBox|TEXT= 
 +
$\text{Author's personal opinion:}$&nbsp;
 +
 
 +
One could&nbsp; have defined&nbsp; $W(X)$&nbsp; without the&nbsp; "$1$"&nbsp; as well.&nbsp; This would have avoided among other things,&nbsp; that the Bhattacharyya&ndash;bound for linear block codes and that for convolutional codes differ by&nbsp; "$-1$",&nbsp; as can be seen from the following equations:<br>
  
unseres Standard&ndash;Faltungscodierers, so fällt die &bdquo;$1$&rdquo; in der ersten Gleichung auf. Das heißt: Bei den linearen Blockcodes wird das Bezugs&ndash;Codewort $\underline{x}_i = \underline{0}$ mitgezählt, wohingegen die Nullcodesequenz $\underline{x}_i = \underline{0}$ bzw. der Nullpfad $\varphi_0$ bei den Faltungscodes ausgeschlossen wird. Nach Ansicht der Autoren hätte man auch $W(X)$ ohne die &bdquo;$1$&rdquo; definieren können. Damit wäre unter anderem vermieden worden, dass sich die Bhattacharyya&ndash;Schranke für lineare Blockcodes und für Faltungscodes durch &bdquo;$&ndash;1$&rdquo; unterscheiden, wie aus den folgenden Gleichungen hervorgeht:<br>
+
*[[Channel_Coding/Bounds_for_Block_Error_Probability#The_upper_bound_according_to_Bhattacharyya| "Bhattacharyya bound for&nbsp; $\text{linear block codes}$"]]: &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; ${\rm Pr(block\:error)} \le W(X = \beta) -1  
 +
\hspace{0.05cm},$
  
[[Kanalcodierung/Schranken_f%C3%BCr_die_Blockfehlerwahrscheinlichkeit#Die_obere_Schranke_nach_Bhattacharyya_.281.29| Bhattacharyya&ndash;Schranke für die linearen Blockcodes]]:
+
*[[Channel_Coding/Distance_Characteristics_and_Error_Probability_Bounds#Burst_error_probability_and_Bhattacharyya_bound| "Bhattacharyya bound for&nbsp; $\text{convolutional codes}$"]]: &nbsp; &nbsp;${\rm Pr(burst\:error)} \le T(X = \beta) 
 +
\hspace{0.05cm}.$}}
  
:<math>{\rm Pr(Blockfehler)} \le W(X = \beta) -1
 
\hspace{0.05cm},</math>
 
  
[[Kanalcodierung/Distanzeigenschaften_und_Fehlerwahrscheinlichkeitsschranken#Burstfehlerwahrscheinlichkeit_und_Bhattacharyya.E2.80.93Schranke_.282.29| Bhattacharyya&ndash;Schranke für die Faltungscodes]]:
+
== Enhanced path weighting enumerator function ==
 +
<br>
 +
The path weighting enumerator function&nbsp; $T(X)$&nbsp; only provides information regarding the weights of the encoded sequence&nbsp; $\underline{x}$.  
 +
*More information is obtained if the weights of the information sequence&nbsp; $\underline{u}$&nbsp; are also collected.
 +
 +
*One then needs two formal parameters&nbsp; $X$&nbsp; and&nbsp; $U$,&nbsp; as can be seen from the following definition.<br>
  
:<math>{\rm Pr(Burstfehler)} \le T(X = \beta) 
 
\hspace{0.05cm},</math>
 
  
Die Pfadgewichtsfunktion $T(X)$ liefert nur Informationen hinsichtlich der Gewichte der Codesequenz $\underline{x}$. Mehr Informationen erhält man, wenn zusätzlich auch die Gewichte der Informationssequenz $\underline{u}$ erfasst werden. Man benötigt dann zwei Formalparameter $X$ und $U$, wie aus der Definition auf der folgenden Seite hervorgeht.<br>
+
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp;  The&nbsp; &raquo;<b>enhanced path weight enumerator function</b>&laquo;&nbsp; $\rm (EPWEF)$&nbsp; is:
  
== Erweiterte Pfadgewichtsfunktion ==
+
::<math>T_{\rm enh}(X,\ U) = \sum_{\varphi_j \in {\it \Phi} }\hspace{0.1cm}  X^{w(\varphi_j)} \cdot U^{ { u}(\varphi_j)}  \hspace{0.1cm}=\hspace{0.1cm} \sum_{w} \sum_{u}\hspace{0.1cm}  A_{w, \hspace{0.05cm}u} \cdot X^w  \cdot U^{u}
<br>
 
{{Definition}}''':''' Die <b>erweiterte Pfadgewichtsfunktion</b> (englisch: <i>Enhanced Path Weight Enumerator Function</i>, EPWEF) lautet:
 
 
 
:<math>T_{\rm enh}(X, U) = \sum_{\varphi_j \in {\it \Phi}}\hspace{0.1cm}  X^{w(\varphi_j)} \cdot U^{{ u}(\varphi_j)}  \hspace{0.1cm}=\hspace{0.1cm} \sum_{w} \sum_{u}\hspace{0.1cm}  A_{w, \hspace{0.05cm}u} \cdot X^w  \cdot U^{u}
 
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
Es gelten alle Angaben der  Definition von $T(X)$ auf der letzten Seite. Zusätzlich ist zu beachten:
+
All specifications for the &nbsp; $T(X)$&nbsp; definition in the last section apply.&nbsp; In addition,&nbsp; note:
*Das Pfadeingangsgewicht $u(\varphi_j)$ ist gleich dem Hamming&ndash;Gewicht der zum Pfad $\varphi_j$ assoziierten Informationssequenz $\underline{u}_j$. Es wird als Potenz des Formalparameters $U$ ausgedrückt.<br>
+
# &nbsp; The path input weight&nbsp; $u(\varphi_j)$&nbsp; is equal to the Hamming weight of the information sequence&nbsp; $\underline{u}_j$&nbsp; associated to the path.
 +
# &nbsp;  It is expressed as a power of the formal parameter&nbsp; $U$&nbsp;.<br>
 +
# &nbsp; $A_{w, \ u}$&nbsp; denotes the number of paths&nbsp; $\varphi_j$&nbsp; with path output weight&nbsp; $w(\varphi_j)$&nbsp; and path input weight&nbsp; $u(\varphi_j)$.&nbsp; Control variable for the second portion is&nbsp; $u$.<br>
 +
# &nbsp; Setting the formal parameter&nbsp; $U = 1$&nbsp; in the enhanced path weighting enumerator function yields the original weighting enumerator function&nbsp; $T(X)$.<br>
  
*Der Koeffizient $A_{w, \ u}$ bezeichnet die Anzahl der Pfade $\varphi_j$ mit dem Pfadausgangsgewicht $w(\varphi_j)$ und dem Pfadeingangsgewicht $u(\varphi_j)$. Als Laufvariable für den zweiten Anteil wird $u$ verwendet.<br>
 
  
*Setzt man in der erweiterten Pfadgewichtsfunktion den Formalparameter $U = 1$, so ergibt sich die ursprüngliche Gewichtsfunktion $T(X)$ gemäß der Definition auf der letzten Seite.<br><br>
+
For many&nbsp; $($and all relevant$)$&nbsp; convolutional codes,&nbsp; upper equation can still be simplified:
  
Bei vielen (und allen relevanten) Faltungscodes lässt sich obere Gleichung noch vereinfachen:
+
::<math>T_{\rm enh}(X,\ U) =\hspace{0.1cm} \sum_{w \ = \ d_{\rm F} }^{\infty}\hspace{0.1cm}  A_w \cdot X^w \cdot U^{u}
 +
\hspace{0.05cm}.</math>}}<br>
  
:<math>T_{\rm enh}(X, U) =\hspace{0.1cm} \sum_{w = d_{\rm F}}^{\infty}\hspace{0.1cm} A_w \cdot X^w \cdot U^{u}
+
{{GraueBox|TEXT=   
\hspace{0.05cm}.</math>{{end}}<br>
+
$\text{Example 2:}$&nbsp; Thus, the enhanced path weighting enumerator function of our standard encoder is:
  
Die erweiterte Pfadgewichtsfunktion unseres Standardcodieres lautet somit:
+
::<math>T_{\rm enh}(X,\ U) =  U \cdot X^5 + 2  \cdot U^2 \cdot X^6  + 4  \cdot  U^3 \cdot X^7+ \text{ ...} \hspace{0.1cm}
 +
\hspace{0.05cm}.</math>
  
:<math>T_{\rm enh}(X, U) = U \cdot X^5 + 2  \cdot U^2 \cdot X^6 + 4  \cdot  U^3 \cdot X^7+ ... \hspace{0.1cm}
+
[[File:P ID2702 KC T 3 5 S2a v1.png|right|frame|Some paths and their path weightings|class=fit]]
\hspace{0.05cm}.</math>
+
Comparing this result with the trellis shown below, we can see:
 +
*The yellow highlighted path&nbsp; &ndash; in&nbsp;  $T(X)$&nbsp; marked by&nbsp; $X^5$&nbsp; &ndash; is composed of a blue arrow&nbsp; $(u_i = 1)$&nbsp; and two red arrows&nbsp; $(u_i = 0)$.&nbsp; Thus&nbsp; $X^5$&nbsp; becomes the extended term&nbsp; $U X^5$.<br>
  
Vergleicht man dieses Ergebnis mit dem unten dargestellten Trellis, so erkennt man:
+
*The sequences of the two green paths are&nbsp;  
*Der gelb hinterlegte Pfad &ndash; gekennzeichnet durch $X^5$ &ndash; setzt sich aus einem blauen Pfeil $(u_i = 1)$ und zwei roten Pfeilen $(u_i = 0)$ zusammen. Somit wird aus $X^5$ der erweiterte Term $UX^5$.<br>
+
:$$\underline{u}_2 = (1, 1, 0, 0) \hspace{0.15cm} &#8658; \hspace{0.15cm} \underline{x}_2 = (11, 01, 01, 11),$$
 +
:$$\underline{u}_3 = (1, 0, 1, 0, 0) \hspace{0.15cm} &#8658; \hspace{0.15cm} \underline{x}_3 = (11, 10, 00, 10, 11).$$  
 +
:This gives the second term&nbsp; $2 \cdot U^2X^6$.<br>
  
*Die Sequenzen der beiden grünen Pfade sind $\underline{u}_2 = (1, 1, 0, 0)$ &nbsp;&#8658;&nbsp; $\underline{x}_2 = (11, 01, 01, 11)$ sowie $\underline{u}_3 = (1, 0, 1, 0, 0)$ &nbsp;&#8658;&nbsp; $\underline{x}_3 = (11, 10, 00, 10, 11)$. Daraus ergibt sich der zweite Term $2 \cdot U^2X^6$.<br>
+
*The gray path&nbsp; $($and the three undrawn paths$)$&nbsp; together make the contribution&nbsp; $4 \cdot U^3X^7$.&nbsp; Each of these paths contains three blue arrows &nbsp; &#8658; &nbsp; three&nbsp; "ones"&nbsp; in the associated information sequence.<br>}}
  
*Der graue Pfad (und die drei nicht gezeichneten Pfade) ergeben zusammen den Beitrag $4 \cdot U^3X^7$. Jeder dieser Pfade beinhaltet drei blaue Pfeile &nbsp;&#8658;&nbsp; drei Einsen in jeder Informationssequenz.<br>
 
  
[[File:P ID2702 KC T 3 5 S2a v1.png|center|frame|Einige Pfade und ihre Pfadgewichte|class=fit]]<br>
 
  
== Pfadgewichtsfunktion aus Zustandsübergangsdiagramm (1) ==
+
== Path weighting enumerator function from state transition diagram ==
 
<br>
 
<br>
Es gibt eine elegante Methode, um die Pfadgewichtsfunktion $T(X)$ und deren Erweiterung direkt aus dem Zustandsübergangsdiagramm zu bestimmen. Dies soll hier und auf den folgenden Seiten am Beispiel unseres [[Kanalcodierung/Codebeschreibung_mit_Zustands%E2%80%93_und_Trellisdiagramm#Zustandsdefinition_f.C3.BCr_ein_Speicherregister_.281.29| Standardcodes]] demonstriert werden.<br>
+
There is an elegant way to determine the path weighting enumerator function&nbsp; $T(X)$&nbsp; and its enhancement directly from the state transition diagram.&nbsp; This will be demonstrated here and in the following sections using our&nbsp; [[Channel_Coding/Code_Description_with_State_and_Trellis_Diagram#State_definition_for_a_memory_register|$\text{standard convolutional encoder}$]]&nbsp; as an example.<br>
  
