Difference between revisions of "Aufgaben:Exercise 3.3: GSM Frame Structure"

From LNTwww
 
(4 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
}}  
 
}}  
  
[[File:P_ID1224__Bei_A_3_3.png|right|frame|GSM frame structure '''Korrektur''']]
+
[[File:EN_Bei_A_3_3_v2.png|right|frame|GSM frame structure]]
In the 2G cellular standard  $\rm GSM$  the following frame structure is specified:
+
In the 2G cellular mobile communication standard  $\rm GSM$  the following frame structure is specified:
 
*A superframe consists of  $51$  multiframes and has duration  $T_{\rm SF}$.
 
*A superframe consists of  $51$  multiframes and has duration  $T_{\rm SF}$.
 +
 
*Each multiframe has  $26$  TDMA frames and lasts a total of  $T_{\rm MF} = 120 \rm ms$.
 
*Each multiframe has  $26$  TDMA frames and lasts a total of  $T_{\rm MF} = 120 \rm ms$.
*Each TDMA frame has duration  $T_{\rm R}$  and is a sequence of eight time slots with duration  $T_{\rm Z}$.
 
*For example, in such a time slot, a  ''Normal Burst''  with  $156.25$  bits is transmitted.
 
*Of these, however, only  $114$  are data bits. Further bits are needed for the so called ''Guard Period'', signaling, synchronization and channel estimation.
 
*Further, when calculating the net data rate, it must be taken into account that the logical channels SACCH and IDLE require a total of  $1.9 \rm kbit/s$ .
 
  
 +
*Each TDMA frame has duration  $T_{\rm TF}$  and is a sequence of eight time slots with duration  $T_{\rm burst}$.
  
It should also be noted that, in addition to the described multiframe structure with  $26$  TDMA frames, there are also multiframes with  $51$  TDMA frames, but these are used almost exclusively for the transmission of signaling information.
+
*For example,  in such a time slot,  a  "Normal Burst"  with  $156.25$  bits is transmitted.
  
 +
*Of these,  however,  only  $114$  are data bits.  Further bits are needed for the so called  "Guard Period"  $\rm (GP)$,  signaling,  synchronization and channel estimation.
  
 +
*Further,  when calculating the net data rate,  it must be taken into account that the logical channels SACCH and IDLE require a total of  $1.9 \rm kbit/s$.
  
  
 +
It should also be noted that,  in addition to the described multiframe structure with  $26$  TDMA frames,  there are also multiframes with  $51$  TDMA frames,  but these are used almost exclusively for the transmission of signaling information.
  
  
  
  
Hints:  
+
<u>Hints:</u>
  
 
*This exercise belongs to the chapter&nbsp; [[Examples_of_Communication_Systems/Radio_Interface|"Radio Interface"]].
 
*This exercise belongs to the chapter&nbsp; [[Examples_of_Communication_Systems/Radio_Interface|"Radio Interface"]].
*Reference is made in particular to the page&nbsp; [[Examples_of_Communication_Systems/Radio_Interface#GSM_frame_structure|"GSM frame structure"]].
+
 
 +
*Reference is made in particular to the sectione&nbsp; [[Examples_of_Communication_Systems/Radio_Interface#GSM_frame_structure|"GSM frame structure"]].
 
   
 
   
  
Line 34: Line 36:
 
<quiz display=simple>
 
<quiz display=simple>
  
{How long does a superframe last?
+
{How long does a superframe&nbsp; $\rm (SF)$&nbsp; last?
 
|type="{}"}
 
|type="{}"}
 
$T_{\rm SF} \ = \ ${ 6.12 3% } $ \ \rm s$
 
$T_{\rm SF} \ = \ ${ 6.12 3% } $ \ \rm s$
  
{What is the duration of a TDMA frame?
+
{What is the duration of a TDMA frame&nbsp; $\rm (TF)$?
 
|type="{}"}
 
|type="{}"}
$T_{\rm R} \ = \ ${ 4.615 3% } $ \ \rm ms$
+
$T_{\rm TF} \ = \ ${ 4.615 3% } $ \ \rm ms$
  
{How long does a time slot last?
+
{How long does a burst&nbsp; $($one time slot$)$&nbsp; last?
 
