Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 3.4Z: Continuous Phase Frequency Shift Keying"

From LNTwww
Line 34: Line 34:
 
<quiz display=simple>
 
<quiz display=simple>
  
{Welche Aussagen treffen für die FSK und speziell für die MSK zu?
+
{Which statements are true for the FSK and specifically for the MSK?
 
|type="[]"}
 
|type="[]"}
+ Die FSK ist im allgemeinen ein nichtlineares Modulationsverfahren.
+
+ FSK is generally a nonlinear modulation method.
+ Die MSK ist als Offset–QPSK realisierbar und damit linear.
+
+ MSK can be implemented as offset QPSK and is therefore linear.
- Es ergibt sich die gleiche Bitfehlerrate wie für die QPSK.
+
- This results in the same bit error rate as for QPSK.
+ Eine Bandbegrenzung ist weniger störend als bei QPSK
+
+ A band limitation is less disturbing than with QPSK.
+ Die MSK–Hüllkurve ist auch bei Spektralformumg konstant.
+
+ The MSK envelope is constant even with spectral shaping.
 
 
{Welche Frequenzen&nbsp; f1&nbsp; (für Amplitudenkoeffizient&nbsp; aν=+1)&nbsp; und f2&nbsp; (für&nbsp; aν=1)&nbsp; beinhaltet das Signal&nbsp; sA(t)?
+
{What frequencies&nbsp; f1&nbsp; (for amplitude coefficient&nbsp; aν=+1)&nbsp; and f2&nbsp; (for&nbsp; aν=1)&nbsp; does the signal&nbsp; sA(t) contain?
 
|type="{}"}
 
|type="{}"}
 
f1T =  { 5 3% }
 
f1T =  { 5 3% }
 
f2T =  { 3 3% }
 
f2T =  { 3 3% }
  
{Wie groß sind beim Signal&nbsp; sA(t)&nbsp; die Trägerfrequenz&nbsp; fT, der Frequenzhub&nbsp; $\Delta f_{\rm A}$&nbsp; und der Modulationsindex&nbsp; h?
+
{For the signal&nbsp; sA(t)&nbsp; what are the carrier frequency&nbsp; fT, frequency deviation&nbsp; $\delta f_{\rm A}$&nbsp; and modulation index&nbsp; h?
 
|type="{}"}
 
|type="{}"}
 
fTT =  { 4 3% }
 
fTT =  { 4 3% }
$\Delta f_{\rm A} \cdot T \ = \ $ { 1 3% }
+
$\delta f_{\rm A} \cdot T \ = \ $ { 1 3% }
 
h =  { 2 3% }
 
h =  { 2 3% }
  
{Wie groß ist der Modulationsindex beim Signal&nbsp; sB(t)?
+
{What is the modulation index at signal&nbsp; sB(t)?
 
|type="{}"}
 
|type="{}"}
 
h =  { 1 3% }
 
h =  { 1 3% }
  
{Wie groß ist der Modulationsindex beim Signal&nbsp; sC(t)?
+
{What is the modulation index at signal&nbsp; sC(t)?
 
|type="{}"}
 
|type="{}"}
 
h =  { 0.5 3% }
 
h =  { 0.5 3% }
  
{Bei welchen Signalen war eine kontinuierliche Phasenanpassung erforderlich?
+
{Which signals required continuous phase adjustment?
 
|type="[]"}
 
|type="[]"}
 
- sA(t),
 
- sA(t),
Line 67: Line 67:
 
+ sC(t).
 
+ sC(t).
  