Zunächst muss dazu das Zustandsübergangsdiagramm umgezeichnet werden. Die Grafik zeigt dieses links in der bisherigen Form als Diagramm (A), während rechts das neue Diagramm (B) angegeben ist.<br>
+
First,&nbsp; the state transition diagram must be redrawn for this purpose.&nbsp; The graphic shows this on the left in the previous form as diagram&nbsp; $\rm (A)$,&nbsp; while the new diagram&nbsp; $\rm (B)$&nbsp; is given on the right.&nbsp; It can be seen:
  
[[File:P ID2688 KC T 3 5 S3b1 v2.png|center|frame|Zustandsübergangsdiagramm in zwei verschiedenen Varianten|class=fit]]<br>
+
[[File:KC_T_3_5_Diagram_v3.png|right|frame|State transition diagram in two different variants|class=fit]]
  
Man erkennt:
+
# &nbsp; The state&nbsp; $S_0$&nbsp; is split into the start state&nbsp; $S_0$&nbsp; and the end state&nbsp; $S_0\hspace{0.01cm}'$.&nbsp; Thus,&nbsp; all paths of the trellis that start in state&nbsp; $S_0$&nbsp; and return to it at some point can also be traced in the right graph&nbsp; $\rm (B)$.&nbsp; Excluded are direct transitions from&nbsp; $S_0$&nbsp; to&nbsp; $S_0\hspace{0.01cm}'$&nbsp; and thus also the zero path.<br>
*Der Zustand $S_0$ wird aufgespalten in den Startzustand $S_0$ und den Endzustand $S_0'$. Damit lassen sich alle Pfade des Trellisdiagramms, die im Zustand $S_0$ beginnen und irgendwann zu diesem zurückkehren, auch im rechten Graphen (B) nachvollziehen. Ausgeschlossen sind dagegen direkte Übergänge von $S_0$ nach $S_0'$ und damit auch der Nullpfad (Dauer&ndash;$S_0$).<br>
+
# &nbsp; In diagram&nbsp; $\rm (A)$&nbsp; the transitions are distinguishable by the colors red&nbsp; $($for&nbsp; $u_i = 0)$&nbsp; and blue&nbsp; $($for&nbsp; $u_i = 1)$.&nbsp;
 +
# &nbsp; The code words&nbsp; $\underline{x}_i &#8712; \{00, 01, 10, 11\}$&nbsp; are noted at the transitions.&nbsp; In diagram&nbsp; $\rm (B)$&nbsp; $(00)$&nbsp; is expressed&nbsp;  by&nbsp; $X^0 = 1$&nbsp; and&nbsp; $(11)$&nbsp; by&nbsp; $X^2$.
 +
# &nbsp; The code words&nbsp; $(01)$&nbsp; and&nbsp; $(10)$&nbsp; are now indistinguishable,&nbsp; but they are uniformly denoted by&nbsp; $X$&nbsp;.<br>
 +
# &nbsp; Phrased another way: &nbsp; The code word&nbsp; $\underline{x}_i$&nbsp; is now represented as&nbsp; $X^w$&nbsp; where&nbsp; $X$&nbsp; is a dummy variable associated with the output.
 +
# &nbsp; $w = w_{\rm H}(\underline{x}_i)$&nbsp; indicates the Hamming weight of the code word&nbsp; $\underline{x}_i$.&nbsp; For a rate $1/2$ code,&nbsp; the exponent&nbsp; $w$&nbsp; is either&nbsp; $0, \ 1$&nbsp; or&nbsp; $2$.<br>
 +
# &nbsp; Also diagram&nbsp; $\rm (B)$&nbsp; omits the color coding.&nbsp; The information bit&nbsp; $u_i = 1$&nbsp; is now denoted by&nbsp; $U^1 = U$&nbsp; and  bit&nbsp; $u_i = 0$&nbsp; by&nbsp; $U^0 = 1$.&nbsp; The dummy variable&nbsp; $U$&nbsp; is thus assigned to the input sequence&nbsp; $\underline{u}$&nbsp;.<br>
 +
 
 +
== Rules for manipulating the state transition diagram ==
 +
<br>
 +
Goal of our calculations will be to characterize the&nbsp; $($arbitrarily complicated$)$&nbsp; path from&nbsp; $S_0$&nbsp; to&nbsp; $S_0\hspace{0.01cm}'$&nbsp; by the extended path weighting enumerator function&nbsp; $T_{\rm enh}(X, \ U)$.&nbsp; For this we need rules to simplify the graph stepwise.<br>
  
*Im Diagramm (A) sind die Übergänge anhand der Farben Rot (für $u_i = 0$) und Blau (für $u_i = 1$) unterscheidbar, und die Codeworte $\underline{x}_i &#8712; \{00, 01, 10, 11\}$ sind an den Übergängen vermerkt. Im neuen Diagramm (B) werden $(00)$ durch $X^0 = 1$ und $(11)$ durch $X^2$ ausgedrückt. Die Codeworte $(01)$ und $(10)$ sind nun nicht mehr unterscheidbar, sondern werden einheitlich mit $X$ bezeichnet.<br>
+
&raquo;'''Serial transitions'''&laquo;
 +
[[File:KC_T_3_5_Einzelteile_neu.png|right|frame|Reduction of serial transitions&nbsp; '''(1)''',&nbsp; parallel transitions&nbsp; '''(2)''',&nbsp; a ring&nbsp;
 +
'''(3)''',&nbsp; a feedback&nbsp; '''(4)'''  ]]
  
*Anders formuliert: Das Codewort $\underline{x}_i$ wird nun als $X^w$ dargestellt, wobei $X$ eine dem Ausgang (der Codesequenz) zugeordnete Dummy&ndash;Variable ist und $w = w_{\rm H}(\underline{x}_i)$ das Hamming&ndash;Gewicht des Codewortes $\underline{x}_i$ angibt. Bei einem Rate&ndash;$1/2$&ndash;Code ist der Exponent $w$ entweder $0, 1$ oder $2$.<br>
+
Two serial connections &ndash; denoted by&nbsp; $A(X, \ U)$&nbsp; and&nbsp; $B(X, \ U)$&nbsp; &ndash; can be replaced by a single connection with the product of these ratings.<br>
  
*Ebenfalls verzichtet wird im Diagramm (B) auf die Farbcodierung. Das Informationsbit $u_i = 1$ wird nun durch $U^1 = U$ und das Informationsbit $u_i = 0$ durch $U^0 = 1$ gekennzeichnet. Die Dummy&ndash;Variable $U$ ist also der Eingangssequenz $\underline{u}$ zugeordnet.<br><br>
+
&raquo;'''Parallel transitions'''&laquo;
  
Die Beschreibung wird auf den nächsten Seiten fortgesetzt.<br>
+
Two parallel connections &ndash; denoted by&nbsp; $A(X, \ U)$&nbsp; and&nbsp; $B(X, \ U)$&nbsp; &ndash; are combined by the sum of their valuation functions.<br>
  
== Pfadgewichtsfunktion aus Zustandsübergangsdiagramm (2) ==
+
&raquo;'''Ring'''&laquo;
<br>
 
Ziel unserer Berechnungen wird es sein, den (beliebig komplizierten) Weg von $S_0$ nach $S_0'$ durch die erweiterte Pfadgewichtsfunktion $T_{\rm enh}(X, \ U)$ zu charakterisieren. Dazu benötigen wir Regeln, um den Graphen schrittweise vereinfachen zu können.<br><br>
 
  
[[File:P ID2689 KC T 3 5 S3b1.png|right|frame|Zusammenfassung zweier serieller Übergänge]]
+
The adjacent constellation can be replaced by a single connection, and the following applies to the replacement:
[[File:P ID2690 KC T 3 5 S3b2.png|right|frame|Zusammenfassung zweier paralleler Übergänge]]
+
::<math>E(X, U) =  \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)}
[[File:P ID2691 KC T 3 5 S3b3.png|right|frame|Reduzierung eines Rings]]
+
\hspace{0.05cm}.</math>
[[File:P ID2692 KC T 3 5 S3b4.png|right|frame|Reduzierung einer Rückkopplung ]]
 
  
<span style="font-weight: bold;">Serielle Übergänge</span><br>
+
&raquo;'''Feedback'''&laquo;
  
Zwei serielle Verbindungen &ndash; gekennzeichnet durch $A(X, \ U)$ und $B(X, \ U)$ &ndash; können durch eine einzige Verbindung mit dem Produkt dieser Bewertungen ersetzt werden.<br><br>
+
Due to the feedback, two states can alternate here as often as desired. For this constellation applies:
 +
::<math>F(X, U) =  \frac{A(X, U) \cdot B(X, U)\cdot C(X, U)}{1- C(X, U)\cdot D(X, U)}
 +
\hspace{0.05cm}.</math>
  
<span style="font-weight: bold;">Parallele Übergänge</span><br>
+
The equations for ring and feedback given here are to be proved in the&nbsp; [[Aufgaben:Exercise_3.12Z:_Ring_and_Feedback|"Exercise 3.12Z"]]&nbsp;.
Zwei parallele Verbindungen werden durch die Summe ihrer Bewertungsfunktionen zusammengefasst.
+
<br clear=all>
<br><br>
+
{{GraueBox|TEXT= 
 +
$\text{Example 3:}$&nbsp; 
 +
The above rules are now to be applied to our standard example.&nbsp; In the graphic on the left you can see the modified diagram&nbsp; $\rm (B)$.
  
<span style="font-weight: bold;">Ring</span>
+
[[File:EN_KC_T_3_5_S48.png|right|frame|Reduction of state transitions|class=fit]]
Die nebenstehende Konstellation kann durch eine einzige Verbindung ersetzt werden, wobei für die Ersetzung gilt:
 
  
:<math>E(X, U) =  \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)}
+
*First we replace the red highlighted detour from&nbsp; $S_1$&nbsp; to&nbsp; $S_2$&nbsp; via&nbsp; $S_3$&nbsp; in the diagram&nbsp; $\rm (B)$&nbsp; by the red connection&nbsp; $T_1(X, \hspace{0.05cm} U)$&nbsp; drawn in the diagram&nbsp; $\rm (C)$.
\hspace{0.05cm}.</math><br>
 
  
<span style="font-weight: bold;">Rückkopplung</span><br>
+
*According to the upper classification,&nbsp; it is a&nbsp; "ring"&nbsp; with the labels&nbsp; $A = C = U \cdot X$&nbsp; and&nbsp; $B = X$, and we obtain for the first reduction function:
Durch die Rückkopplung können sich hier zwei Zustände beliebig oft abwechseln. Für diese Konstellation gilt:
 
  
:<math>F(X, U) =  \frac{A(X, U) \cdot B(X, U)\cdot C(X, U)}{1- C(X, U)\cdot D(X, U)}  
+
::<math>T_1(X, \hspace{0.05cm} U) =  \frac{U \cdot X^2}{1- U \cdot X}  
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
Die hier angegebenen Gleichungen für Ring und Rückkopplung sind in Aufgabe Z3.12 zu beweisen.<br><br><br><br><br>
+
*Now we summarize the parallel connections according to the blue background in the diagram&nbsp; $\rm (C)$&nbsp; and replace it with the blue connection in the diagram&nbsp; $\rm (D)$.&nbsp; The second reduction function is thus:
  
== Pfadgewichtsfunktion aus Zustandsübergangsdiagramm (3) ==
+
:$$T_2(X, \hspace{0.03cm}U) = T_1(X, \hspace{0.03cm}U) \hspace{-0.03cm}+\hspace{-0.03cm} X\hspace{-0.03cm}  $$
<br>
+
:$$\Rightarrow  \hspace{0.3cm} T_2(X, \hspace{0.05cm}U) =\hspace{-0.03cm} \frac{U X^2\hspace{-0.03cm} +\hspace{-0.03cm} X \cdot (1-UX)}{1- U X}=  \frac{X}{1- U  X}\hspace{0.05cm}.$$
Die auf der letzten Seite genannten Regeln sollen nun auf unser Standardbeispiel angewendet werden. In der unteren Grafik sehen Sie links das modifizierte Zustandsübergangsdiagramm (B).
+
 