|type="{}"}
 
|type="{}"}
$ T_{\rm Z} \ = \ ${ 576.9 3% } $ \ \rm &micro; s$
+
$ T_{\rm burst} \ = \ ${ 576.9 3% } $ \ \rm &micro; s$
  
{At what intervals&nbsp; $\Delta T_{\rm Z}$&nbsp; is a user assigned timeslots?
+
{At what intervals&nbsp; $\Delta T_{\rm burst}$&nbsp; is a user assigned time slots&nbsp; $($bursts$)$&nbsp;?
 
|type="{}"}
 
|type="{}"}
$\Delta T_{\rm Z} \ = \ ${ 4.615 3% } $ \ \rm ms$
+
$\Delta T_{\rm burst} \ = \ ${ 4.615 3% } $ \ \rm ms$
  
 
{What is the bit duration?
 
{What is the bit duration?
Line 60: Line 62:
 
{What is the gross data rate of a user?
 
{What is the gross data rate of a user?
 
|type="{}"}
 
|type="{}"}
$R_{\rm Gross} \ = \ ${ 33.854 3% } $ \ \rm kbit/s$
+
$R_{\rm gross} \ = \ ${ 33.854 3% } $ \ \rm kbit/s$
  
{What is the net data rate of a user?
+
{What is the net data rate of one user?
 
|type="{}"}
 
|type="{}"}
$R_{\rm Netto} \ = \ ${ 22.8 3% } $ \ \rm kbtit/s$
+
$R_{\rm net} \ = \ ${ 22.8 3% } $ \ \rm kbtit/s$
  
  
Line 71: Line 73:
 
===Solution===
 
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; A superframe consists of 51 multiframes with respective durations $T_{\rm MF} = 120 \rm ms$. From this follows:
+
'''(1)'''&nbsp; A superframe consists of&nbsp; $51$&nbsp; multiframes with respective durations $T_{\rm MF} = 120 \rm ms$.&nbsp; From this follows:
 
:$$T_{\rm SF} = 51 \cdot T_{\rm MF} \hspace{0.15cm} \underline {= 6.12\,{\rm s}}\hspace{0.05cm}.$$
 
:$$T_{\rm SF} = 51 \cdot T_{\rm MF} \hspace{0.15cm} \underline {= 6.12\,{\rm s}}\hspace{0.05cm}.$$
  
  
'''(2)'''&nbsp; Each multiframe is divided into $26$ TDMA frames according to the specification. Therefore:
+
'''(2)'''&nbsp; Each multiframe is divided into&nbsp; $26$&nbsp; TDMA frames&nbsp; $\rm TFs$&nbsp; according to the specification.&nbsp; Therefore:
:$$T_{\rm R} = \frac{ T_{\rm MF}}{26} = \frac{ 120\,{\rm ms}}{26} \hspace{0.15cm} \underline {= 4.615\,{\rm ms}}\hspace{0.05cm}.$$
+
:$$T_{\rm TF} = \frac{ T_{\rm MF}}{26} = \frac{ 120\,{\rm ms}}{26} \hspace{0.15cm} \underline {= 4.615\,{\rm ms}}\hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; A TDMA frame consists of $8$ time slots. Therefore
+
'''(3)'''&nbsp; A TDMA frame consists of&nbsp; $8$&nbsp; bursts.&nbsp; Therefore
:$$T_{\rm Z} = \frac{ T_{\rm R}}{8} = \frac{ 4.615\,{\rm ms}}{8} \hspace{0.15cm} \underline {= 576.9\,{\rm &micro; s}}\hspace{0.05cm}.$$
+
:$$T_{\rm burst} = \frac{ T_{\rm TF}}{8} = \frac{ 4.615\,{\rm ms}}{8} \hspace{0.15cm} \underline {= 576.9\,{\rm &micro; s}}\hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; The spacing of time slots allocated for a user is.
+
'''(4)'''&nbsp; The spacing of time slots allocated for a user is  
:$$\Delta T_{\rm Z} = T_{\rm R} \underline{= 4.615 \ \rm ms}.$$
+
:$$\Delta T_{\rm burst} = T_{\rm TF} \underline{= 4.615 \ \rm ms}.$$
  