{Welche Signale beschreiben&nbsp; ''Minimum Shift Keying''&nbsp; (MSK)?
+
{What signals describe&nbsp; ''Minimum Shift Keying''&nbsp; (MSK)?
 
|type="[]"}
 
|type="[]"}
 
- sA(t),
 
- sA(t),
Line 76: Line 76:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; <u>Alle Aussagen mit Ausnahme der dritten treffen zu</u>:  
+
'''(1)'''&nbsp; <u>All statements except the third are true</u>:  
*Die im allgemeinen nichtlineare FSK kann nur kohärent demoduliert werden, während bei MSK auch ein nichtkohärentes Demodulationsverfahren angewendet werden kann.  
+
*Generally nonlinear FSK can only be demodulated coherently, while MSK can also use a noncoherent demodulation method.  
*Gegenüber der QPSK mit kohärenter Demodulation muss bei der MSK für die gleiche Bitfehlerrate ein um 3 dB größeres EB/N0 (Energie pro Bit bezogen auf die Rauschleistungsdichte) aufgewendet werden.
+
*Compared to QPSK with coherent demodulation, MSK requires 3 dB more EB/N0 (energy per bit related to the noise power density) for the same bit error rate.
*Die erste Nullstelle im Leistungsdichtespektrum tritt zwar bei MSK später auf als bei der QSPK, aber es zeigt sich ein schnellerer asymptotischer Abfall als bei QSPK.  
+
*The first zero in the power density spectrum occurs later in MSK than in QSPK, but it shows a faster asymptotic decay than in QSPK.  
*Die konstante Hüllkurve der MSK führt dazu, dass Nichtlinearitäten in der Übertragungsstrecke keine Rolle spielen. Dies ermöglicht den Einsatz einfacher und kostengünstiger Leistungsverstärker mit geringerem Leistungsverbrauch und damit auch längere Betriebsdauern akkubetriebener Geräte.
+
*The constant envelope of MSK means that nonlinearities in the transmission line do not play a role. This allows the use of simple and inexpensive power amplifiers with lower power consumption and thus longer operating times of battery-powered devices.
  
  
  
'''(2)'''&nbsp; Man erkennt aus der Grafik fünf bzw. drei Schwingungen pro Symboldauer:
+
'''(2)'''&nbsp; One can see from the graph five and three oscillations per symbol duration, respectively:
 
:f1T=5_,f2T=3_.
 
:f1T=5_,f2T=3_.
  
  
'''(3)'''&nbsp; Bei FSK mit rechteckförmiger Impulsform treten nur die zwei Augenblicksfrequenzen f1=fT+ΔfA und $f_{2} = f_{\rm T} \Delta f_{\rm A}$ auf.  
+
'''(3)'''&nbsp; For FSK with rectangular pulse shape, only the two instantaneous frequencies f1=fT+ΔfA and $f_{2} = f_{\rm T} - \Delta f_{\rm A}$ occur.  
*Mit dem Ergebnis aus '''(2)''' erhält man somit:
+
*With the result from '''(2)''' we thus obtain:
 
:fT = f1+f22fTT=4_,
 
:fT = f1+f22fTT=4_,
 
:ΔfA = f1f22ΔfAT=1_,  
 
:ΔfA = f1f22ΔfAT=1_,  
Line 98: Line 98:
  
  
'''(4)'''&nbsp; Aus der Grafik erkennt man die Frequenzen f1T=4.5 und f2T=3.5.  
+
'''(4)'''&nbsp; From the graph one can see the frequencies f1T=4.5 and f2T=3.5.  
*Daraus ergibt sich der Frequenzhub ΔfAT=0.5 und der Modulationsindex h=1_.
+
*This results in the frequency deviation ΔfAT=0.5 and the modulation index h=1_.
  
  
  
'''(5)'''&nbsp; Hier treten die beiden (normierten) Frequenzen f1T=4.25 und f2T=3.75 auf,  
+
'''(5)'''&nbsp; Here the two (normalized) frequencies f1T=4.25 and f2T=3.75 occur,  
*womit sich der Frequenzhub ΔfAT=0.25 und der Modulationsindex h=0.5_ berechnen lassen.
+
*which results in the frequency deviation ΔfAT=0.25 and the modulation index h=0.5_ can be calculated.
  