*Zunächst ersetzen wir den rot hinterlegten Umweg von $S_1$ nach $S_2$ über $S_3$ im Diagramm (B) durch die im Diagramm (C) eingezeichnete rote Verbindung. Es handelt sich nach der Klassifizierung auf der letzten Seite  um einen &bdquo;Ring&rdquo; mit den Beschriftungen $A = C = U \cdot X$ und $B = X$, und wir erhalten die <i>erste Reduktionsfunktion</i>:
+
*The entire graph&nbsp; $\rm (D)$&nbsp; can then be replaced by a single connection from&nbsp; $S_0$&nbsp; to&nbsp; $S_0\hspace{0.01cm}'$.&nbsp;  According to the feedback rule,&nbsp; one obtains for the&nbsp; "enhanced path weighting enumerator function":
  
::<math>T_1(X, U) = \frac{U \cdot X^2}{1- U \cdot X}  
+
::<math>T_{\rm enh}(X, \hspace{0.05cm}U) = \frac{(U X^2) \cdot X^2 \cdot \frac{X}{1- U  X} }{1- U  \cdot \frac{X}{1- U X} } =  \frac{U X^5}{1- U  X- U  X} = \frac{U X^5}{1- 2 \cdot X}
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
*Nun fassen wir die parallelen Verbindungen entsprechend der blauen Hinterlegung im Diagramm (C) zusammen und ersetzen diese durch die blaue Verbindung im Diagramm (D). Die <i>zweite Reduktionsfunktion</i> lautet somit:
+
*With the series expansion&nbsp; $1/(1 \, &ndash;x) = 1 + x + x^2 + x^3 + \ \text{...} \ $&nbsp; can also be written for this purpose:
  
::<math>T_2(X, U) = T_1(X, U) + X = \frac{U X^2 + X \cdot (1-UX)}{1- U  X} \frac{X}{1- U  X}
+
::<math>T_{\rm enh}(X, \hspace{0.05cm}U) = U X^5 \cdot \big [ 1 + 2 \hspace{0.05cm}UX + (2 \hspace{0.05cm}UX)^2 + (2 \hspace{0.05cm}UX)^3 + \text{...} \hspace{0.05cm} \big ]
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
*Der gesamte Graph (D) kann somit durch eine einzige Verbindung von $S_0$ nach $S_0'$ ersetzt werden. Nach der Rückkopplungsregel erhält man für die <i>erweiterte Pfadgewichtsfunktion</i>:
+
*Setting the formal input variable &nbsp; $U = 1$, &nbsp; we obtain the&nbsp; "simple path weighting enumerator function",&nbsp; which alone allows statements about the weighting distribution of the output sequence&nbsp; $\underline{x}$:&nbsp;
  
::<math>T_{\rm enh}(X, U) = \frac{(U X^2) \cdot X^2 \cdot \frac{X}{1- U  X}}{1- U \cdot \frac{X}{1- U X}} = \frac{U X^5}{1- U  X- U  X} = \frac{U X^5}{1- 2 \cdot U  X}
+
::<math>T(X) = X^5 \cdot \big [ 1 + 2 X + 4 X^2 + 8 X^3 +\text{...}\hspace{0.05cm} \big ]
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
Mit der Reihenentwicklung $1/(1 \, &ndash;x) = 1 + x + x^2 + x^3 + \ ... \ $ lässt sich hierfür auch schreiben:
+
We have already read the same result from the trellis diagram in section&nbsp; [[Channel_Coding/Distance_Characteristics_and_Error_Probability_Bounds#Path_weighting_enumerator_function| "Path weighting enumerator function"]]&nbsp;. There was
 +
**one gray path with weight&nbsp; $5$,  
 +
**two yellow paths with weighting&nbsp; $6$&nbsp;
 +
** four green paths with weighting&nbsp; $7$
 +
** and ... .}}<br>
  
:<math>T_{\rm enh}(X, U) = U X^5 \cdot \left [ 1 + 2 \hspace{0.05cm}UX + (2 \hspace{0.05cm}UX)^2  + (2 \hspace{0.05cm}UX)^3 + ... \hspace{0.05cm} \right ]  
+
== Block error probability vs. burst error probability ==
\hspace{0.05cm}.</math>
+
<br>
 +
The simple model according to the sketch is valid for linear block codes as well as for convolutional codes.<br>
 +
 
 +
[[File:EN_KC_T_3_5_S5.png|right|frame|Simple transmission model including encoding and decoding|class=fit]]
  
[[File:P ID2695 KC T 3 5 S3a v2.png|center|frame|Zur Reduktion der Zustandsübergänge|class=fit]]<br>
 
  
Setzt man die formale Input&ndash;Variable $U = 1$, so erhält man die &bdquo;einfache&rdquo; Pfadgewichtsfunktion, die allein Aussagen über die Gewichtsverteilung der Ausgangssequenz $\underline{x}$ erlaubt:
+
&raquo;'''Block codes'''&laquo;
  
:<math>T(X) = X^5 \cdot \left [ 1 + 2 X + 4  X^2  + 8  X^3 + ... \hspace{0.05cm} \right ]
+
For block codes denote&nbsp; $\underline{u} = (u_1, \ \text{...} \hspace{0.05cm}, \ u_i, \ \text{...} \hspace{0.05cm}, \ u_k)$&nbsp; and&nbsp; $\underline{v} = (v_1, \ \text{...} \hspace{0.05cm}, v_i, \ \text{...} \hspace{0.05cm} \ , \ v_k)$&nbsp; the information blocks at the input and output of the system.  
\hspace{0.05cm}.</math>
 
  
Das gleiche Ergebnis haben wir bereits aus dem Trellisdiagramm auf [[Kanalcodierung/Distanzeigenschaften_und_Fehlerwahrscheinlichkeitsschranken#Pfadgewichtsfunktion_.281.29| Seite 2a]] abgelesen. Dort gab es einen grauen Pfad mit Gewicht $5$, zwei gelbe Pfade mit Gewicht $6$ und vier grüne Pfade mit Gewicht $7$.<br>
+
Thus,&nbsp; the following descriptive variables can be specified:
 +
*the &raquo;block error probability&laquo; &nbsp; ${\rm Pr(block\:error)} = {\rm Pr}(\underline{v} &ne; \underline{u}),$
  
== Burstfehlerwahrscheinlichkeit und Bhattacharyya–Schranke (1) ==
+
*the &raquo;bit error probability&laquo; &nbsp; ${\rm Pr(bit\:error)} = {\rm Pr}(v_i &ne; u_i).$<br><br>
<br>
 
Das folgende einfache Modell gilt sowohl für lineare Blockcodes als auch für Faltungscodes.<br>
 
  
[[File:P ID2705 KC T 3 5 S5 v1.png|center|frame|Einfaches Übertragungsmodell inklusive Codierung/Decodierung|class=fit]]<br>
+
{{BlaueBox|TEXT= 
 +
$\text{Please note:}$&nbsp; In real transmission systems,&nbsp; due to thermal noise the following always applies:
 +
:$${\rm Pr(bit\:error)} > 0\hspace{0.05cm},\hspace{0.5cm}{\rm Pr(block\:error)} > {\rm Pr(bit\:error)}
 +
\hspace{0.05cm}.$$
  
Bei den Blockcodes bezeichnen $\underline{u} = (u_1, \ ... , \ u_i, \ ..., \ u_k)$ und $\underline{\upsilon} = (\upsilon_1, \ ..., \ \upsilon_i, \ \upsilon_k)$ die Informationsblöcke am Eingang und Ausgang des Systems. Damit können folgende Beschreibungsgrößen definiert werden:
+
For this a simple explanation attempt: &nbsp; If the decoder decides in each block of length&nbsp; $k$&nbsp; exactly one bit wrong,  
*die <b>Blockfehlerwahrscheinlichkeit</b> ${\rm Pr}(\underline{\upsilon} &ne; \underline{u}),$<br>
+
*so the average bit error probability &nbsp; ${\rm Pr(bit\:error)}= 1/k$,
  
*die <b>Bitfehlerwahrscheinlichkeit</b> ${\rm Pr}(u_i &ne; u_i).$<br><br>
+
*while for the block error probability &nbsp; ${\rm Pr(block\:error)}\equiv 1$&nbsp; holds.}}<br>
  
Bei realen Übertragungssystemen ist aufgrund des thermischen Rauschens die Bitfehlerwahrscheinlichkeit stets größer als $0$. Weiter gilt:
 
  
:<math>{\rm Pr(Blockfehler)} > {\rm Pr(Bitfehler)}
+
&raquo;'''Convolutional codes'''&laquo;
\hspace{0.05cm}.</math>
 
  
Hierfür ein einfacher Erklärungsversuch: Entscheidet der Decoder in jedem Block der Länge $k \ \rm Bit$ genau ein $\rm Bit$ falsch, so beträgt die Bitfehlerwahrscheinlichkeit $= 1/k$ und die Blockfehlerwahrscheinlichkeit ist $1$.<br>
+
For convolutional codes,&nbsp; the block error probability cannot be specified,&nbsp; since here &nbsp; $\underline{u} = (u_1, \ u_2, \ \text{...} \hspace{0.05cm})$ &nbsp; and &nbsp; $\underline{\upsilon} = (v_1, \ v_2, \ \text{...} \hspace{0.05cm})$ &nbsp; represent sequences.
  
Bei Faltungscodes ist dagegen die Blockfehlerwahrscheinlichkeit nicht angebbar, da hier $\underline{u} = (u_1, \ u_2, \ ...)$ und $\underline{\upsilon} = (u_1, \ u_2, \ ...)$ Sequenzen darstellen. Selbst der kleinstmögliche Codeparameter $k = 1$ führt hier zur Sequenzlänge $k'&nbsp;&#8594;&nbsp;&#8734;$, und die Blockfehlerwahrscheinlichkeit ergäbe sich stets zu $1$, selbst wenn die Bitfehlerwahrscheinlichkeit extrem klein (aber $&ne; 0$) ist.<br>
+
[[File:P ID2706 KC T 3 5 S5b v1.png|right|frame|Zero path&nbsp; ${\it \varphi}_0$&nbsp; and deviation paths&nbsp; ${\it \varphi}_i$|class=fit]]
  
[[File:P ID2706 KC T 3 5 S5b v1.png|center|frame|Nullpfad ${\it \Phi}_0$ und Abweichungspfade ${\it \Phi}_i$|class=fit]]<br>
+
<br><br>Even the smallest possible code parameter&nbsp; $k = 1$,&nbsp; leads here to the sequence length&nbsp; $k \hspace{0.05cm}'&nbsp;&#8594;&nbsp;&#8734;$,&nbsp; and
 +
* the block error probability would always result in&nbsp; ${\rm Pr(block\hspace{0.1cm} error)}\equiv 1$,
  
Deshalb definieren wir bei Faltungscodes stattdessen die <b>Burstfehlerwahrscheinlichkeit</b>:
+
*even if the bit error probability is extremely small $\hspace{0.05cm}$ $($but non-zero$)$.
 +
<br clear=all>
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; For the&nbsp; &raquo;<b>burst error probability</b>&nbsp;&laquo; of a convolutional code holds:
  
:<math>{\rm Pr(Burstfehler)} = {\rm Pr}\big \{{\rm Decoder\hspace{0.15cm} verl\ddot{a}sst\hspace{0.15cm} zur\hspace{0.15cm} Zeit}\hspace{0.15cm}t \hspace{0.15cm}{\rm den \hspace{0.15cm}korrekten \hspace{0.15cm}Pfad}\big \}   
+
::<math>{\rm Pr(burst\:error)} = {\rm Pr}\big \{ {\rm Decoder\hspace{0.15cm} leaves\hspace{0.15cm} the\hspace{0.15cm} correct\hspace{0.15cm}path}\hspace{0.15cm}{\rm at\hspace{0.15cm}time \hspace{0.10cm}\it t}\big \}   
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
Um für die folgende Herleitung die Schreibweise zu vereinfachen, gehen wir stets von der Nullsequenz $(\underline{0})$ aus, die im gezeichneten Trellis als Nullpfad $\varphi_0$ rot dargestellt ist. Alle anderen eingezeichneten Pfade $\varphi_1, \ \varphi_2, \ \varphi_3, \ ... \ $ (und noch viele mehr) verlassen $\varphi_0$ zur Zeit $t$. Sie alle gehören zur Pfadmenge ${\it \Phi}$ &nbsp;&#8658;&nbsp; &bdquo;Viterbi&ndash;Decoder verlässt den korrekten Pfad zur Zeit $t$&rdquo;, deren Wahrscheinlichkeit auf der nächsten Seite berechnet werden soll.<br>
+
*To simplify the notation for the following derivation,&nbsp; we always assume the zero sequence&nbsp; $\underline{0}$ &nbsp; which is shown in red in the drawn trellis as the&nbsp; "zero path"&nbsp; $\varphi_0$.
 +
 +
*All other paths&nbsp; $\varphi_1, \ \varphi_2, \ \varphi_3, \ \text{...} $&nbsp; $($and many more$)$&nbsp; leave&nbsp; $\varphi_0$&nbsp; at time&nbsp; $t$.  
 +
 
