Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 4.5: Locality Curve for DSB-AM"

From LNTwww
 
(16 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function
+
{{quiz-Header|Buchseite=Signal_Representation/Equivalent Low-Pass Signal and its Spectral Function
 
}}
 
}}
  
[[File:P_ID751__Sig_A_4_5_neu.png|250px|right|frame|Spektrum des analytischen Signals]]
+
[[File:P_ID751__Sig_A_4_5_neu.png|250px|right|frame|Spectrum of the analytical signal]]
  
We consider a similar transmission scenario as in  [[Aufgaben:Aufgabe_4.4:_Zeigerdiagramm_bei_ZSB-AM|task 4.4]]  (but not the same):
+
We consider a similar transmission scenario as in  [[Aufgaben:Exercise_4.4:_Pointer_Diagram_for_DSB-AM|Exrcise 4.4]]  (but not the same):
* a sinusoidal message signal with amplitude  $A_{\rm M} = 2 \ \text{V}$   and the frequency  $f_{\rm M} = 10 \ \text{kHz}$,
+
* A sinusoidal source signal with amplitude  $A_{\rm N} = 2 \ \text{V}   and frequency f_{\rm N} = 10 \ \text{kHz}$,
*DSB-Amplitude Modulation without carrier suppression with carrier frequency  $f_{\rm C} = 50 \ \text{kHz}$.
+
*Double-Sideband Amplitude Modulation without carrier suppression with carrier frequency  $f_{\rm T} = 50 \ \text{kHz}$.
  
  
 
Opposite you see the spectral function  S+(f)  of the analytical signal  s+(t).  
 
Opposite you see the spectral function  S+(f)  of the analytical signal  s+(t).  
  
When solving, take into account that the equivalent low pass signal is also in the form
+
When solving, take into account that the equivalent low-pass signal is in the form
 
   
 
   
:$$s_{\rm LP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi(t)} $$
+
:$$s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi(t)},\hspace{0.5cm}  a(t) ≥ 0.$$
  
where&nbsp; a(t)0&nbsp; shall hold. For&nbsp; ϕ(t)&nbsp;, the range of values&nbsp; –\pi < \phi(t) \leq +\pi&nbsp; is permissible and the generally valid equation applies:
+
For&nbsp; \phi(t),&nbsp; the range&nbsp; –\pi < \phi(t) \leq +\pi&nbsp; is permissible and the generally valid equation applies:
 
   
 
   
 
:$$\phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\big[s_{\rm
 
:$$\phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\big[s_{\rm
LP}(t)\big]}{{\rm Re}\big[s_{\rm LP}(t)\big]}.$$
+
TP}(t)\big]}{{\rm Re}\big[s_{\rm TP}(t)\big]}.$$
 
 
 
 
 
 
  
  
Line 29: Line 26:
  
 
''Hints:''  
 
''Hints:''  
*This exercise belongs to the chapter&nbsp; [[Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function|Equivalent Low Pass Signal and Its Spectral Function]].
+
*This exercise belongs to the chapter&nbsp; [[Signal_Representation/Equivalent_Low-Pass_Signal_and_its_Spectral_Function|Equivalent Low-Pass Signal and its Spectral Function]].
 
   
 
   
*You can check your solution with the interactive applet&nbsp; [[Applets:Physikalisches_Signal_%26_Äquivalentes_TP-Signal|Physikalisches Signal & Äquivalentes TP-Signal]]&nbsp; &nbsp; &rArr; &nbsp; &bdquo;locus&rdquo;.
+
*You can check your solution with the interactive applet&nbsp; [[Applets:Physical_Signal_%26_Equivalent_Lowpass_Signal|Physical Signal & Equivalent Low-Pass Signal]]&nbsp; &nbsp; &rArr; &nbsp; "Locality Curve".
  
 
   
 
   
Line 37: Line 34:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Calculate the equivalent low pass signal&nbsp; $s_{\rm LP}(t)&nbsp; in the frequency and time domain. What is the value of&nbsp; s_{\rm LP}(t)&nbsp; at the start time&nbsp; t = 0$?
+
{Calculate the equivalent low-pass signal&nbsp; $s_{\rm TP}(t)$&nbsp; in the frequency and time domain.&nbsp; What is the value of&nbsp; $s_{\rm TP}(t)&nbsp; at the start time&nbsp; t = 0$?
 
