Difference between revisions of "Theory of Stochastic Signals/Exponentially Distributed Random Variables"
(27 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{Header | {{Header | ||
− | |Untermenü= | + | |Untermenü=Continuous Random Variables |
− | |Vorherige Seite= | + | |Vorherige Seite= Gaussian Distributed Random Variables |
− | |Nächste Seite= | + | |Nächste Seite=Further Distributions |
}} | }} | ||
− | == | + | ==One-sided exponential distribution== |
<br> | <br> | ||
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
$\text{Definition:}$ | $\text{Definition:}$ | ||
− | + | A continuous random variable $x$ is called (one-sided) »'''exponentially distributed'''« if it can take only non–negative values and the probability density function has the following shape for $x>0$: | |
:$$f_x(x)=\it \lambda\cdot\rm e^{\it -\lambda \hspace{0.05cm}\cdot \hspace{0.03cm} x}.$$}} | :$$f_x(x)=\it \lambda\cdot\rm e^{\it -\lambda \hspace{0.05cm}\cdot \hspace{0.03cm} x}.$$}} | ||
− | [[File: P_ID72__Sto_T_3_6_S1_neu.png | + | [[File: P_ID72__Sto_T_3_6_S1_neu.png |right|frame| PDF and CDF of an exponentially distributed random variable]] |
− | + | The left sketch shows the "probability density function" $\rm (PDF)$ of such an exponentially distributed random variable $x$. To be emphasized: | |
− | + | #The larger the distribution parameter $λ$, the steeper the decay. | |
− | + | #By definition $f_{x}(0) = λ/2$, i.e. the mean of left-hand limit $(0)$ and right-hand limit $(\lambda)$. | |
− | + | *For the "cumulative distribution function" $\rm (CDF)$, we obtain for $r > 0$ by integration over the PDF (right graph): | |
− | |||
:$$F_{x}(r)=1-\rm e^{\it -\lambda\hspace{0.05cm}\cdot \hspace{0.03cm} r}.$$ | :$$F_{x}(r)=1-\rm e^{\it -\lambda\hspace{0.05cm}\cdot \hspace{0.03cm} r}.$$ | ||
− | + | *The "moments" of the one-sided exponential distribution are generally equal to | |
:$$m_k = k!/λ^k.$$ | :$$m_k = k!/λ^k.$$ | ||
− | + | *From this and from Steiner's theorem, we get for the "mean" and the "standard deviation": | |
:$$m_1={1}/{\lambda},$$ | :$$m_1={1}/{\lambda},$$ | ||
:$$\sigma=\sqrt{m_2-m_1^2}=\sqrt{\frac{2}{\lambda^2}-\frac{1}{\lambda^2}}={1}/{\lambda}.$$ | :$$\sigma=\sqrt{m_2-m_1^2}=\sqrt{\frac{2}{\lambda^2}-\frac{1}{\lambda^2}}={1}/{\lambda}.$$ | ||
{{GraueBox|TEXT= | {{GraueBox|TEXT= | ||
− | $\text{ | + | $\text{Example 1:}$ The exponential distribution has great importance for reliability studies, and the term "lifetime distribution" is also commonly used in this context. |
− | + | #In these applications, the random variable is often the time $t$ that elapses before a component fails. | |
− | + | #Furthermore, it should be noted that the exponential distribution is closely related to the [[Theory_of_Stochastic_Signals/Poisson_Distribution|$\text{Poisson distribution}$]]. }} | |
==Transformation of random variables== | ==Transformation of random variables== | ||
<br> | <br> | ||
− | + | To generate such an exponentially distributed random variable on a digital computer, you can use e.g. a »'''nonlinear transformation'''«. The underlying principle is first stated here in general terms. | |