  
  
'''(6)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2 und 3</u>:
+
'''(6)'''&nbsp; Correct are the <u>solutions 2 and 3</u>:
*Lediglich bei sA(t) wurde keine Phasenanpassung vorgenommen.  
+
*Only at sA(t) was no phase adjustment made.  
*Hier sind die Signalverläufe im Bereich des ersten und zweiten Bit (a1=a2=+1) jeweils cosinusförmig wie das Trägersignal (bezogen auf die Symbolgrenze).  
+
*Here, the signal waveforms in the region of the first and second bit (a1=a2=+1) are each cosinusoidal like the carrier signal (with respect to the symbol boundary).  
*Dagegen ist im zweiten Symbol von sB(t) ein minus–cosinusförmiger Verlauf (Anfangsphase \phi_{0} = π entsprechend 180^\circ) zu erkennen und im zweiten Symbol von s_{\rm C}(t) ein minus–sinusförmiger Verlauf (\phi_{0} = π /2 bzw. 90^\circ).  
+
*In contrast, in the second symbol of s_{\rm B}(t) a minus-cosine-shaped course (initial phase \phi_{0} = π corresponding to 180^\circ) can be seen and in the second symbol of s_{\rm C}(t) a minus-sine-shaped course (\phi_{0} = π /2 or 90^\circ).  
*Bei s_{\rm A}(t) ist die Anfangsphase stets 0, bei s_{\rm B}(t) entweder 0 oder π, während beim Signal s_{\rm C}(t) mit Modulationsindex h = 0.5 insgesamt vier Anfangsphasen möglich sind: 0^\circ, \ 90^\circ, \ 180^\circ und 270^\circ.
+
*For s_{\rm A}(t) the initial phase is always 0, for s_{\rm B}(t) either 0 or π, while for the signal s_{\rm C}(t) with modulation index h = 0.5 a total of four initial phases are possible: 0^\circ, \ 90^\circ, \ 180^\circ and 270^\circ.
  
  
  
'''(7)'''&nbsp; Richtig ist der <u>letzte Lösungsvorschlag</u>, da für dieses Signal h = 0.5 gilt.  
+
'''(7)'''&nbsp; Correct is the <u>last proposed solution</u>, since for this signal h = 0.5 holds.  
*Dies ist der kleinstmögliche Modulationsindex, für den Orthogonalität zwischen f_{1} und f_{2} innerhalb der Symboldauer T besteht.
+
*This is the smallest possible modulation index for which there is orthogonality between f_{1} and f_{2} within the symbol duration T.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 20:53, 17 January 2023

Signals for  \text{CP-FSK}

The graph shows three frequency shift keying  \rm (FSK)  transmitted signals which differ with respect to the frequency deviation  \Delta f_{\rm A}  distinguish and thus also by their modulation index

h = 2 \cdot \Delta f_{\rm A} \cdot T.


The digital source signal  q(t) underlying the signals  s_{\rm A}(t),  s_{\rm B}(t)  and  s_{\rm C}(t)  is shown above.  All considered signals are normalized to amplitude  1  and time duration  T  and based on a cosine carrier with frequency  f_{\rm T}.

With binary FSK  ("Binary Frequency Shift Keying")  only two different frequencies occur,  each of which remains constant over a bit duration:

  • f_{1}  (if  a_{\nu} = +1),
  • f_{2}  (if  a_{\nu} = -1).


If the modulation index is not a multiple of  2,  continuous phase adjustment is required to avoid phase jumps.  This is called  "Continuous Phase Frequency Shift Keying"   (\text{CP-FSK)}.

An important special case is represented by binary FSK with modulation index  h = 0.5  which is also called  "Minimum Shift Keying"  (\rm MSK).  This will be discussed in this exercise.



Hints:


Questions

1

Which statements are true for the FSK and specifically for the MSK?

FSK is generally a nonlinear modulation method.
MSK can be implemented as offset QPSK and is therefore linear.
This results in the same bit error rate as for QPSK.
A band limitation is less disturbing than with QPSK.
The MSK envelope is constant even with spectral shaping.