|type="{}"}
 
|type="{}"}
 
\text{Re}[s_{\text{TP}}(t=0)]\ = \   { 1 3% }  &nbsp;\text{V}
 
\text{Re}[s_{\text{TP}}(t=0)]\ = \   { 1 3% }  &nbsp;\text{V}
 
\text{Im}[s_{\text{TP}}(t=0 )]\ = \ { 0. } &nbsp;\text{V}
 
\text{Im}[s_{\text{TP}}(t=0 )]\ = \ { 0. } &nbsp;\text{V}
  
{What are the values of&nbsp; s_{\rm TP}(t)&nbsp; at&nbsp; t = 10 \ {\rm &micro;} \text{s}= T_0/10, &nbsp; &nbsp; t = 25 \ {\rm &micro;} \text{s}= T_0/4, &nbsp; &nbsp; t = 75 \ {\rm &micro;} \text{s}= 3T_0/4&nbsp; and&nbsp; $T_0 = 100 \ {\rm &micro;}s$? <br>Show that all values are purely real.
+
{What are the values of&nbsp; s_{\rm TP}(t)&nbsp; at&nbsp; t = 10 \ {\rm &micro;} \text{s}= T_0/10, &nbsp; &nbsp; t = 25 \ {\rm &micro;} \text{s}= T_0/4, &nbsp; &nbsp; t = 75 \ {\rm &micro;} \text{s}= 3T_0/4&nbsp; and&nbsp; $T_0 = 100 \ {\rm &micro;s}$? <br>Show that all values are purely real.
 
|type="{}"}
 
|type="{}"}
$\text{Re}[s_{\text{LP}}(t=10 \ {\rm &micro;} \text{s})]\ = \ { 2.176 3% } &nbsp;\text{V}$
+
$\text{Re}[s_{\text{TP}}(t=10 \ {\rm &micro;} \text{s})]\ = \ { 2.176 3% } &nbsp;\text{V}$
$\text{Re}[s_{\text{LP}}(t=25 \ {\rm &micro;} \text{s})] \ = \ { 3 3% } &nbsp;\text{V}$
+
$\text{Re}[s_{\text{TP}}(t=25 \ {\rm &micro;} \text{s})] \ = \ { 3 3% } &nbsp;\text{V}$
$\text{Re}[s_{\text{LP}}(t=75 \ {\rm &micro;} \text{s})]\ = \ { -1.03--0.97 } &nbsp;\text{V}$
+
$\text{Re}[s_{\text{TP}}(t=75 \ {\rm &micro;} \text{s})]\ = \ { -1.03--0.97 } &nbsp;\text{V}$
$\text{Re}[s_{\text{LP}}(t=100 \ {\rm &micro;} \text{s})]\ = \ { 1 3% } &nbsp;\text{V}$
+
$\text{Re}[s_{\text{TP}}(t=100 \ {\rm &micro;} \text{s})]\ = \ { 1 3% } &nbsp;\text{V}$
  
{What is the magnitude function&nbsp; a(t)&nbsp; im Zeitbereich? in the time domain? What are the values at times&nbsp; t = 25 \ {\rm &micro;} \text{s}&nbsp; and&nbsp; t = 75 \ {\rm &micro;} \text{s}?
+
{What is the magnitude function&nbsp; a(t)&nbsp; in the time domain?&nbsp; What are the values at times&nbsp; t = 25 \ {\rm &micro;} \text{s}&nbsp; and&nbsp; t = 75 \ {\rm &micro;} \text{s}?
 
|type="{}"}
 
|type="{}"}
 
a(t=25 \ {\rm &micro;} \text{s})\ = \ { 3 3% } &nbsp;\text{V}
 
a(t=25 \ {\rm &micro;} \text{s})\ = \ { 3 3% } &nbsp;\text{V}
 
a(t=75 \ {\rm &micro;} \text{s})\ = \ { 1 3% } &nbsp;\text{V}
 
a(t=75 \ {\rm &micro;} \text{s})\ = \ { 1 3% } &nbsp;\text{V}
  
{Give the phase function&nbsp; \phi(t)&nbsp;  in the time domain in general. What values result at the times&nbsp; t = 25 \ {\rm &micro;} \text{s}&nbsp; and&nbsp; t = 75 \ {\rm &micro;} \text{s}?
+
{Give the phase function&nbsp; \phi(t)&nbsp;  in the time domain.&nbsp; What values result at the times&nbsp; t = 25 \ {\rm &micro;} \text{s}&nbsp; and&nbsp; t = 75 \ {\rm &micro;} \text{s}?
 