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
− | $\text{ | + | $\text{Procedure:}$ If a continuous-valued random variable $u$ possesses the PDF $f_{u}(u)$, then the probability density function of the random variable transformed at the nonlinear characteristic $x = g(u)$ holds: |
:$$f_{x}(x)=\frac{f_u(u)}{\mid g\hspace{0.05cm}'(u)\mid}\Bigg \vert_{\hspace{0.1cm} u=h(x)}.$$ | :$$f_{x}(x)=\frac{f_u(u)}{\mid g\hspace{0.05cm}'(u)\mid}\Bigg \vert_{\hspace{0.1cm} u=h(x)}.$$ | ||
− | + | Here, $g\hspace{0.05cm}'(u)$ denotes the derivative of the characteristic curve $g(u)$ and $h(x)$ gives the inverse function to $g(u)$ . }} | |
− | * | + | *However, the above equation is only valid under the condition that the derivative $g\hspace{0.03cm}'(u) \ne 0$. |
− | * | + | *For a characteristic with horizontal sections $(g\hspace{0.05cm}'(u) = 0)$: Additional Dirac delta functions appear in the PDF if the input variable has components in these ranges. |
− | * | + | *The weights of these Dirac delta functions are equal to the probabilities that the input variable lies in these ranges. |
− | [[File:P_ID76__Sto_T_3_6_S2_neu.png |frame| | + | {{GraueBox|TEXT= |
− | + | [[File:P_ID76__Sto_T_3_6_S2_neu.png |frame| To transform random variables | right]] | |
− | $\text{ | + | $\text{Example 2:}$ |
− | + | Given a random variable $u$ triangularly distributed between $-2$ and $+2$ on a nonlinearity with characteristic $x = g(u)$, | |
− | * | + | *which, in the range $\vert u \vert ≤ 1$ triples the input values, and |
− | * | + | *mapping all values $\vert u \vert > 1$ to $x = \pm 3$ depending on the sign, |
− | + | then the PDF $f_{x}(x)$ sketched on the right is obtained. | |
− | + | Please note: | |
− | + | # Due to the amplification by a factor of $3$ ⇒ $f_{x}(x)$ is wider and lower than $f_{u}(u)$ by this factor. | |
+ | # The two horizontal limits of the characteristic at $u = ±1$ lead to two Dirac delta functions at $x = ±3$, each with weight $1/8$. | ||
+ | # The weight $1/8$ corresponds to the green areas in the PDF $f_{u}(u).$}} | ||
− | + | ==Generation of an exponentially distributed random variable== | |
+ | <br> | ||
+ | {{BlaueBox|TEXT= | ||
+ | $\text{Procedure:}$ | ||
+ | Now we assume that the random variable $u$ to be transformed is uniformly distributed between $0$ (inclusive) and $1$ (exclusive). | ||
− | + | *Moreover, we consider the monotonically increasing characteristic curve | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
:$$x=g_1(u) =\frac{1}{\lambda}\cdot \rm ln \ (\frac{1}{1-\it u}).$$ | :$$x=g_1(u) =\frac{1}{\lambda}\cdot \rm ln \ (\frac{1}{1-\it u}).$$ | ||
− | + | *It can be shown that by this characteristic $x=g_1(u)$ a one-sided exponentially distributed random variable $x$ with the following PDF arises <br>(derivation see [[Theory_of_Stochastic_Signals/Exponentially_Distributed_Random_Variables#Derivation_of_the_corresponding_transformation_characteristic|"next section"]]): | |
− | :$$f_{x}(x)=\lambda\cdot\rm e^{\it -\lambda \hspace{0.05cm}\cdot \hspace{0.03cm} | + | :$$f_{x}(x)=\lambda\cdot\rm e^{\it -\lambda \hspace{0.05cm}\cdot \hspace{0.03cm} x}\hspace{0.2cm}{\rm for}\hspace{0.2cm} {\it x}>0.$$ |