 +
*They all belong to the path set&nbsp; ${\it \Phi}$&nbsp; which is defined as &nbsp;"Viterbi decoder leaves the correct path at time&nbsp; $t$".&nbsp; This probability is calculated in the next section.}}<br>
  
== Burstfehlerwahrscheinlichkeit und Bhattacharyya–Schranke (2) ==
+
== Burst error probability and Bhattacharyya bound ==
 
<br>
 
<br>
Wir gehen wie in [http://en.lntwww.de/Kanalcodierung/Schranken_f%C3%BCr_die_Blockfehlerwahrscheinlichkeit#Union_Bound_der_Blockfehlerwahrscheinlichkeit Kapitel 1.6] von der paarweisen Fehlerwahrscheinlichkeit Pr[<i>&phi;</i><sub>0</sub> &#8594; <i>&phi;<sub>i</sub></i>] aus, dass vom Decoder anstelle des Pfades <i>&phi;</i><sub>0</sub> der Pfad <i>&phi;<sub>i</sub></i> ausgewählt werden <b>könnte</b>. Alle betrachteten Pfade <i>&phi;<sub>i</sub></i> haben gemein, dass sie den Nullpfad <i>&phi;</i><sub>0</sub> zum Zeitpunkt <i>t</i> verlassen; sie gehören alle zur Pfadmenge <i>&Phi;</i>.<br>
+
[[File:EN_KC_T_3_5_S5c.png|right|frame|Calculation of the burst error probability|class=fit]]
 +
We proceed as in the earlier chapter&nbsp; [[Channel_Coding/Bounds_for_Block_Error_Probability#Union_Bound_of_the_block_error_probability|"Bounds for block error probability"]]&nbsp;
 +
*from the pairwise error probability&nbsp; ${\rm Pr}\big [\varphi_0 &#8594; \varphi_i \big]$&nbsp;
 +
 +
*that instead of the path&nbsp; $\varphi_0$&nbsp;
 +
 +
*the decoder <b>could</b> select the path&nbsp; $\varphi_i$.  
  
[[File:P ID2707 KC T 3 5 S5c v1.png|Zur Berechnung der Burstfehlerwahrscheinlichkeit|class=fit]]<br>
 
  
Die gesuchte <b>Burstfehlerwahrscheinlichkeit</b> ist gleich der folgenden  Vereinigungsmenge:
+
All considered paths&nbsp; $\varphi_i$&nbsp; leave the zero path&nbsp; $\varphi_0$&nbsp; at time&nbsp; $t$;&nbsp; thus they all belong to the path set ${\it \Phi}$.<br>
  
:<math>{\rm Pr(Burstfehler)}= {\rm Pr}\left ([\varphi_{\hspace{0.02cm}0} \mapsto \varphi_{\hspace{0.02cm}1}] \hspace{0.05cm}\cup\hspace{0.05cm}[\varphi_{\hspace{0.02cm}0} \mapsto \varphi_{\hspace{0.02cm}2}]\hspace{0.05cm}\cup\hspace{0.05cm} ...\hspace{0.05cm} \right )= {\rm Pr} \left ( \cup_{\varphi_{\hspace{0.02cm}i} \in {\it \Phi}} \hspace{0.15cm} [\varphi_{\hspace{0.02cm}0} \mapsto \varphi_{\hspace{0.02cm}i}] \right )\hspace{0.05cm}.</math>
+
The sought&nbsp; "burst error probability"&nbsp; is equal to the following union set:
  
Eine obere Schranke hierfür bietet die so genannte [http://en.lntwww.de/Kanalcodierung/Schranken_f%C3%BCr_die_Blockfehlerwahrscheinlichkeit#Union_Bound_der_Blockfehlerwahrscheinlichkeit Union&ndash;Bound] entsprechend Kapitel 1.6:
+
:$${\rm Pr(burst\:error)}= {\rm Pr}\left (\big[\varphi_{\hspace{0.02cm}0} \mapsto \varphi_{\hspace{0.02cm}1}\big] \hspace{0.05cm}\cup\hspace{0.05cm}\big[\varphi_{\hspace{0.02cm}0} \mapsto \varphi_{\hspace{0.02cm}2}\big]\hspace{0.05cm}\cup\hspace{0.05cm} \text{... }\hspace{0.05cm} \right )$$
 +
:$$\Rightarrow \hspace{0.3cm}{\rm Pr(burst\:error)}= {\rm Pr} \left ( \cup_{\varphi_{\hspace{0.02cm}i} \in {\it \Phi}} \hspace{0.15cm} \big[\varphi_{\hspace{0.02cm}0} \mapsto \varphi_{\hspace{0.02cm}i}\big] \right )\hspace{0.05cm}.$$
  
:<math>{\rm Pr(Burstfehler)} \le \sum_{\varphi_{\hspace{0.02cm}i} \in {\it \Phi}}\hspace{0.15cm}  
+
*An upper bound for this is provided by the so-called&nbsp; [[Channel_Coding/Bounds_for_Block_Error_Probability#Union_Bound_of_the_block_error_probability|$\text{Union Bound}$]]:
{\rm Pr}\left [\varphi_{\hspace{0.02cm}0} \mapsto \varphi_{\hspace{0.02cm}i}\right ] = {\rm Pr(Union \hspace{0.15cm}Bound)}
+
 
 +
::<math>{\rm Pr(Burst\:error)} \le \sum_{\varphi_{\hspace{0.02cm}i} \in {\it \Phi}}\hspace{0.15cm}  
 +
{\rm Pr}\big [\varphi_{\hspace{0.02cm}0} \mapsto \varphi_{\hspace{0.02cm}i}\big ] = {\rm Pr(union \hspace{0.15cm}bound)}
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
Die paarweise Fehlerwahrscheinlichkeit kann mit der [http://en.lntwww.de/Kanalcodierung/Schranken_f%C3%BCr_die_Blockfehlerwahrscheinlichkeit#Die_obere_Schranke_nach_Bhattacharyya_.281.29 Bhattacharyya&ndash;Schranke] abgeschätzt werden:
+
*The pairwise error probability can be estimated using the&nbsp; [[Channel_Coding/Bounds_for_Block_Error_Probability#The_upper_bound_according_to_Bhattacharyya|$\text{Bhattacharyya bound}$]]:
  
:<math>{\rm Pr}\left [\underline {0} \mapsto \underline {x}_{\hspace{0.02cm}i}\right ]
+
::<math>{\rm Pr}\big [\underline {0} \mapsto \underline {x}_{\hspace{0.02cm}i}\big ]
 
\le  \beta^{w_{\rm H}({x}_{\hspace{0.02cm}i})}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
\le  \beta^{w_{\rm H}({x}_{\hspace{0.02cm}i})}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
{\rm Pr}\left [\varphi_{\hspace{0.02cm}0} \mapsto \varphi_{\hspace{0.02cm}i}\right ]
 
{\rm Pr}\left [\varphi_{\hspace{0.02cm}0} \mapsto \varphi_{\hspace{0.02cm}i}\right ]
Line 279: Line 339:
 
\hspace{0.05cm} \beta^{w(\varphi_i)}\hspace{0.05cm}.</math>
 
\hspace{0.05cm} \beta^{w(\varphi_i)}\hspace{0.05cm}.</math>
  
<i>w</i><sub>H</sub>(<u><i>x</i></u><sub><i>i</i></sub>) bezeichnet das Hamming&ndash;Gewicht der möglichen Codesequenz <u><i>x</i></u><sub><i>i</i></sub>, <i>w</i>(<i>&phi;<sub>i</sub></i>) das Pfadgewicht des entsprechenden Pfades <i>&phi;<sub>i</sub></i> &#8712; <i>&Phi;</i> und <i>&beta;</i> den so genannten [http://en.lntwww.de/Kanalcodierung/Schranken_f%C3%BCr_die_Blockfehlerwahrscheinlichkeit#Die_obere_Schranke_nach_Bhattacharyya_.281.29 Bhattacharyya&ndash;Kanalparameter.]<br>
+
:Here denotes
 +
 +
:*$w_{\rm H}(\underline{x}_i)$&nbsp; is the Hamming weight of the possible encoded sequence&nbsp; $\underline{x}_i,$
 +
 +
:*$\ w(\varphi_i)$&nbsp; is the path weight of the corresponding path&nbsp; $\varphi_i &#8712; {\it \Phi},$
 +
 +
:*$\beta$&nbsp; is the so-called&nbsp; [[Channel_Coding/Bounds_for_Block_Error_Probability#The_upper_bound_according_to_Bhattacharyya|$\text{Bhattacharyya parameter}$]].<br>
  
Durch Summation über alle Pfade und einen Vergleich mit der (einfachen) [http://en.lntwww.de/Kanalcodierung/Distanzeigenschaften_und_Fehlerwahrscheinlichkeitsschranken#Pfadgewichtsfunktion_.282.29 Pfadgewichtsfunktion] <i>T</i>(<i>X</i>) erhalten wir das Ergebnis:
 
  
:<math>{\rm Pr(Burstfehler)} \le T(X = \beta),\hspace{0.5cm}{\rm mit}\hspace{0.5cm}
+
{{BlaueBox|TEXT=
T(X) = \sum_{\varphi_{\hspace{0.02cm}i} \in {\it \Phi}}\hspace{0.15cm}
+
By&nbsp; &raquo;'''summing over all paths'''&laquo;&nbsp; and comparing with the (simple)&nbsp; [[Channel_Coding/Distance_Characteristics_and_Error_Probability_Bounds#Path_weighting_enumerator_function|$\text{path weighting function}$]]&nbsp; $T(X)$&nbsp; we get the result:
\hspace{0.05cm} X^{w(\varphi_i)}\hspace{0.05cm}.</math><br>
 
  
{{Beispiel}}''':''' Für unseren Standardcodierer &nbsp;&#8658;&nbsp; <i>R</i> = 1/2, <i>m</i> = 2, <b>G</b>(<i>D</i>) = (1 + <i>D</i> + <i>D</i><sup>2</sup>, 1 + <i>D</i>) haben wir folgende Pfadgewichtsfunktion erhalten, siehe [http://en.lntwww.de/Kanalcodierung/Distanzeigenschaften_und_Fehlerwahrscheinlichkeitsschranken#Pfadgewichtsfunktion_.281.29 Theorieteil, Seite 2a:]
+
::<math>{\rm Pr(burst\:error)} \le T(X = \beta),\hspace{0.5cm}{\rm with}\hspace{0.5cm}
 +
T(X) = \sum_{\varphi_{\hspace{0.02cm}i} \in {\it \Phi} }\hspace{0.15cm}
 +
\hspace{0.05cm} X^{w(\varphi_i)}\hspace{0.05cm}.</math>}}
  
:<math>T(X) =  X^5 + 2 \cdot X^6  + 4 \cdot X^7 + ... \hspace{0.1cm}
+
 
=  X^5 \cdot ( 1 + 2 \cdot X  + 4 \cdot X^2+ ... \hspace{0.1cm})
+
{{GraueBox|TEXT= 
 +
$\text{Example 4: }$&nbsp; For our standard encoder with
 +
* code rate&nbsp; $R = 1/2$,
 +
 
 +
*memory&nbsp; $m = 2$,
 +
 +
* D– transfer function&nbsp; $\mathbf{G}(D) = (1 + D + D^2, \ 1 + D)$,
 +
 
 +
 
 +
we have obtained the following&nbsp; [[Channel_Coding/Distance_Characteristics_and_Error_Probability_Bounds#Path_weighting_enumerator_function|$\text{path weighting enumerator function}$]]:
 +
 
 +
::<math>T(X) =  X^5 + 2 \cdot X^6  + 4 \cdot X^7 + \ \text{...\hspace{0.1cm}
 +
=  X^5 \cdot ( 1 + 2 \cdot X  + 4 \cdot X^2+ \ \text{...\hspace{0.1cm})
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
Mit der Reihenentwicklung 1/(1 &ndash; <i>x</i>) = 1 + <i>x</i> + <i>x</i><sup>2</sup> + <i>x</i><sup>3</sup> + ... kann hierfür auch geschrieben werden:
+
*Using the series expansion &nbsp; $1/(1 \, &ndash;x) = 1 + x + x^2 + x^3 + \ \text{...} \hspace{0.15cm} $&nbsp; can also be written for this purpose:
  