|type="{}"}
 
|type="{}"}
 
\phi(t=25 \ {\rm &micro;} \text{s}) \ = \ { 0. } &nbsp;\text{Grad}
 
\phi(t=25 \ {\rm &micro;} \text{s}) \ = \ { 0. } &nbsp;\text{Grad}
Line 66: Line 63:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
[[File:EN_Sig_A_4_5_a.png|250px|right|frame|Ortskurve zur Zeit&nbsp; t = 0]]
+
[[File:EN_Sig_A_4_5_a.png|250px|right|frame|Locality curve at time&nbsp; t = 0]]
'''(1)'''&nbsp; If all diraclines are shifted to the left by&nbsp; $f_{\rm C} = 50 \ \text{kHz}&nbsp;, they are located at&nbsp; -\hspace{-0.08cm}10 \ \text{kHz},&nbsp; 0&nbsp; and&nbsp; +10 \ \text{kHz}$.  
+
'''(1)'''&nbsp; If all Dirac delta lines are shifted to the left by&nbsp; $f_{\rm T} = 50 \ \text{kHz}&nbsp;, they are located at&nbsp; -\hspace{-0.08cm}10 \ \text{kHz},&nbsp; 0&nbsp; and&nbsp; +10 \ \text{kHz}$.  
 
*The equation for&nbsp; s_{\rm TP}(t)&nbsp; is with&nbsp; \omega_{10} = 2 \pi \cdot 10  \ \text{kHz}:
 
*The equation for&nbsp; s_{\rm TP}(t)&nbsp; is with&nbsp; \omega_{10} = 2 \pi \cdot 10  \ \text{kHz}:
 
    
 
    
Line 94: Line 91:
 
{t}/{T_0}) .$$
 
{t}/{T_0}) .$$
  
*This shows that&nbsp; s_{\rm TP}(t)&nbsp; is real for all times&nbsp; t&nbsp .  
+
*This shows that&nbsp; s_{\rm TP}(t)&nbsp; is real for all times&nbsp; t.  
*For the numerical values we are looking for, we obtain:
+
*We obtain for the numerical values we are looking for:
 
      
 
      
 
:$$s_{\rm TP}(t = {\rm 10 \hspace{0.1cm} {\rm &micro;} s}) = {\rm 1
 
:$$s_{\rm TP}(t = {\rm 10 \hspace{0.1cm} {\rm &micro;} s}) = {\rm 1
Line 130: Line 127:
 
Re}\left[s_{\rm TP}(t)\right]}$$
 
Re}\left[s_{\rm TP}(t)\right]}$$
  
Due to the fact that here&nbsp; {\rm Im}[s_{\rm TP}(t)] = 0&nbsp; for all times, one obtains the result from this:
+
Due to the fact that here&nbsp; {\rm Im}[s_{\rm TP}(t)] = 0&nbsp; for all times, one obtains:
 
* If&nbsp; {\rm Re}[s_{\rm TP}(t)] > 0&nbsp; holds, the phase&nbsp; \phi(t) = 0.
 
* If&nbsp; {\rm Re}[s_{\rm TP}(t)] > 0&nbsp; holds, the phase&nbsp; \phi(t) = 0.
 
* On the other hand, if the real part is negative: &nbsp; &nbsp; \phi(t) = \pi.
 
* On the other hand, if the real part is negative: &nbsp; &nbsp; \phi(t) = \pi.
Line 136: Line 133:
  
 
We restrict ourselves here to the time range of one period: &nbsp; 0 \leq t \leq T_0.  
 
We restrict ourselves here to the time range of one period: &nbsp; 0 \leq t \leq T_0.  
*In the range between&nbsp; t_1&nbsp; and&nbsp; t_2&nbsp; there is a phase of&nbsp; 180^\circ&nbsp; otherwise&nbsp; $\text{Re}[s_{\rm LP}(t)] \geq 0$.  
+
*In the range between&nbsp; t_1&nbsp; and&nbsp; t_2&nbsp; there is a phase of&nbsp; 180^\circ&nbsp; otherwise&nbsp; $\text{Re}[s_{\rm TP}(t)] \geq 0$.  
  