− | * | + | *Note: |
− | + | #For $x = 0$ the PDF value is half $(\lambda/2)$. | |
+ | # Negative $x$ values do not occur because for $0 ≤ u < 1$ the argument of the (natural) logarithm function does not become smaller than $1$.}} | ||
− | + | By the way, the same PDF is obtained with the monotonically decreasing characteristic curve | |
:$$x=g_2(u)=\frac{1}{\lambda}\cdot \rm ln \ (\frac{1}{\it u})=-\frac{1}{\lambda}\cdot \rm ln(\it u \rm ).$$ | :$$x=g_2(u)=\frac{1}{\lambda}\cdot \rm ln \ (\frac{1}{\it u})=-\frac{1}{\lambda}\cdot \rm ln(\it u \rm ).$$ | ||
− | + | Please note: | |
− | * | + | *When using a computer implementation corresponding to the first transformation characteristic $x=g_1(u)$ ⇒ the value $u = 1$ must be excluded. |
− | * | + | *On the other hand, if one uses the second transformation characteristic $x=g_2(u)$ ⇒ the value $u =0$ must be excluded. |
− | + | The following (German language) learning video shall clarify the transformations derived here: <br> [[Erzeugung_einer_Exponentialverteilung_(Lernvideo)|"Erzeugung einer Exponentialverteilung"]] $\Rightarrow$ "Generation of an exponential distribution". | |
− | == | + | ==Derivation of the corresponding transformation characteristic== |
<br> | <br> | ||
− | {{BlaueBox|TEXT= | + | {{BlaueBox|TEXT= |
− | $\text{ | + | $\text{Task:}$ |
− | + | # Now the transformation characteristic $x = g_1(u)= g(u)$ already used in the last section is derived. | |
− | + | # This forms from the uniformly distributed random variable $u$ with PDF $f_{u}(u)$ a one-sided exponentially distributed random variable $x$ with PDF $f_{x}(x)$: | |
− | :$$f_{u}(u)= \left\{ \begin{array}{*{2}{c} } 1 & \rm | + | |
− | f_{x}(x)= \left\{ \begin{array}{*{2}{c} } \lambda\cdot\rm e^{\it -\lambda\hspace{0.03cm} \cdot \hspace{0.03cm} x} & \rm | + | ::$$f_{u}(u)= \left\{ \begin{array}{*{2}{c} } 1 & \rm if\hspace{0.3cm} 0 < {\it u} < 1,\\ 0.5 & \rm if\hspace{0.3cm} {\it u} = 0, {\it u} = 1,\\ 0 & \rm else, \\ \end{array} \right. \hspace{0.5cm}\Rightarrow \hspace{0.5cm} |
+ | f_{x}(x)= \left\{ \begin{array}{*{2}{c} } \lambda\cdot\rm e^{\it -\lambda\hspace{0.03cm} \cdot \hspace{0.03cm} x} & \rm if\hspace{0.3cm} {\it x} > 0,\\ \lambda/2 & \rm if\hspace{0.3cm} {\it x} = 0 ,\\ 0 & \rm else\hspace{0.3cm} {\it x} < 0. \\ \end{array} \right.$$}} | ||
− | {{BlaueBox|TEXT= | + | {{BlaueBox|TEXT= |
− | $\text{ | + | $\text{Solution:}$ |
− | '''(1)''' | + | '''(1)''' Starting from the general transformation equation |
− | :$$f_{x}(x)=\frac{f_{u}(u)}{\mid g\hspace{0.05cm}'(u) \mid }\Bigg \vert _{\hspace{0.1cm} u=h(x)}$$ | + | ::$$f_{x}(x)=\frac{f_{u}(u)}{\mid g\hspace{0.05cm}'(u) \mid }\Bigg \vert _{\hspace{0.1cm} u=h(x)}$$ |
− | + | :is obtained by converting and substituting the given PDF $f_{ x}(x):$ | |
− | :$$\mid g\hspace{0.05cm}'(u)\mid\hspace{0.1cm}=\frac{f_{u}(u)}{f_{x}(x)}\Bigg \vert _{\hspace{0.1cm} x=g(u)}= {1}/{\lambda} \cdot {\rm e}^{\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}g(u)}.$$ | + | ::$$\mid g\hspace{0.05cm}'(u)\mid\hspace{0.1cm}=\frac{f_{u}(u)}{f_{x}(x)}\Bigg \vert _{\hspace{0.1cm} x=g(u)}= {1}/{\lambda} \cdot {\rm e}^{\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}g(u)}.$$ |