  
'''(5)'''&nbsp; Each burst consists - considering the guard period - of $156.25 \ \rm bits$, which must be transmitted within the time duration $T_{\rm Z} = 576.9 \ \rm \mu s$. This results in:
+
'''(5)'''&nbsp; Each burst consists - considering the guard period - of $156.25 \ \rm bits$,&nbsp; which must be transmitted within the time duration $T_{\rm burst} = 576.9 \ \rm \mu s$.&nbsp; This results in:
:$$T_{\rm B} = \frac{ T_{\rm Z}}{156.25} = \frac{ 576.9\,{\rm &micro; s}}{156.25} \hspace{0.15cm} \underline {= 3.69216\,{\rm &micro; s}}\hspace{0.05cm}.$$
+
:$$T_{\rm B} = \frac{ T_{\rm burst}}{156.25} = \frac{ 576.9\,{\rm &micro; s}}{156.25} \hspace{0.15cm} \underline {= 3.69216\,{\rm &micro; s}}\hspace{0.05cm}.$$
  
  
'''(6)'''&nbsp; For example, the bit rate can be calculated as the reciprocal of the bit duration:
+
'''(6)'''&nbsp; For example,&nbsp; the bit rate can be calculated as the reciprocal of the bit duration:
 
:$$R_{\rm B} = \frac{ 1}{T_{\rm B}} = \frac{ 1}{3.69216\,{\rm &micro; s}} \hspace{0.15cm} \underline {= 270.833\,{\rm kbit/s}}\hspace{0.05cm}.$$
 
:$$R_{\rm B} = \frac{ 1}{T_{\rm B}} = \frac{ 1}{3.69216\,{\rm &micro; s}} \hspace{0.15cm} \underline {= 270.833\,{\rm kbit/s}}\hspace{0.05cm}.$$
  
  
'''(7)'''&nbsp; In each time slot, the data rate $R_{\rm B} \approx 271 \rm kbit/s$. However, since each user is assigned only one of eight time slots, the gross data rate of a user is
+
'''(7)'''&nbsp; In each time slot,&nbsp; the data rate&nbsp; $R_{\rm B} \approx 271 \rm kbit/s$.&nbsp; However,&nbsp; since each user is assigned only one of the eight time slots,&nbsp; the gross data rate of a user is
 
:$$R_{\rm gross} = \frac{ R_{\rm B}}{8} = \frac{ 270.833\,{\rm kbit/s}}{8} \hspace{0.15cm} \underline {= 33.854\,{\rm kbit/s}}\hspace{0.05cm}.$$
 
:$$R_{\rm gross} = \frac{ R_{\rm B}}{8} = \frac{ 270.833\,{\rm kbit/s}}{8} \hspace{0.15cm} \underline {= 33.854\,{\rm kbit/s}}\hspace{0.05cm}.$$
  
  
'''(8)'''&nbsp; For the net data rate, according to the specifications:
+
'''(8)'''&nbsp; For the net data rate,&nbsp; according to the specifications:
:$$R_{\rm Netto} = \frac{ 114}{156.25} \cdot R_{\rm Brutto} - 1.9\,{\rm kbit/s} \hspace{0.15cm} \underline {= 22.8\,{\rm kbit/s}}\hspace{0.05cm}.$$
+
:$$R_{\rm net} = \frac{ 114}{156.25} \cdot R_{\rm B} - 1.9\,{\rm kbit/s} \hspace{0.15cm} \underline {= 22.8\,{\rm kbit/s}}\hspace{0.05cm}.$$
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Latest revision as of 17:02, 16 January 2023

GSM frame structure

In the 2G cellular mobile communication standard  $\rm GSM$  the following frame structure is specified:

  • A superframe consists of  $51$  multiframes and has duration  $T_{\rm SF}$.
  • Each multiframe has  $26$  TDMA frames and lasts a total of  $T_{\rm MF} = 120 \rm ms$.
  • Each TDMA frame has duration  $T_{\rm TF}$  and is a sequence of eight time slots with duration  $T_{\rm burst}$.
  • For example,  in such a time slot,  a  "Normal Burst"  with  $156.25$  bits is transmitted.
  • Of these,  however,  only  $114$  are data bits.  Further bits are needed for the so called  "Guard Period"  $\rm (GP)$,  signaling,  synchronization and channel estimation.
  • Further,  when calculating the net data rate,  it must be taken into account that the logical channels SACCH and IDLE require a total of  $1.9 \rm kbit/s$.