 
*To calculate&nbsp; t_1&nbsp;, the result of subtask&nbsp; '''(2)'''&nbsp; can be used:
 
*To calculate&nbsp; t_1&nbsp;, the result of subtask&nbsp; '''(2)'''&nbsp; can be used:
Line 142: Line 139:
 
:$$\sin(2 \pi \cdot  {t_1}/{T_0}) = -0.5 \hspace{0.3cm} \Rightarrow
 
:$$\sin(2 \pi \cdot  {t_1}/{T_0}) = -0.5 \hspace{0.3cm} \Rightarrow
 
\hspace{0.3cm} 2 \pi \cdot {t_1}/{T_0} = 2 \pi \cdot  
 
\hspace{0.3cm} 2 \pi \cdot {t_1}/{T_0} = 2 \pi \cdot  
{7}/{12}\hspace{0.3cm}{\rm (corresponds to}\hspace{0.2cm}210^\circ
+
{7}/{12}\hspace{0.3cm}{\text{(corresponds to}}\hspace{0.2cm}210^\circ
 
)$$
 
)$$
  
Line 155: Line 152:
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Exercises for Signal Representation|^4.3 Equivalent Low Pass Signal and Its Spectral Function^]]
+
[[Category:Signal Representation: Exercises|^4.3 Equivalent LP Signal and its Spectral Function^]]

Latest revision as of 15:22, 18 January 2023

Spectrum of the analytical signal

We consider a similar transmission scenario as in  Exrcise 4.4  (but not the same):

  • A sinusoidal source signal with amplitude  A_{\rm N} = 2 \ \text{V}  and frequency  f_{\rm N} = 10 \ \text{kHz},
  • Double-Sideband Amplitude Modulation without carrier suppression with carrier frequency  f_{\rm T} = 50 \ \text{kHz}.


Opposite you see the spectral function  S_+(f)  of the analytical signal  s_+(t).

When solving, take into account that the equivalent low-pass signal is in the form

s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi(t)},\hspace{0.5cm} a(t) ≥ 0.

For  \phi(t),  the range  –\pi < \phi(t) \leq +\pi  is permissible and the generally valid equation applies:

\phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\big[s_{\rm TP}(t)\big]}{{\rm Re}\big[s_{\rm TP}(t)\big]}.



Hints:


Questions

1

Calculate the equivalent low-pass signal  s_{\rm TP}(t)  in the frequency and time domain.  What is the value of  s_{\rm TP}(t)  at the start time  t = 0?

\text{Re}[s_{\text{TP}}(t=0)]\ = \

 \text{V}
\text{Im}[s_{\text{TP}}(t=0 )]\ = \

 \text{V}

2

What are the values of  s_{\rm TP}(t)  at  t = 10 \ {\rm µ} \text{s}= T_0/10,     t = 25 \ {\rm µ} \text{s}= T_0/4,     t = 75 \ {\rm µ} \text{s}= 3T_0/4  and  T_0 = 100 \ {\rm µs}?
Show that all values are purely real.

\text{Re}[s_{\text{TP}}(t=10 \ {\rm µ} \text{s})]\ = \

 \text{V}
\text{Re}[s_{\text{TP}}(t=25 \ {\rm µ} \text{s})] \ = \

 \text{V}
\text{Re}[s_{\text{TP}}(t=75 \ {\rm µ} \text{s})]\ = \

 \text{V}
\text{Re}[s_{\text{TP}}(t=100 \ {\rm µ} \text{s})]\ = \

 \text{V}

3

What is the magnitude function  a(t)  in the time domain?  What are the values at times  t = 25 \ {\rm µ} \text{s}  and  t = 75 \ {\rm µ} \text{s}?

a(t=25 \ {\rm µ} \text{s})\ = \

 \text{V}
a(t=75 \ {\rm µ} \text{s})\ = \

 \text{V}

4

Give the phase function  \phi(t)  in the time domain.  What values result at the times  t = 25 \ {\rm µ} \text{s}  and  t = 75 \ {\rm µ} \text{s}?

\phi(t=25 \ {\rm µ} \text{s}) \ = \

 \text{Grad}
\phi(t=75\ {\rm µ} \text{s})\ = \

 \text{Grad}


Solution

Locality curve at time  t = 0

(1)  If all Dirac delta lines are shifted to the left by  f_{\rm T} = 50 \ \text{kHz} , they are located at  -\hspace{-0.08cm}10 \ \text{kHz}0  and  +10 \ \text{kHz}.

  • The equation for  s_{\rm TP}(t)  is with  \omega_{10} = 2 \pi \cdot 10 \ \text{kHz}:
s_{\rm TP}(t) = {\rm 1 \hspace{0.05cm} V} - {\rm j}\cdot {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 10} \hspace{0.05cm} t }+{\rm j}\cdot {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \omega_{\rm 10} \hspace{0.05cm} t }
\Rightarrow \hspace{0.3cm} s_{\rm TP}(t = 0) = {\rm 1 \hspace{0.05cm} V} - {\rm j}\cdot {\rm 1 \hspace{0.05cm} V} +{\rm j}\cdot {\rm 1 \hspace{0.05cm} V}= {\rm 1 \hspace{0.05cm} V}.
\Rightarrow \hspace{0.3cm} {\rm Re}[s_{\rm TP}(t = 0) ] \hspace{0.15 cm}\underline{= {+\rm 1 \hspace{0.05cm} V}}, \hspace{0.2cm}{\rm Im}[s_{\rm TP}(t = 0) ] \hspace{0.15 cm}\underline{= 0} .