− | + | :Here $x = g\hspace{0.05cm}'(u)$ gives the derivative of the characteristic curve, which we assume to be monotonically increasing. | |
− | '''(2)''' | + | '''(2)''' With this assumption we get $\vert g\hspace{0.05cm}'(u)\vert = g\hspace{0.05cm}'(u) = {\rm d}x/{\rm d}u$ and the differential equation ${\rm d}u = \lambda\ \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm} x}\, {\rm d}x$ with solution $u = K - {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm} x}.$ |
− | '''(3)''' | + | '''(3)''' From the condition that the input variable $u =0$ should lead to the output value $x =0$, we obtain for the constant $K =1$ and thus $u = 1- {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm} x}.$ |
− | '''(4)''' | + | '''(4)''' Solving this equation for $x$ yields the equation given in front: |
− | :$$x = g_1(u)= \frac{1}{\lambda} \cdot {\rm ln} \left(\frac{1}{1 - u} \right) .$$ | + | ::$$x = g_1(u)= \frac{1}{\lambda} \cdot {\rm ln} \left(\frac{1}{1 - u} \right) .$$ |
− | * | + | *In a computer implementation, however, ensure that the critical value $1$ is excluded for the uniformly distributed input variable $u$. |
− | * | + | *This, however, has (almost) no effect on the final result. }} |
− | == | + | ==Two-sided exponential distribution - Laplace distribution== |
<br> | <br> | ||
− | + | Closely related to the exponential distribution is the [https://en.wikipedia.org/wiki/Laplace_distribution $\text{Laplace distribution}$] with the probability density function | |
:$$f_{x}(x)=\frac{\lambda}{2}\cdot\rm e^{\it -\lambda \hspace{0.05cm} \cdot \hspace{0.05cm} | x|}.$$ | :$$f_{x}(x)=\frac{\lambda}{2}\cdot\rm e^{\it -\lambda \hspace{0.05cm} \cdot \hspace{0.05cm} | x|}.$$ | ||
− | + | The Laplace distribution is a "two-sided exponential distribution" that approximates sufficiently well the amplitude distribution of speech and music signals. | |
− | * | + | * The $k$–th order moments $m_k$ of the Laplace distribution agree with those of the exponential distribution for even $k$. |
− | * | + | * For odd $k$, the (symmetric) Laplace distribution always yields $m_k= 0$. |
− | + | *For generation of the Laplace distribution, one uses a between $±1$ uniformly distributed random variable $v$ $($where $v = 0$ must be excluded$)$ and the transformation characteristic curve | |
− | |||
− | |||
:$$x=\frac{{\rm sign}(v)}{\lambda}\cdot \rm ln(\it v \rm ).$$ | :$$x=\frac{{\rm sign}(v)}{\lambda}\cdot \rm ln(\it v \rm ).$$ | ||
− | + | Further notes: | |
− | + | *From the [[Aufgaben:Exercise_3.8:_Amplification_and_Limitation|"Exercise 3.8"]] one can see further properties of the Laplace distribution. | |
− | * | + | *With the HTML 5/JavaScript applet [[Applets:PDF,_CDF_and_Moments_of_Special_Distributions|"PDF, CDF and Moments of Special Distributions"]] you can display the characteristics of the exponential and the Laplace distribution. |
− | + | *In the (German language) learning video [[Wahrscheinlichkeit_und_WDF_(Lernvideo)|"Wahrscheinlichkeit und WDF"]] $\Rightarrow$ "Probability and PDF", it is shown which meaning the Laplace distribution has for the description of speech and music signals. | |