It should also be noted that,  in addition to the described multiframe structure with  $26$  TDMA frames,  there are also multiframes with  $51$  TDMA frames,  but these are used almost exclusively for the transmission of signaling information.



Hints:



Questions

1

How long does a superframe  $\rm (SF)$  last?

$T_{\rm SF} \ = \ $

$ \ \rm s$

2

What is the duration of a TDMA frame  $\rm (TF)$?

$T_{\rm TF} \ = \ $

$ \ \rm ms$

3

How long does a burst  $($one time slot$)$  last?

$ T_{\rm burst} \ = \ $

$ \ \rm µ s$

4

At what intervals  $\Delta T_{\rm burst}$  is a user assigned time slots  $($bursts$)$ ?

$\Delta T_{\rm burst} \ = \ $

$ \ \rm ms$

5

What is the bit duration?

$T_{\rm B} \ = \ $

$ \ \rm µ s$

6

What is the total bit rate of the GSM?

$R_{\rm B} \ = \ $

$ \ \rm kbit/s $

7

What is the gross data rate of a user?

$R_{\rm gross} \ = \ $

$ \ \rm kbit/s$

8

What is the net data rate of one user?

$R_{\rm net} \ = \ $

$ \ \rm kbtit/s$


Solution

(1)  A superframe consists of  $51$  multiframes with respective durations $T_{\rm MF} = 120 \rm ms$.  From this follows:

$$T_{\rm SF} = 51 \cdot T_{\rm MF} \hspace{0.15cm} \underline {= 6.12\,{\rm s}}\hspace{0.05cm}.$$


(2)  Each multiframe is divided into  $26$  TDMA frames  $\rm TFs$  according to the specification.  Therefore:

$$T_{\rm TF} = \frac{ T_{\rm MF}}{26} = \frac{ 120\,{\rm ms}}{26} \hspace{0.15cm} \underline {= 4.615\,{\rm ms}}\hspace{0.05cm}.$$


(3)  A TDMA frame consists of  $8$  bursts.  Therefore

$$T_{\rm burst} = \frac{ T_{\rm TF}}{8} = \frac{ 4.615\,{\rm ms}}{8} \hspace{0.15cm} \underline {= 576.9\,{\rm µ s}}\hspace{0.05cm}.$$


(4)  The spacing of time slots allocated for a user is

$$\Delta T_{\rm burst} = T_{\rm TF} \underline{= 4.615 \ \rm ms}.$$


(5)  Each burst consists - considering the guard period - of $156.25 \ \rm bits$,  which must be transmitted within the time duration $T_{\rm burst} = 576.9 \ \rm \mu s$.  This results in:

$$T_{\rm B} = \frac{ T_{\rm burst}}{156.25} = \frac{ 576.9\,{\rm µ s}}{156.25} \hspace{0.15cm} \underline {= 3.69216\,{\rm µ s}}\hspace{0.05cm}.$$


(6)  For example,  the bit rate can be calculated as the reciprocal of the bit duration:

$$R_{\rm B} = \frac{ 1}{T_{\rm B}} = \frac{ 1}{3.69216\,{\rm µ s}} \hspace{0.15cm} \underline {= 270.833\,{\rm kbit/s}}\hspace{0.05cm}.$$


(7)  In each time slot,  the data rate  $R_{\rm B} \approx 271 \rm kbit/s$.  However,  since each user is assigned only one of the eight time slots,  the gross data rate of a user is

$$R_{\rm gross} = \frac{ R_{\rm B}}{8} = \frac{ 270.833\,{\rm kbit/s}}{8} \hspace{0.15cm} \underline {= 33.854\,{\rm kbit/s}}\hspace{0.05cm}.$$


(8)  For the net data rate,  according to the specifications:

$$R_{\rm net} = \frac{ 114}{156.25} \cdot R_{\rm B} - 1.9\,{\rm kbit/s} \hspace{0.15cm} \underline {= 22.8\,{\rm kbit/s}}\hspace{0.05cm}.$$