2

What frequencies  f_{1}  (for amplitude coefficient  a_{\nu} = +1)  and f_{2}  (for  a_{\nu} = -1)  does the signal  s_{\rm A}(t) contain?

f_{1} \cdot T \ = \

f_{2} \cdot T \ = \

3

For the signal  s_{\rm A}(t)  what are the carrier frequency  f_{\rm T}, frequency deviation  \delta f_{\rm A}  and modulation index  h?

f_{\rm T} \cdot T \ = \

\delta f_{\rm A} \cdot T \ = \

h \ = \

4

What is the modulation index at signal  s_{\rm B}(t)?

h \ = \

5

What is the modulation index at signal  s_{\rm C}(t)?

h \ = \

6

Which signals required continuous phase adjustment?

s_{\rm A}(t),
s_{\rm B}(t),
s_{\rm C}(t).

7

What signals describe  Minimum Shift Keying  (MSK)?

s_{\rm A}(t),
s_{\rm B}(t),
s_{\rm C}(t).


Solution

(1)  All statements except the third are true:

  • Generally nonlinear FSK can only be demodulated coherently, while MSK can also use a noncoherent demodulation method.
  • Compared to QPSK with coherent demodulation, MSK requires 3 \ \rm dB more E_{\rm B}/N_{0} (energy per bit related to the noise power density) for the same bit error rate.
  • The first zero in the power density spectrum occurs later in MSK than in QSPK, but it shows a faster asymptotic decay than in QSPK.
  • The constant envelope of MSK means that nonlinearities in the transmission line do not play a role. This allows the use of simple and inexpensive power amplifiers with lower power consumption and thus longer operating times of battery-powered devices.


(2)  One can see from the graph five and three oscillations per symbol duration, respectively:

f_{\rm 1} \cdot T \hspace{0.15cm} \underline {= 5}\hspace{0.05cm},\hspace{0.2cm}f_{\rm 2} \cdot T \hspace{0.15cm} \underline { = 3}\hspace{0.05cm}.


(3)  For FSK with rectangular pulse shape, only the two instantaneous frequencies f_{1} = f_{\rm T} + \Delta f_{\rm A} and f_{2} = f_{\rm T} - \Delta f_{\rm A} occur.

  • With the result from (2) we thus obtain:
f_{\rm T} \ = \ \frac{f_{\rm 1}+f_{\rm 2}}{2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm T} \cdot T \hspace{0.15cm} \underline {= 4}\hspace{0.05cm},
\Delta f_{\rm A} \ = \ \frac{f_{\rm 1}-f_{\rm 2}}{2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\Delta f_{\rm A} \cdot T \hspace{0.15cm} \underline { = 1}\hspace{0.05cm},
h \ = \ 2 \cdot \Delta f_{\rm A} \cdot T \hspace{0.15cm} \underline {= 2} \hspace{0.05cm}.


(4)  From the graph one can see the frequencies f_{1} \cdot T = 4.5 and f_{2} \cdot T = 3.5.

  • This results in the frequency deviation \Delta f_{\rm A} \cdot T = 0.5 and the modulation index \underline{h = 1}.


(5)  Here the two (normalized) frequencies f_{1} \cdot T = 4.25 and f_{2} \cdot T = 3.75 occur,

  • which results in the frequency deviation \Delta f_{\rm A} \cdot T = 0.25 and the modulation index \underline{h = 0.5} can be calculated.


(6)  Correct are the solutions 2 and 3:

  • Only at s_{\rm A}(t) was no phase adjustment made.
  • Here, the signal waveforms in the region of the first and second bit (a_{1} = a_{2} = +1) are each cosinusoidal like the carrier signal (with respect to the symbol boundary).
  • In contrast, in the second symbol of s_{\rm B}(t) a minus-cosine-shaped course (initial phase \phi_{0} = π corresponding to 180^\circ) can be seen and in the second symbol of s_{\rm C}(t) a minus-sine-shaped course (\phi_{0} = π /2 or 90^\circ).
  • For s_{\rm A}(t) the initial phase is always 0, for s_{\rm B}(t) either 0 or π, while for the signal s_{\rm C}(t) with modulation index h = 0.5 a total of four initial phases are possible: 0^\circ, \ 90^\circ, \ 180^\circ and 270^\circ.


(7)  Correct is the last proposed solution, since for this signal h = 0.5 holds.

  • This is the smallest possible modulation index for which there is orthogonality between f_{1} and f_{2} within the symbol duration T.