− | * | + | *We also refer you to the (German language) HTML 5/JavaScript applet [[Applets:Zweidimensionale_Laplace-Zufallsgrößen_(Applet)|"Zweidimensionale Laplace-Zufallsgrößen"]] ⇒ "Two-dimensional Laplace random variables". |
− | * | ||
− | * | ||
− | == | + | ==Exercises for the chapter== |
<br> | <br> | ||
− | [[Aufgaben: | + | [[Aufgaben:Exercise_3.8:_Amplification_and_Limitation|Exercise 3.8: Amplification and Limitation]] |
− | [[Aufgaben: | + | [[Aufgaben:Exercise_3.8Z:_Circle_(Ring)_Area|Exercise 3.8Z: Circle (Ring) Area]] |
− | [[Aufgaben: | + | [[Aufgaben:Exercise_3.9:_Characteristic_Curve_for_Cosine_PDF|Exercise 3.9: Characteristic Curve for Cosine PDF]] |
− | [[Aufgaben: | + | [[Aufgaben:Exercise_3.9Z:_Sine_Transformation|Exercise 3.9Z: Sine Transformation]] |
{{Display}} | {{Display}} |
Latest revision as of 21:22, 20 December 2022
Contents
One-sided exponential distribution
$\text{Definition:}$ A continuous random variable $x$ is called (one-sided) »exponentially distributed« if it can take only non–negative values and the probability density function has the following shape for $x>0$:
- $$f_x(x)=\it \lambda\cdot\rm e^{\it -\lambda \hspace{0.05cm}\cdot \hspace{0.03cm} x}.$$
The left sketch shows the "probability density function" $\rm (PDF)$ of such an exponentially distributed random variable $x$. To be emphasized:
- The larger the distribution parameter $λ$, the steeper the decay.
- By definition $f_{x}(0) = λ/2$, i.e. the mean of left-hand limit $(0)$ and right-hand limit $(\lambda)$.
- For the "cumulative distribution function" $\rm (CDF)$, we obtain for $r > 0$ by integration over the PDF (right graph):
- $$F_{x}(r)=1-\rm e^{\it -\lambda\hspace{0.05cm}\cdot \hspace{0.03cm} r}.$$
- The "moments" of the one-sided exponential distribution are generally equal to
- $$m_k = k!/λ^k.$$
- From this and from Steiner's theorem, we get for the "mean" and the "standard deviation":
- $$m_1={1}/{\lambda},$$
- $$\sigma=\sqrt{m_2-m_1^2}=\sqrt{\frac{2}{\lambda^2}-\frac{1}{\lambda^2}}={1}/{\lambda}.$$
$\text{Example 1:}$ The exponential distribution has great importance for reliability studies, and the term "lifetime distribution" is also commonly used in this context.
- In these applications, the random variable is often the time $t$ that elapses before a component fails.
- Furthermore, it should be noted that the exponential distribution is closely related to the $\text{Poisson distribution}$.
Transformation of random variables
To generate such an exponentially distributed random variable on a digital computer, you can use e.g. a »nonlinear transformation«. The underlying principle is first stated here in general terms.
$\text{Procedure:}$ If a continuous-valued random variable $u$ possesses the PDF $f_{u}(u)$, then the probability density function of the random variable transformed at the nonlinear characteristic $x = g(u)$ holds:
- $$f_{x}(x)=\frac{f_u(u)}{\mid g\hspace{0.05cm}'(u)\mid}\Bigg \vert_{\hspace{0.1cm} u=h(x)}.$$
Here, $g\hspace{0.05cm}'(u)$ denotes the derivative of the characteristic curve $g(u)$ and $h(x)$ gives the inverse function to $g(u)$ .