:<math>T(X) =  \frac{X^5}{1-2 \cdot X}
+
::<math>T(X) =  \frac{X^5}{1-2 \cdot X}
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
Das BSC&ndash;Modell liefert mit der Verfälschungswahrscheinlichkeit <i>&epsilon;</i> folgende  Bhattacharyya&ndash;Schranke:
+
*The BSC model provides the following Bhattacharyya bound with the falsification probability&nbsp; $\varepsilon$:
  
:<math>{\rm Pr(Burstfehler)} \le T(X = \beta)  = T( X = 2 \cdot \sqrt{\varepsilon \cdot (1-\varepsilon)})
+
::<math>{\rm Pr(Burst\:error)} \le T(X = \beta)  = T\big ( X = 2 \cdot \sqrt{\varepsilon \cdot (1-\varepsilon)} \big )
 
= \frac{(2 \cdot \sqrt{\varepsilon \cdot (1-\varepsilon)})^5}{1- 4\cdot \sqrt{\varepsilon \cdot (1-\varepsilon)}}\hspace{0.05cm}.</math>
 
= \frac{(2 \cdot \sqrt{\varepsilon \cdot (1-\varepsilon)})^5}{1- 4\cdot \sqrt{\varepsilon \cdot (1-\varepsilon)}}\hspace{0.05cm}.</math>
 +
*In the&nbsp; [[Aufgaben:Exercise_3.14:_Error_Probability_Bounds|"Exercise 3.14"]]&nbsp; this equation is to be evaluated numerically.}}<br>
 +
 +
== Bit error probability and Viterbi bound ==
 +
<br>
 +
Finally,&nbsp; an upper bound is given for the bit error probability.&nbsp; According to the graph,&nbsp; we proceed as in&nbsp; [Liv10]<ref name='Liv10'>Liva, G.:&nbsp; Channel Coding.&nbsp; Lecture manuscript, Chair of Communications Engineering, TU Munich and DLR Oberpfaffenhofen, 2010.</ref>&nbsp; assume the following conditions:<br>
  
In Aufgabe A3.14 soll diese Gleichung numerisch ausgewertet werden.{{end}}<br>
+
*The zero sequence&nbsp; $\underline{x} = \underline{0}$ was sent &nbsp; &#8658; &nbsp; Path&nbsp; $\varphi_0$.<br>
  
== Bitfehlerwahrscheinlichkeit und Viterbi–Schranke (1) ==
+
*The duration of a path deviation&nbsp; $($"error burst duration"$)$&nbsp; is denoted by&nbsp; $L$&nbsp;.<br>
<br>
 
Abschließend wird eine obere Schranke für die Bitfehlerwahrscheinlichkeit angegeben. Entsprechend der Grafik gehen wir wie [Liv10] von folgenden Gegebenheiten aus:<br>
 
  
[[File:P ID2715 KC T 3 5 S6a v1.png|Zur Definition der Beschreibungsgrößen <i>L</i>, <i>N</i> und <i>H</i>|class=fit]]<br>
+
*The distance between two bursts&nbsp; $($"inter burst time"$)$&nbsp; we call&nbsp; $N$.<br>
  
*Gesendet wurde die Nullsequenz <u><i>x</i></u> = <u>0</u> &nbsp;&#8658;&nbsp; Pfad <i>&phi;</i><sub>0</sub>.<br>
+
*The Hamming weight of the error bundle be&nbsp; $H$.<br>
  
*Die Dauer einer Pfadabweichung (englisch: <i>Error Burst Duration</i>) wird mit <i>L</i> bezeichnet.<br>
 
  
*Den Abstand zweier Bursts (englisch: <i>Inter&ndash;Burst Time</i>) nennen wir <i>N</i>.<br>
 
  
*Das Hamming&ndash;Gewicht des Fehlerbündels sei <i>H</i>.<br><br>
+
For a rate $1/n$&nbsp; convolutional code &nbsp; &#8658; &nbsp; $k = 1$ &nbsp; &#8658; &nbsp; one information bit per clock,&nbsp; the expected values&nbsp; ${\rm E}\big[L \big]$,&nbsp; ${\rm E}\big[N \big]$&nbsp; and&nbsp; ${\rm E}\big[H\big]$&nbsp; of the random variables defined above to give an upper bound for the bit error probability:
  
Für einen Rate&ndash;1/<i>n</i>&ndash;Faltungscode &#8658; <i>k</i> = 1, also einem Informationsbit pro Takt, lässt sich aus den Erwartungswerten <i>E</i>[<i>L</i>], <i>E</i>[<i>N</i>] und <i>E</i>[<i>H</i>] der oben definierten Zufallsgrößen eine obere Schranke für die Bitfehlerwahrscheinlichkeit angeben:
+
[[File:P ID2715 KC T 3 5 S6a v1.png|right|frame|For the definition of the description variables&nbsp; $L$,&nbsp; $N$&nbsp; and $H$|class=fit]]
  
:<math>{\rm Pr(Bitfehler)} =  \frac{{\rm E}[H]}{{\rm E}[L] + {\rm E}[N]}\hspace{0.15cm} \le \hspace{0.15cm} \frac{{\rm E}[H]}{{\rm E}[N]}
+
::<math>{\rm Pr(bit\:error)} =  \frac{{\rm E}\big[H\big]}{{\rm E}[L] + {\rm E}\big[N\big]}\hspace{0.15cm} \le \hspace{0.15cm} \frac{{\rm E}\big[H\big]}{{\rm E}\big[N\big]}
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
Hierbei ist vorausgesetzt, dass die (mittlere) Dauer eines Fehlerbündels in der Praxis sehr viel kleiner ist als der zu erwartende Abstand zweier Bündel. Weiter kann gezeigt werden, dass die mittlere <i>Inter&ndash;Burst Time</i>  E[<i>N</i>] gleich dem Kehrwert der Burstfehlerwahrscheinlichkeit ist, während der Erwartungswert im Zähler wie folgt abgeschätzt:
+
It is assumed that
 +
# &nbsp; the&nbsp; (mean)&nbsp; duration of an error burst is in practice much smaller than the expected distance between two bursts,  
 +
# &nbsp; the&nbsp; (mean)&nbsp; inter burst time $E\big[N\big]$&nbsp; is equal to the inverse of the burst error probability,  
 +
# &nbsp; the expected value in the numerator is estimated as follows:
  
:<math>{\rm E}[H]  \le  \frac{1}{\rm Pr(Burstfehler)}\hspace{0.1cm} \cdot \sum_{\varphi_{\hspace{0.02cm}i} \in {\it \Phi}}\hspace{0.05cm}  
+
::<math>{\rm E}\big[H \big]  \le  \frac{1}{\rm Pr(burst\:error)}\hspace{0.1cm} \cdot \sum_{\varphi_{\hspace{0.02cm}i} \in {\it \Phi}}\hspace{0.05cm}  
 
\hspace{0.05cm} u(\varphi_i) \cdot \beta^{w(\varphi_i)}
 
\hspace{0.05cm} u(\varphi_i) \cdot \beta^{w(\varphi_i)}
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
Bei der Herleitung dieser Schranke in [Liv10] werden die <i>paarweise Fehlerwahrscheinlichkeit</i> Pr[<i>&phi;</i><sub>0</sub>&nbsp;&#8594;&nbsp;<i>&phi;<sub>i</sub></i>] sowie die <i>Bhattacharyya&ndash;Abschätzung</i> verwendet. Damit erhält man mit
+
In deriving this bound,&nbsp; the&nbsp; "pairwise error probability"&nbsp; ${\rm Pr}\big [\varphi_0 &#8594; \varphi_i \big]$&nbsp; and the&nbsp; "Bhattacharyya estimation"&nbsp; are used.&nbsp; Thus we obtain with
*dem Pfadeingangsgewicht <i>u</i>(<i>&phi;<sub>i</sub></i>),<br>
+
*the path input weighting&nbsp; $u(\varphi_i),$
 +
 +
*the path output weighting&nbsp; $w(\varphi_i),$ and
  
*dem Pfadausgangsgewicht <i>w</i>(<i>&phi;<sub>i</sub></i>),<br>
+
*the Bhattacharyya parameter&nbsp; $\beta$
  
*dem Bhattacharyya&ndash;Parameter <i>&beta;</i>.<br><br>
 
  
die folgende Abschätzung für die Bitfehlerwahrscheinlichkeit:
+
the following estimation for the bit error probability and refer to it as the&nbsp; &raquo;<b>Viterbi bound</b>&laquo;:
  
:<math>{\rm Pr(Bitfehler)} \hspace{0.05cm} \le   \sum_{\varphi_{\hspace{0.02cm}i} \in {\it \Phi}}\hspace{0.05cm}  
+
::<math>{\rm Pr(bit\:error)}\le \sum_{\varphi_{\hspace{0.02cm}i} \in {\it \Phi}}\hspace{0.05cm}  
\hspace{0.01cm} u(\varphi_i) \cdot \beta^{w(\varphi_i)}
+
\hspace{0.05cm} u(\varphi_i) \cdot \beta^{w(\varphi_i)}
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
 +
This intermediate result can also be represented in another form.  We recall the&nbsp; [[Channel_Coding/Distance_Characteristics_and_Error_Probability_Bounds#Enhanced_path_weighting_enumerator_function|$\text{enhanced path weighting enumerator function}$]]
  
Man nennt diese Abschätzung die <b>Viterbi&ndash;Schranke</b>.<br>
+
::<math>T_{\rm enh}(X, U) = \sum_{\varphi_j \in {\it \Phi}}\hspace{0.1cm}  X^{w(\varphi_j)} \cdot U^{{ u}(\varphi_j)} 
 +
\hspace{0.05cm}.</math>
  
== Bitfehlerwahrscheinlichkeit und Viterbi–Schranke (2) ==
+
If we derive this function according to the dummy input variable&nbsp; $U$,&nbsp; we get
<br>
 
Wir erinnern uns an die [http://en.lntwww.de/Kanalcodierung/Distanzeigenschaften_und_Fehlerwahrscheinlichkeitsschranken#Erweiterte_Pfadgewichtsfunktion erweiterte Pfadgewichtsfunktion]
 
  
:<math>T_{\rm enh}(X, U) = \sum_{\varphi_j \in {\it \Phi}}\hspace{0.1cm}  X^{w(\varphi_j)} \cdot U^{{ u}(\varphi_j)}   
+
::<math>\frac {\rm d}{{\rm d}U}\hspace{0.2cm}T_{\rm enh}(X, U) = \sum_{\varphi_j \in {\it \Phi}}\hspace{0.1cm} { u}(\varphi_j) \cdot X^{w(\varphi_j)} \cdot U^{{ u}(\varphi_j)-1}   
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
Leitet man diese Funktion nach der Dummy&ndash;Eingangsvariablen <i>U</i> ab, so erhält man
+
Finally,&nbsp; if we set&nbsp; $U = 1$&nbsp; for the dummy input variable,&nbsp; than we see the connection to the above result:
  
:<math>\frac {\rm d}{{\rm d}U}\hspace{0.2cm}T_{\rm enh}(X, U) = \sum_{\varphi_j \in {\it \Phi}}\hspace{0.1cm} { u}(\varphi_j) \cdot  X^{w(\varphi_j)} \cdot U^{{ u}(\varphi_j)-1}
+
::<math>\left [ \frac {\rm d}{{\rm d}U}\hspace{0.2cm}T_{\rm enh}(X, U) \right ]_{\substack{ U=1}} = \sum_{\varphi_j \in {\it \Phi}}\hspace{0.1cm} { u}(\varphi_j) \cdot  X^{w(\varphi_j)} \hspace{0.05cm}.</math>
 +
 
 +
{{BlaueBox|TEXT= 
 +
$\text{Conclusion:}$&nbsp;  The&nbsp; &raquo;<b>bit error probability</b>&laquo;&nbsp; of a convolutional code can be estimated using the extended path weighting enumerator function in closed form:
 +
::<math>{\rm Pr(bit\:error)} \le {\rm Pr(Viterbi)} = \left [ \frac {\rm d}{ {\rm d}U}\hspace{0.2cm}T_{\rm enh}(X, U) \right ]_{\substack{X=\beta \\ U=1} }
 
\hspace{0.05cm}.</math>
 
\hspace{0.05cm}.</math>
  
Schließlich setzen wir noch für die Dummy&ndash;Eingangsvariablen <i>U</i> = 1:
+
*One speaks of the&nbsp; &raquo;<b>Viterbi bound</b>&raquo;.&nbsp; Here one derives the enhanced path weighting enumerator function after the second parameter&nbsp; $U$&nbsp; and then sets&nbsp;
 +
::$$X = \beta,\hspace{0.4cm} U = 1.$$}}<br>
  