- However, the above equation is only valid under the condition that the derivative $g\hspace{0.03cm}'(u) \ne 0$.
- For a characteristic with horizontal sections $(g\hspace{0.05cm}'(u) = 0)$: Additional Dirac delta functions appear in the PDF if the input variable has components in these ranges.
- The weights of these Dirac delta functions are equal to the probabilities that the input variable lies in these ranges.
$\text{Example 2:}$ Given a random variable $u$ triangularly distributed between $-2$ and $+2$ on a nonlinearity with characteristic $x = g(u)$,
- which, in the range $\vert u \vert ≤ 1$ triples the input values, and
- mapping all values $\vert u \vert > 1$ to $x = \pm 3$ depending on the sign,
then the PDF $f_{x}(x)$ sketched on the right is obtained.
Please note:
- Due to the amplification by a factor of $3$ ⇒ $f_{x}(x)$ is wider and lower than $f_{u}(u)$ by this factor.
- The two horizontal limits of the characteristic at $u = ±1$ lead to two Dirac delta functions at $x = ±3$, each with weight $1/8$.
- The weight $1/8$ corresponds to the green areas in the PDF $f_{u}(u).$
Generation of an exponentially distributed random variable
$\text{Procedure:}$ Now we assume that the random variable $u$ to be transformed is uniformly distributed between $0$ (inclusive) and $1$ (exclusive).
- Moreover, we consider the monotonically increasing characteristic curve
- $$x=g_1(u) =\frac{1}{\lambda}\cdot \rm ln \ (\frac{1}{1-\it u}).$$
- It can be shown that by this characteristic $x=g_1(u)$ a one-sided exponentially distributed random variable $x$ with the following PDF arises
(derivation see "next section"):
- $$f_{x}(x)=\lambda\cdot\rm e^{\it -\lambda \hspace{0.05cm}\cdot \hspace{0.03cm} x}\hspace{0.2cm}{\rm for}\hspace{0.2cm} {\it x}>0.$$
- Note:
- For $x = 0$ the PDF value is half $(\lambda/2)$.
- Negative $x$ values do not occur because for $0 ≤ u < 1$ the argument of the (natural) logarithm function does not become smaller than $1$.
By the way, the same PDF is obtained with the monotonically decreasing characteristic curve
- $$x=g_2(u)=\frac{1}{\lambda}\cdot \rm ln \ (\frac{1}{\it u})=-\frac{1}{\lambda}\cdot \rm ln(\it u \rm ).$$
Please note:
- When using a computer implementation corresponding to the first transformation characteristic $x=g_1(u)$ ⇒ the value $u = 1$ must be excluded.
- On the other hand, if one uses the second transformation characteristic $x=g_2(u)$ ⇒ the value $u =0$ must be excluded.
The following (German language) learning video shall clarify the transformations derived here:
"Erzeugung einer Exponentialverteilung" $\Rightarrow$ "Generation of an exponential distribution".
Derivation of the corresponding transformation characteristic
$\text{Task:}$
- Now the transformation characteristic $x = g_1(u)= g(u)$ already used in the last section is derived.