:<math>\left [ \frac {\rm d}{{\rm d}U}\hspace{0.2cm}T_{\rm enh}(X, U) \right ]_{\substack{ U=1}} = \sum_{\varphi_j \in {\it \Phi}}\hspace{0.1cm} { u}(\varphi_j) \cdot  X^{w(\varphi_j)} \hspace{0.05cm}.</math>
 
  
Man erkennt den Zusammenhang zum Ergebnis der letzten Seite.<br>
+
{{GraueBox|TEXT= 
 +
$\text{Example 5:}$&nbsp; The graph illustrates the good correction capability &nbsp; &rArr; &nbsp; small bit error rate&nbsp; $\rm (BER)$&nbsp; of convolutional codes at the&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#AWGN_channel_at_binary_input|$\text{$\rm AWGN$&nbsp; channel}$]].
 +
[[File:EN_KC_T_3_5_S6.png|right|frame|AWGN bit error probability of convolutional codes]]
 +
 
 +
*Red circles denote the&nbsp; $\rm BER$&nbsp; for our&nbsp; "rate&nbsp; $1/2$&nbsp; standard  encoder"&nbsp; with memory&nbsp; $m = 2$.<br>
  
<b>Zusammenfassung:</b> Die <b>Bitfehlerwahrscheinlichkeit</b> eines Faltungscodes kann mit der erweiterten Pfadgewichtsfunktion in geschlossener Form abgeschätzt werden:
 
  
:<math>{\rm Pr(Bitfehler)} \le {\rm Pr(Viterbi)} = \left [ \frac {\rm d}{{\rm d}U}\hspace{0.2cm}T_{\rm enh}(X, U) \right ]_{\substack{X=\beta \\ U=1}}
+
*Green crosses mark a convolutional code with&nbsp; $m = 6$,&nbsp; the so-called&nbsp; [[Channel_Coding/Code_Description_with_State_and_Trellis_Diagram#Definition_of_the_free_distance|$\text{industry standard code}$]].<br>
\hspace{0.05cm}.</math>
 
  
Man spricht von der <b>Viterbi&ndash;Schranke</b>. Dabei leitet man die erweiterte Pfadgewichtsfunktion nach dem zweiten Parameter <i>U</i> ab und setzt dann <i>X</i> = <i>&beta;</i> und <i>U</i> = 1.<br>
 
  
[[File:P ID2716 KC T 3 5 S6b v2.png|AWGN–Bitfehlerwahrscheinlichkeit von Faltungscodes|rechts|rahmenlos]]<br>
+
* Codes with large memory&nbsp; $m$&nbsp; lead to large gains over uncoded transmission.
  
In Aufgabe A3.14 werden
 
*die Viterbi&ndash;Schranke und<br>
 
*die Bhattacharyya&ndash;Schranke<br><br>
 
  
für unseren Rate&ndash;1/2&ndash;Standardcode sowie das [http://en.lntwww.de/Kanalcodierung/Klassifizierung_von_Signalen#Binary_Symmetric_Channel_.E2.80.93_BSC BSC&ndash;Modell] numerisch ausgewertet.
 
*Die roten Kreise kennzeichnen die Bitfehlerrate für den gleichen Code (<i>m</i> = 2) beim [http://en.lntwww.de/Kanalcodierung/Klassifizierung_von_Signalen#AWGN.E2.80.93Kanal_bei_bin.C3.A4rem_Eingang AWGN&ndash;Kanal.]<br>
 
  
*Die grünen Kreuze markieren einen Faltungscode mit <i>m</i> = 6, den man oft [http://en.lntwww.de/Kanalcodierung/Codebeschreibung_mit_Zustands%E2%80%93_und_Trellisdiagramm#Definition_der_freien_Distanz_.282.29 Industriestandardcode] nennt.<br><br>
 
  
Die Grafik verdeutlicht die gute Korrekturfähigkeit der Faltungscodes. Insbesondere Codes mit großem Gedächtnis <i>m</i> führen zu großen Gewinnen gegenüber uncodierter Übertragung (gestrichelte Kurve).<br>
+
<br><br><br><br>
 +
<u>Note:</u> &nbsp;
  
== Aufgaben ==
+
In&nbsp; [[Aufgaben:Exercise_3.14:_Error_Probability_Bounds|"Exercise 3.14"]],&nbsp; the&nbsp; "Viterbi bound"&nbsp; and the&nbsp; "Bhattacharyya bound"&nbsp; are  evaluated numerically for the&nbsp; "rate $1/2$&nbsp; standard encoder"&nbsp; and the&nbsp; [[Channel_Coding/Channel_Models_and_Decision_Structures#Binary_Symmetric_Channel_.E2.80.93_BSC|$\text{BSC model}$]].
 +
}}
 +
 
 +
 
 +
== Exercises for the chapter ==
 
<br>
 
<br>
[[Aufgaben:3.12 Pfadgewichtsfunktion|A3.12 Pfadgewichtsfunktion]]
+
[[Aufgaben:Exercise_3.12:_Path_Weighting_Function|Exercise 3.12: Path Weighting Function]]
 +
 
 +
[[Aufgaben:Exercise_3.12Z:_Ring_and_Feedback|Exercise 3.12Z: Ring and Feedback]]
  
[[Zusatzaufgaben:3.12 Ring und Rückkopplung]]
+
[[Aufgaben:Exercise_3.13:_Path_Weighting_Function_again|Exercise 3.13: Path Weighting Function again]]
  
[[Aufgaben:3.13 Nochmals Tenh(X, U) und T(X)|A3.13 Nochmals Tenh(X, U) und T(X)]]
+
[[Aufgaben:Exercise_3.14:_Error_Probability_Bounds|Exercise 3.14: Error Probability Bounds]]
  
[[Aufgaben:3.14 Faltungscodes: Schranken|A3.14 Faltungscodes: Schranken]]
+
==References==
 +
<references/>
  
 
{{Display}}
 
{{Display}}

Latest revision as of 18:24, 20 December 2022

Free distance vs. minimum distance


An important parameter regarding the error probability of linear block codes is the  "minimum distance"  between two code words   $\underline{x}$   and   $\underline{x}\hspace{0.05cm}'$:

\[d_{\rm min}(\mathcal{C}) = \min_{\substack{\underline{x},\hspace{0.05cm}\underline{x}\hspace{0.05cm}' \hspace{0.05cm}\in \hspace{0.05cm} \mathcal{C} \\ {\underline{x}} \hspace{0.05cm}\ne \hspace{0.05cm} \underline{x}\hspace{0.05cm}'}}\hspace{0.1cm}d_{\rm H}(\underline{x}, \hspace{0.05cm}\underline{x}\hspace{0.05cm}') = \min_{\substack{\underline{x} \hspace{0.05cm}\in \hspace{0.05cm} \mathcal{C} \\ {\underline{x}} \hspace{0.05cm}\ne \hspace{0.05cm} \underline{0}}}\hspace{0.1cm}w_{\rm H}(\underline{x}) \hspace{0.05cm}.\]
  • The second part of the equation arises from the fact that every linear code also includes the zero word   ⇒   $(\underline{0})$.
  • It is therefore convenient to set  $\underline{x}\hspace{0.05cm}' = \underline{0}$,  so that the  $\text{Hamming distance}$   $d_{\rm H}(\underline{x}, \ \underline{0})$   gives the same result as the Hamming weight   $w_{\rm H}(\underline{x})$.


$\text{Example 1:}$  The table shows the  $16$  code words of of an exemplary  $\text{HC (7, 4, 3)}$  $($see  $\text{Examples 6 and 7})$.

Code words of the considered  $(7, 4, 3)$ Hamming code

You can see:

  • All code words except the null word  $(\underline{0})$  contain at least three ones   ⇒   $d_{\rm min} = 3$.
  • There are
  1. seven code words with three  "ones"  $($highlighted in yellow$)$,
  2. seven with four  "ones"  $($highlighted in green$)$,  and
  3. one each with no  "ones" and seven  "ones".


The  »free distance«  $d_{\rm F}$  of a convolutional code  $(\mathcal{CC})$  is formulaically no different from the minimum distance of a linear block code:

\[d_{\rm F}(\mathcal{CC}) = \min_{\substack{\underline{x},\hspace{0.05cm}\underline{x}\hspace{0.05cm}' \hspace{0.05cm}\in \hspace{0.05cm} \mathcal{CC} \\ {\underline{x}} \hspace{0.05cm}\ne \hspace{0.05cm} \underline{x}\hspace{0.05cm}'}}\hspace{0.1cm}d_{\rm H}(\underline{x}, \hspace{0.05cm}\underline{x}\hspace{0.05cm}') = \min_{\substack{\underline{x} \hspace{0.05cm}\in \hspace{0.05cm} \mathcal{CC} \\ {\underline{x}} \hspace{0.05cm}\ne \hspace{0.05cm} \underline{0}}}\hspace{0.1cm}w_{\rm H}(\underline{x}) \hspace{0.05cm}.\]
Some paths wih  $w(\underline{x}) = d_{\rm F} = 5$

In the literature instead of  "$d_{\rm F}$"  sometimes is also used  "$d_{∞}$".

The graph shows three of the infinite paths with the minimum Hamming weight  $w_{\rm H, \ min}(\underline{x}) = d_{\rm F} = 5$.

  • Major difference to the minimal distance  $d_{\rm min}$  of other codes is
  1. that in convolutional codes not information words and code words are to be considered, 
  2. but sequences with the property  »$\text{semi–infinite}$«
  • Each encoded sequence  $\underline{x}$  describes a path through the trellis.
  • The  "free distance"  is the smallest possible Hamming weight of such a path  $($except for the zero path$)$.



Path weighting enumerator function


For any linear block code,  a weight enumerator function can be given in a simple way because of the finite number of code words  $\underline{x}$. 

For the  $\text{Example 1}$  in the previous section this is:

\[W(X) = 1 + 7 \cdot X^{3} + 7 \cdot X^{4} + X^{7}\hspace{0.05cm}.\]
Some paths and their path weightings

In the case of a  $($non-terminated$)$  convolutional code,  no such weight function can be given,  since there are infinitely many,  infinitely long encoded sequences  $\underline{x}$  and thus also infinitely many trellis paths.

To get a grip on this problem,  we now assume the following:

  • As a reference for the trellis diagram,  we always choose the path of the encoded sequence  $\underline{x} = \underline{0}$  and call this the  "zero path"  $\varphi_0$.
  • We now consider only paths   $\varphi_j ∈ {\it \Phi}$  that all deviate from the zero path at a given time  $t$  and return to it at some point later.
  • Although only a fraction of all paths belong to the set  ${\it \Phi}$,  contains the remainder quantity  ${\it \Phi} = \{\varphi_1, \ \varphi_2, \ \varphi_3, \ \text{...} \}$  still an unbounded set of paths  $\varphi_0$  is not one of them.


In the above trellis some paths  $\varphi_j ∈ {\it \Phi}$  are drawn:

  • The yellow path  $\varphi_1$  belongs to the sequence  $\underline{x}_1 = (11, 10, 11)$  with Hamming weight  $w_{\rm H}(\underline{x}_1) = 5$.  Thus,  the path weighting  $w(\varphi_1) = 5$.  Due to the definition of the branching time  $t$  only this single path  $\varphi_1$  has the free distance  $d_{\rm F} = 5$  to the zero path   ⇒   $A_5 = 1$.
  • For the two green paths with corresponding sequences  $\underline{x}_2 = (11, 01, 01, 11)$  resp.   $\underline{x}_3 = (11, 10, 00, 10, 11)$   ⇒   $w(\varphi_2) = w(\varphi_3) = 6$.  No other path exhibits the path weighting  $6$.  We take this fact into account by the coefficient  $A_6 = 2$.
  • Also drawn is the gray path  $\varphi_4$,  associated with the sequence  $\underline{x}_4 = (11, 01, 10, 01, 11)$   ⇒   $w(\varphi_4) = 7$.  Also,  the sequences  $\underline{x}_5 = (11, 01, 01, 00, 10, 11)$,  $\underline{x}_6 = (11, 10, 00, 01, 01, 11)$  and  $\underline{x}_7 = (11, 10, 00, 10, 00, 10, 11)$  have the same path weighting  "$7$"    ⇒   $A_7 = 4$.

Thus,  the path weighting enumerator function is for this example:

\[T(X) = A_5 \cdot X^5 + A_6 \cdot X^6 + A_7 \cdot X^7 + \text{...} \hspace{0.1cm}= X^5 + 2 \cdot X^6 + 4 \cdot X^7+ \text{...}\hspace{0.1cm} \hspace{0.05cm}.\]

The definition of this function  $T(X)$  follows.