- This forms from the uniformly distributed random variable $u$ with PDF $f_{u}(u)$ a one-sided exponentially distributed random variable $x$ with PDF $f_{x}(x)$:
- $$f_{u}(u)= \left\{ \begin{array}{*{2}{c} } 1 & \rm if\hspace{0.3cm} 0 < {\it u} < 1,\\ 0.5 & \rm if\hspace{0.3cm} {\it u} = 0, {\it u} = 1,\\ 0 & \rm else, \\ \end{array} \right. \hspace{0.5cm}\Rightarrow \hspace{0.5cm} f_{x}(x)= \left\{ \begin{array}{*{2}{c} } \lambda\cdot\rm e^{\it -\lambda\hspace{0.03cm} \cdot \hspace{0.03cm} x} & \rm if\hspace{0.3cm} {\it x} > 0,\\ \lambda/2 & \rm if\hspace{0.3cm} {\it x} = 0 ,\\ 0 & \rm else\hspace{0.3cm} {\it x} < 0. \\ \end{array} \right.$$
$\text{Solution:}$
(1) Starting from the general transformation equation
- $$f_{x}(x)=\frac{f_{u}(u)}{\mid g\hspace{0.05cm}'(u) \mid }\Bigg \vert _{\hspace{0.1cm} u=h(x)}$$
- is obtained by converting and substituting the given PDF $f_{ x}(x):$
- $$\mid g\hspace{0.05cm}'(u)\mid\hspace{0.1cm}=\frac{f_{u}(u)}{f_{x}(x)}\Bigg \vert _{\hspace{0.1cm} x=g(u)}= {1}/{\lambda} \cdot {\rm e}^{\lambda \hspace{0.05cm}\cdot \hspace{0.05cm}g(u)}.$$
- Here $x = g\hspace{0.05cm}'(u)$ gives the derivative of the characteristic curve, which we assume to be monotonically increasing.
(2) With this assumption we get $\vert g\hspace{0.05cm}'(u)\vert = g\hspace{0.05cm}'(u) = {\rm d}x/{\rm d}u$ and the differential equation ${\rm d}u = \lambda\ \cdot {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm} x}\, {\rm d}x$ with solution $u = K - {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm} x}.$
(3) From the condition that the input variable $u =0$ should lead to the output value $x =0$, we obtain for the constant $K =1$ and thus $u = 1- {\rm e}^{-\lambda \hspace{0.05cm}\cdot \hspace{0.05cm} x}.$
(4) Solving this equation for $x$ yields the equation given in front:
- $$x = g_1(u)= \frac{1}{\lambda} \cdot {\rm ln} \left(\frac{1}{1 - u} \right) .$$
- In a computer implementation, however, ensure that the critical value $1$ is excluded for the uniformly distributed input variable $u$.
- This, however, has (almost) no effect on the final result.
Two-sided exponential distribution - Laplace distribution
Closely related to the exponential distribution is the $\text{Laplace distribution}$ with the probability density function
- $$f_{x}(x)=\frac{\lambda}{2}\cdot\rm e^{\it -\lambda \hspace{0.05cm} \cdot \hspace{0.05cm} | x|}.$$
The Laplace distribution is a "two-sided exponential distribution" that approximates sufficiently well the amplitude distribution of speech and music signals.
- The $k$–th order moments $m_k$ of the Laplace distribution agree with those of the exponential distribution for even $k$.
- For odd $k$, the (symmetric) Laplace distribution always yields $m_k= 0$.
- For generation of the Laplace distribution, one uses a between $±1$ uniformly distributed random variable $v$ $($where $v = 0$ must be excluded$)$ and the transformation characteristic curve
- $$x=\frac{{\rm sign}(v)}{\lambda}\cdot \rm ln(\it v \rm ).$$
Further notes:
- From the "Exercise 3.8" one can see further properties of the Laplace distribution.
- With the HTML 5/JavaScript applet "PDF, CDF and Moments of Special Distributions" you can display the characteristics of the exponential and the Laplace distribution.
- In the (German language) learning video "Wahrscheinlichkeit und WDF" $\Rightarrow$ "Probability and PDF", it is shown which meaning the Laplace distribution has for the description of speech and music signals.
- We also refer you to the (German language) HTML 5/JavaScript applet "Zweidimensionale Laplace-Zufallsgrößen" ⇒ "Two-dimensional Laplace random variables".
Exercises for the chapter
Exercise 3.8: Amplification and Limitation
Exercise 3.8Z: Circle (Ring) Area
Exercise 3.9: Characteristic Curve for Cosine PDF
Exercise 3.9Z: Sine Transformation