$\text{Definition:}$  For the  »path weighting enumerator function«  of a convolutional code holds:

\[T(X) = \sum_{\varphi_j \in {\it \Phi} }\hspace{0.1cm} X^{w(\varphi_j) } \hspace{0.1cm}=\hspace{0.1cm} \sum_{w\hspace{0.05cm} =\hspace{0.05cm} d_{\rm F} }^{\infty}\hspace{0.1cm} A_w \cdot X^w \hspace{0.05cm}.\]
  1.   ${\it \Phi}$  denotes the set of all paths that leave the zero path  $\varphi_0$  exactly at the specified time  $t$  and return to it  $($sometime$)$  later.
  2.   According to the second equation part,  the summands are ordered by their path weightings  $w$  where  $A_w$  denotes the number of paths with weighting  $w$.
  3.   The sum starts with  $w = d_{\rm F}$.
  4.   The path weighting  $w(\varphi_j)$  is equal to the Hamming weight  $($number of  "ones"$)$  of the encoded sequence $\underline{x}_j$  associated to the path  $\varphi_j$:  $w({\varphi_j) = w_{\rm H}(\underline {x} }_j) \hspace{0.05cm}.$


Note:  The weight enumerator function  $W(X)$  defined for linear block codes and the path weight function  $T(X)$  of convolutional codes have many similarities;  however,  they are not identical.     We consider again

  • the weight enumerator function of the  $(7, 4, 3)$ Hamming code:
\[W(X) = 1 + 7 \cdot X^{3} + 7 \cdot X^{4} + X^{7},\]
  • and the path weighting enumerator function of our  "standard convolutional encoder":
\[T(X) = X^5 + 2 \cdot X^6 + 4 \cdot X^7+ 8 \cdot X^8+ \text{...} \]
  1.   Noticeable is the  "$1$"  in the first equation,  which is missing in the second one.  That is:
  2.   For the linear block codes,  the reference code word  $\underline{x}_i = \underline{0}$  is counted.
  3.   But the zero encoded sequence  $\underline{x}_i = \underline{0}$  and the zero path  $\varphi_0$  are excluded by definition for convolutional codes.


$\text{Author's personal opinion:}$ 

One could  have defined  $W(X)$  without the  "$1$"  as well.  This would have avoided among other things,  that the Bhattacharyya–bound for linear block codes and that for convolutional codes differ by  "$-1$",  as can be seen from the following equations:


Enhanced path weighting enumerator function


The path weighting enumerator function  $T(X)$  only provides information regarding the weights of the encoded sequence  $\underline{x}$.

  • More information is obtained if the weights of the information sequence  $\underline{u}$  are also collected.
  • One then needs two formal parameters  $X$  and  $U$,  as can be seen from the following definition.


$\text{Definition:}$  The  »enhanced path weight enumerator function«  $\rm (EPWEF)$  is:

\[T_{\rm enh}(X,\ U) = \sum_{\varphi_j \in {\it \Phi} }\hspace{0.1cm} X^{w(\varphi_j)} \cdot U^{ { u}(\varphi_j)} \hspace{0.1cm}=\hspace{0.1cm} \sum_{w} \sum_{u}\hspace{0.1cm} A_{w, \hspace{0.05cm}u} \cdot X^w \cdot U^{u} \hspace{0.05cm}.\]

All specifications for the   $T(X)$  definition in the last section apply.  In addition,  note:

  1.   The path input weight  $u(\varphi_j)$  is equal to the Hamming weight of the information sequence  $\underline{u}_j$  associated to the path.
  2.   It is expressed as a power of the formal parameter  $U$ .
  3.   $A_{w, \ u}$  denotes the number of paths  $\varphi_j$  with path output weight  $w(\varphi_j)$  and path input weight  $u(\varphi_j)$.  Control variable for the second portion is  $u$.
  4.   Setting the formal parameter  $U = 1$  in the enhanced path weighting enumerator function yields the original weighting enumerator function  $T(X)$.


For many  $($and all relevant$)$  convolutional codes,  upper equation can still be simplified:

\[T_{\rm enh}(X,\ U) =\hspace{0.1cm} \sum_{w \ = \ d_{\rm F} }^{\infty}\hspace{0.1cm} A_w \cdot X^w \cdot U^{u} \hspace{0.05cm}.\]


$\text{Example 2:}$  Thus, the enhanced path weighting enumerator function of our standard encoder is:

\[T_{\rm enh}(X,\ U) = U \cdot X^5 + 2 \cdot U^2 \cdot X^6 + 4 \cdot U^3 \cdot X^7+ \text{ ...} \hspace{0.1cm} \hspace{0.05cm}.\]
Some paths and their path weightings

Comparing this result with the trellis shown below, we can see:

  • The yellow highlighted path  – in  $T(X)$  marked by  $X^5$  – is composed of a blue arrow  $(u_i = 1)$  and two red arrows  $(u_i = 0)$.  Thus  $X^5$  becomes the extended term  $U X^5$.
  • The sequences of the two green paths are 
$$\underline{u}_2 = (1, 1, 0, 0) \hspace{0.15cm} ⇒ \hspace{0.15cm} \underline{x}_2 = (11, 01, 01, 11),$$
$$\underline{u}_3 = (1, 0, 1, 0, 0) \hspace{0.15cm} ⇒ \hspace{0.15cm} \underline{x}_3 = (11, 10, 00, 10, 11).$$
This gives the second term  $2 \cdot U^2X^6$.
  • The gray path  $($and the three undrawn paths$)$  together make the contribution  $4 \cdot U^3X^7$.  Each of these paths contains three blue arrows   ⇒   three  "ones"  in the associated information sequence.


Path weighting enumerator function from state transition diagram


There is an elegant way to determine the path weighting enumerator function  $T(X)$  and its enhancement directly from the state transition diagram.  This will be demonstrated here and in the following sections using our  $\text{standard convolutional encoder}$  as an example.

First,  the state transition diagram must be redrawn for this purpose.  The graphic shows this on the left in the previous form as diagram  $\rm (A)$,  while the new diagram  $\rm (B)$  is given on the right.  It can be seen:

State transition diagram in two different variants
  1.   The state  $S_0$  is split into the start state  $S_0$  and the end state  $S_0\hspace{0.01cm}'$.  Thus,  all paths of the trellis that start in state  $S_0$  and return to it at some point can also be traced in the right graph  $\rm (B)$.  Excluded are direct transitions from  $S_0$  to  $S_0\hspace{0.01cm}'$  and thus also the zero path.
  2.   In diagram  $\rm (A)$  the transitions are distinguishable by the colors red  $($for  $u_i = 0)$  and blue  $($for  $u_i = 1)$. 
  3.   The code words  $\underline{x}_i ∈ \{00, 01, 10, 11\}$  are noted at the transitions.  In diagram  $\rm (B)$  $(00)$  is expressed  by  $X^0 = 1$  and  $(11)$  by  $X^2$.
  4.   The code words  $(01)$  and  $(10)$  are now indistinguishable,  but they are uniformly denoted by  $X$ .
  5.   Phrased another way:   The code word  $\underline{x}_i$  is now represented as  $X^w$  where  $X$  is a dummy variable associated with the output.
  6.   $w = w_{\rm H}(\underline{x}_i)$  indicates the Hamming weight of the code word  $\underline{x}_i$.  For a rate $1/2$ code,  the exponent  $w$  is either  $0, \ 1$  or  $2$.
  7.   Also diagram  $\rm (B)$  omits the color coding.  The information bit  $u_i = 1$  is now denoted by  $U^1 = U$  and bit  $u_i = 0$  by  $U^0 = 1$.  The dummy variable  $U$  is thus assigned to the input sequence  $\underline{u}$ .

Rules for manipulating the state transition diagram


Goal of our calculations will be to characterize the  $($arbitrarily complicated$)$  path from  $S_0$  to  $S_0\hspace{0.01cm}'$  by the extended path weighting enumerator function  $T_{\rm enh}(X, \ U)$.  For this we need rules to simplify the graph stepwise.

»Serial transitions«

Reduction of serial transitions  (1),  parallel transitions  (2),  a ring  (3),  a feedback  (4)

Two serial connections – denoted by  $A(X, \ U)$  and  $B(X, \ U)$  – can be replaced by a single connection with the product of these ratings.

»Parallel transitions«

Two parallel connections – denoted by  $A(X, \ U)$  and  $B(X, \ U)$  – are combined by the sum of their valuation functions.

»Ring«

The adjacent constellation can be replaced by a single connection, and the following applies to the replacement:

\[E(X, U) = \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)} \hspace{0.05cm}.\]

»Feedback«

Due to the feedback, two states can alternate here as often as desired. For this constellation applies:

\[F(X, U) = \frac{A(X, U) \cdot B(X, U)\cdot C(X, U)}{1- C(X, U)\cdot D(X, U)} \hspace{0.05cm}.\]

The equations for ring and feedback given here are to be proved in the  "Exercise 3.12Z" .

$\text{Example 3:}$  The above rules are now to be applied to our standard example.  In the graphic on the left you can see the modified diagram  $\rm (B)$.

Reduction of state transitions
  • First we replace the red highlighted detour from  $S_1$  to  $S_2$  via  $S_3$  in the diagram  $\rm (B)$  by the red connection  $T_1(X, \hspace{0.05cm} U)$  drawn in the diagram  $\rm (C)$.
  • According to the upper classification,  it is a  "ring"  with the labels  $A = C = U \cdot X$  and  $B = X$, and we obtain for the first reduction function:
\[T_1(X, \hspace{0.05cm} U) = \frac{U \cdot X^2}{1- U \cdot X} \hspace{0.05cm}.\]
  • Now we summarize the parallel connections according to the blue background in the diagram  $\rm (C)$  and replace it with the blue connection in the diagram  $\rm (D)$.  The second reduction function is thus:
$$T_2(X, \hspace{0.03cm}U) = T_1(X, \hspace{0.03cm}U) \hspace{-0.03cm}+\hspace{-0.03cm} X\hspace{-0.03cm} $$
$$\Rightarrow \hspace{0.3cm} T_2(X, \hspace{0.05cm}U) =\hspace{-0.03cm} \frac{U X^2\hspace{-0.03cm} +\hspace{-0.03cm} X \cdot (1-UX)}{1- U X}= \frac{X}{1- U X}\hspace{0.05cm}.$$
  • The entire graph  $\rm (D)$  can then be replaced by a single connection from  $S_0$  to  $S_0\hspace{0.01cm}'$.  According to the feedback rule,  one obtains for the  "enhanced path weighting enumerator function":
\[T_{\rm enh}(X, \hspace{0.05cm}U) = \frac{(U X^2) \cdot X^2 \cdot \frac{X}{1- U X} }{1- U \cdot \frac{X}{1- U X} } = \frac{U X^5}{1- U X- U X} = \frac{U X^5}{1- 2 \cdot U X} \hspace{0.05cm}.\]
  • With the series expansion  $1/(1 \, –x) = 1 + x + x^2 + x^3 + \ \text{...} \ $  can also be written for this purpose:
\[T_{\rm enh}(X, \hspace{0.05cm}U) = U X^5 \cdot \big [ 1 + 2 \hspace{0.05cm}UX + (2 \hspace{0.05cm}UX)^2 + (2 \hspace{0.05cm}UX)^3 + \text{...} \hspace{0.05cm} \big ] \hspace{0.05cm}.\]
  • Setting the formal input variable   $U = 1$,   we obtain the  "simple path weighting enumerator function",  which alone allows statements about the weighting distribution of the output sequence  $\underline{x}$: 
\[T(X) = X^5 \cdot \big [ 1 + 2 X + 4 X^2 + 8 X^3 +\text{...}\hspace{0.05cm} \big ] \hspace{0.05cm}.\]

We have already read the same result from the trellis diagram in section  "Path weighting enumerator function" . There was

    • one gray path with weight  $5$,
    • two yellow paths with weighting  $6$ 
    • four green paths with weighting  $7$
    • and ... .


Block error probability vs. burst error probability


The simple model according to the sketch is valid for linear block codes as well as for convolutional codes.

Simple transmission model including encoding and decoding


»Block codes«

For block codes denote  $\underline{u} = (u_1, \ \text{...} \hspace{0.05cm}, \ u_i, \ \text{...} \hspace{0.05cm}, \ u_k)$  and  $\underline{v} = (v_1, \ \text{...} \hspace{0.05cm}, v_i, \ \text{...} \hspace{0.05cm} \ , \ v_k)$  the information blocks at the input and output of the system.

Thus,  the following descriptive variables can be specified:

  • the »block error probability«   ${\rm Pr(block\:error)} = {\rm Pr}(\underline{v} ≠ \underline{u}),$
  • the »bit error probability«   ${\rm Pr(bit\:error)} = {\rm Pr}(v_i ≠ u_i).$

$\text{Please note:}$  In real transmission systems,  due to thermal noise the following always applies:

$${\rm Pr(bit\:error)} > 0\hspace{0.05cm},\hspace{0.5cm}{\rm Pr(block\:error)} > {\rm Pr(bit\:error)} \hspace{0.05cm}.$$

For this a simple explanation attempt:   If the decoder decides in each block of length  $k$  exactly one bit wrong,

  • so the average bit error probability   ${\rm Pr(bit\:error)}= 1/k$,
  • while for the block error probability   ${\rm Pr(block\:error)}\equiv 1$  holds.



»Convolutional codes«

For convolutional codes,  the block error probability cannot be specified,  since here   $\underline{u} = (u_1, \ u_2, \ \text{...} \hspace{0.05cm})$   and   $\underline{\upsilon} = (v_1, \ v_2, \ \text{...} \hspace{0.05cm})$   represent sequences.

Zero path  ${\it \varphi}_0$  and deviation paths  ${\it \varphi}_i$



Even the smallest possible code parameter  $k = 1$,  leads here to the sequence length  $k \hspace{0.05cm}' → ∞$,  and

  • the block error probability would always result in  ${\rm Pr(block\hspace{0.1cm} error)}\equiv 1$,
  • even if the bit error probability is extremely small $\hspace{0.05cm}$ $($but non-zero$)$.


$\text{Definition:}$  For the  »burst error probability « of a convolutional code holds:

\[{\rm Pr(burst\:error)} = {\rm Pr}\big \{ {\rm Decoder\hspace{0.15cm} leaves\hspace{0.15cm} the\hspace{0.15cm} correct\hspace{0.15cm}path}\hspace{0.15cm}{\rm at\hspace{0.15cm}time \hspace{0.10cm}\it t}\big \} \hspace{0.05cm}.\]
  • To simplify the notation for the following derivation,  we always assume the zero sequence  $\underline{0}$   which is shown in red in the drawn trellis as the  "zero path"  $\varphi_0$.
  • All other paths  $\varphi_1, \ \varphi_2, \ \varphi_3, \ \text{...} $  $($and many more$)$  leave  $\varphi_0$  at time  $t$.
  • They all belong to the path set  ${\it \Phi}$  which is defined as  "Viterbi decoder leaves the correct path at time  $t$".  This probability is calculated in the next section.


Burst error probability and Bhattacharyya bound


Calculation of the burst error probability

We proceed as in the earlier chapter  "Bounds for block error probability" 

  • from the pairwise error probability  ${\rm Pr}\big [\varphi_0 → \varphi_i \big]$ 
  • that instead of the path  $\varphi_0$ 
  • the decoder could select the path  $\varphi_i$.


All considered paths  $\varphi_i$  leave the zero path  $\varphi_0$  at time  $t$;  thus they all belong to the path set ${\it \Phi}$.

The sought  "burst error probability"  is equal to the following union set:

$${\rm Pr(burst\:error)}= {\rm Pr}\left (\big[\varphi_{\hspace{0.02cm}0} \mapsto \varphi_{\hspace{0.02cm}1}\big] \hspace{0.05cm}\cup\hspace{0.05cm}\big[\varphi_{\hspace{0.02cm}0} \mapsto \varphi_{\hspace{0.02cm}2}\big]\hspace{0.05cm}\cup\hspace{0.05cm} \text{... }\hspace{0.05cm} \right )$$
$$\Rightarrow \hspace{0.3cm}{\rm Pr(burst\:error)}= {\rm Pr} \left ( \cup_{\varphi_{\hspace{0.02cm}i} \in {\it \Phi}} \hspace{0.15cm} \big[\varphi_{\hspace{0.02cm}0} \mapsto \varphi_{\hspace{0.02cm}i}\big] \right )\hspace{0.05cm}.$$
\[{\rm Pr(Burst\:error)} \le \sum_{\varphi_{\hspace{0.02cm}i} \in {\it \Phi}}\hspace{0.15cm} {\rm Pr}\big [\varphi_{\hspace{0.02cm}0} \mapsto \varphi_{\hspace{0.02cm}i}\big ] = {\rm Pr(union \hspace{0.15cm}bound)} \hspace{0.05cm}.\]
\[{\rm Pr}\big [\underline {0} \mapsto \underline {x}_{\hspace{0.02cm}i}\big ] \le \beta^{w_{\rm H}({x}_{\hspace{0.02cm}i})}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} {\rm Pr}\left [\varphi_{\hspace{0.02cm}0} \mapsto \varphi_{\hspace{0.02cm}i}\right ] \le \hspace{0.05cm} \beta^{w(\varphi_i)}\hspace{0.05cm}.\]
Here denotes
  • $w_{\rm H}(\underline{x}_i)$  is the Hamming weight of the possible encoded sequence  $\underline{x}_i,$
  • $\ w(\varphi_i)$  is the path weight of the corresponding path  $\varphi_i ∈ {\it \Phi},$


By  »summing over all paths«  and comparing with the (simple)  $\text{path weighting function}$  $T(X)$  we get the result:

\[{\rm Pr(burst\:error)} \le T(X = \beta),\hspace{0.5cm}{\rm with}\hspace{0.5cm} T(X) = \sum_{\varphi_{\hspace{0.02cm}i} \in {\it \Phi} }\hspace{0.15cm} \hspace{0.05cm} X^{w(\varphi_i)}\hspace{0.05cm}.\]


$\text{Example 4: }$  For our standard encoder with

  • code rate  $R = 1/2$,
  • memory  $m = 2$,
  • D– transfer function  $\mathbf{G}(D) = (1 + D + D^2, \ 1 + D)$,


we have obtained the following  $\text{path weighting enumerator function}$:

\[T(X) = X^5 + 2 \cdot X^6 + 4 \cdot X^7 + \ \text{...} \hspace{0.1cm} = X^5 \cdot ( 1 + 2 \cdot X + 4 \cdot X^2+ \ \text{...} \hspace{0.1cm}) \hspace{0.05cm}.\]
  • Using the series expansion   $1/(1 \, –x) = 1 + x + x^2 + x^3 + \ \text{...} \hspace{0.15cm} $  can also be written for this purpose:
\[T(X) = \frac{X^5}{1-2 \cdot X} \hspace{0.05cm}.\]
  • The BSC model provides the following Bhattacharyya bound with the falsification probability  $\varepsilon$:
\[{\rm Pr(Burst\:error)} \le T(X = \beta) = T\big ( X = 2 \cdot \sqrt{\varepsilon \cdot (1-\varepsilon)} \big ) = \frac{(2 \cdot \sqrt{\varepsilon \cdot (1-\varepsilon)})^5}{1- 4\cdot \sqrt{\varepsilon \cdot (1-\varepsilon)}}\hspace{0.05cm}.\]


Bit error probability and Viterbi bound


Finally,  an upper bound is given for the bit error probability.  According to the graph,  we proceed as in  [Liv10][1]  assume the following conditions:

  • The zero sequence  $\underline{x} = \underline{0}$ was sent   ⇒   Path  $\varphi_0$.
  • The duration of a path deviation  $($"error burst duration"$)$  is denoted by  $L$ .
  • The distance between two bursts  $($"inter burst time"$)$  we call  $N$.
  • The Hamming weight of the error bundle be  $H$.


For a rate $1/n$  convolutional code   ⇒   $k = 1$   ⇒   one information bit per clock,  the expected values  ${\rm E}\big[L \big]$,  ${\rm E}\big[N \big]$  and  ${\rm E}\big[H\big]$  of the random variables defined above to give an upper bound for the bit error probability:

For the definition of the description variables  $L$,  $N$  and $H$
\[{\rm Pr(bit\:error)} = \frac{{\rm E}\big[H\big]}{{\rm E}[L] + {\rm E}\big[N\big]}\hspace{0.15cm} \le \hspace{0.15cm} \frac{{\rm E}\big[H\big]}{{\rm E}\big[N\big]} \hspace{0.05cm}.\]

It is assumed that

  1.   the  (mean)  duration of an error burst is in practice much smaller than the expected distance between two bursts,
  2.   the  (mean)  inter burst time $E\big[N\big]$  is equal to the inverse of the burst error probability,
  3.   the expected value in the numerator is estimated as follows:
\[{\rm E}\big[H \big] \le \frac{1}{\rm Pr(burst\:error)}\hspace{0.1cm} \cdot \sum_{\varphi_{\hspace{0.02cm}i} \in {\it \Phi}}\hspace{0.05cm} \hspace{0.05cm} u(\varphi_i) \cdot \beta^{w(\varphi_i)} \hspace{0.05cm}.\]

In deriving this bound,  the  "pairwise error probability"  ${\rm Pr}\big [\varphi_0 → \varphi_i \big]$  and the  "Bhattacharyya estimation"  are used.  Thus we obtain with

  • the path input weighting  $u(\varphi_i),$
  • the path output weighting  $w(\varphi_i),$ and
  • the Bhattacharyya parameter  $\beta$


the following estimation for the bit error probability and refer to it as the  »Viterbi bound«:

\[{\rm Pr(bit\:error)}\le \sum_{\varphi_{\hspace{0.02cm}i} \in {\it \Phi}}\hspace{0.05cm} \hspace{0.05cm} u(\varphi_i) \cdot \beta^{w(\varphi_i)} \hspace{0.05cm}.\]

This intermediate result can also be represented in another form. We recall the  $\text{enhanced path weighting enumerator function}$

\[T_{\rm enh}(X, U) = \sum_{\varphi_j \in {\it \Phi}}\hspace{0.1cm} X^{w(\varphi_j)} \cdot U^{{ u}(\varphi_j)} \hspace{0.05cm}.\]

If we derive this function according to the dummy input variable  $U$,  we get

\[\frac {\rm d}{{\rm d}U}\hspace{0.2cm}T_{\rm enh}(X, U) = \sum_{\varphi_j \in {\it \Phi}}\hspace{0.1cm} { u}(\varphi_j) \cdot X^{w(\varphi_j)} \cdot U^{{ u}(\varphi_j)-1} \hspace{0.05cm}.\]

Finally,  if we set  $U = 1$  for the dummy input variable,  than we see the connection to the above result:

\[\left [ \frac {\rm d}{{\rm d}U}\hspace{0.2cm}T_{\rm enh}(X, U) \right ]_{\substack{ U=1}} = \sum_{\varphi_j \in {\it \Phi}}\hspace{0.1cm} { u}(\varphi_j) \cdot X^{w(\varphi_j)} \hspace{0.05cm}.\]

$\text{Conclusion:}$  The  »bit error probability«  of a convolutional code can be estimated using the extended path weighting enumerator function in closed form:

\[{\rm Pr(bit\:error)} \le {\rm Pr(Viterbi)} = \left [ \frac {\rm d}{ {\rm d}U}\hspace{0.2cm}T_{\rm enh}(X, U) \right ]_{\substack{X=\beta \\ U=1} } \hspace{0.05cm}.\]
  • One speaks of the  »Viterbi bound».  Here one derives the enhanced path weighting enumerator function after the second parameter  $U$  and then sets 
$$X = \beta,\hspace{0.4cm} U = 1.$$



$\text{Example 5:}$  The graph illustrates the good correction capability   ⇒   small bit error rate  $\rm (BER)$  of convolutional codes at the  $\text{$\rm AWGN$  channel}$.

AWGN bit error probability of convolutional codes
  • Red circles denote the  $\rm BER$  for our  "rate  $1/2$  standard encoder"  with memory  $m = 2$.



  • Codes with large memory  $m$  lead to large gains over uncoded transmission.







Note:  

In  "Exercise 3.14",  the  "Viterbi bound"  and the  "Bhattacharyya bound"  are evaluated numerically for the  "rate $1/2$  standard encoder"  and the  $\text{BSC model}$.


Exercises for the chapter


Exercise 3.12: Path Weighting Function

Exercise 3.12Z: Ring and Feedback

Exercise 3.13: Path Weighting Function again

Exercise 3.14: Error Probability Bounds

References

  1. Liva, G.:  Channel Coding.  Lecture manuscript, Chair of Communications Engineering, TU Munich and DLR Oberpfaffenhofen, 2010.