(2)  The above equation can be transformed according to  Euler's theorem  with  T_0 = 1/f_{\rm N} = 100 \ {\rm µ} \text{s}  as follows:

\frac{s_{\rm TP}(t)}{{\rm 1 \hspace{0.05cm} V}}\hspace{-0.05cm} =\hspace{-0.05cm}1\hspace{-0.05cm} - \hspace{-0.05cm}{\rm j}\cdot \cos({ \omega_{\rm 10}\hspace{0.05cm} t }) \hspace{-0.05cm}+\hspace{-0.05cm} \sin({ \omega_{\rm 10}\hspace{0.05cm} t }) \hspace{-0.05cm}+\hspace{-0.05cm}{\rm j}\cdot \cos({ \omega_{\rm 10}\hspace{0.05cm} t })\hspace{-0.05cm} + \hspace{-0.05cm} \sin({ \omega_{\rm 10}\hspace{0.05cm} t }) = 1+2 \cdot \sin(2 \pi {t}/{T_0}) .
  • This shows that  s_{\rm TP}(t)  is real for all times  t.
  • We obtain for the numerical values we are looking for:
s_{\rm TP}(t = {\rm 10 \hspace{0.1cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(36^\circ)\right]\hspace{0.15 cm}\underline{={{\rm +2.176 \hspace{0.05cm} V}}},
s_{\rm TP}(t = {\rm 25 \hspace{0.1cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(90^\circ)\right]\hspace{0.15 cm}\underline{={{\rm +3 \hspace{0.05cm} V}}},
s_{\rm TP}(t = {\rm 75 \hspace{0.1cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(270^\circ)\right]\hspace{0.15 cm}\underline{= -{{\rm 1 \hspace{0.05cm} V}}},
s_{\rm TP}(t = {\rm 100 \hspace{0.1cm}{\rm µ} s}) = s_{\rm TP}(t = 0) \hspace{0.15 cm}\underline{={{\rm +1 \hspace{0.05cm} V}}}.


(3)  By definition,  a(t) = |s_{\rm TP}(t)|. This gives the following numerical values:

a(t = {\rm 25 \hspace{0.1cm} {\rm µ} s}) = s_{\rm TP}(t = {\rm 25 \hspace{0.05cm}{\rm µ} s}) \hspace{0.15 cm}\underline{= {\rm +3 \hspace{0.05cm} V}} , \hspace{4.15 cm}
a(t = {\rm 75 \hspace{0.1cm} {\rm µ} s}) = |s_{\rm TP}(t = {\rm 75 \hspace{0.05cm} {\rm µ} s})| \hspace{0.15 cm}\underline{= {\rm +1 \hspace{0.05cm} V}} .


(4)  In general, the phase function is:

\phi(t)= {\rm arc} \left[s_{\rm TP}(t)\right]= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\left[s_{\rm TP}(t)\right]}{{\rm Re}\left[s_{\rm TP}(t)\right]}

Due to the fact that here  {\rm Im}[s_{\rm TP}(t)] = 0  for all times, one obtains:

  • If  {\rm Re}[s_{\rm TP}(t)] > 0  holds, the phase  \phi(t) = 0.
  • On the other hand, if the real part is negative:     \phi(t) = \pi.


We restrict ourselves here to the time range of one period:   0 \leq t \leq T_0.

  • In the range between  t_1  and  t_2  there is a phase of  180^\circ  otherwise  \text{Re}[s_{\rm TP}(t)] \geq 0.
  • To calculate  t_1 , the result of subtask  (2)  can be used:
\sin(2 \pi \cdot {t_1}/{T_0}) = -0.5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 2 \pi \cdot {t_1}/{T_0} = 2 \pi \cdot {7}/{12}\hspace{0.3cm}{\text{(corresponds to}}\hspace{0.2cm}210^\circ )
  • From this one obtains  t_1 = 7/12 · T_0 = 58.33 \ {\rm µ} \text{s}.
  • By similar reasoning one arrives at the result:  t_2 = 11/12 · T_0 = 91.63 \ {\rm µ} \text{s}.


The values we are looking for are therefore: 

\phi(t = 25 \ {\rm µ} \text{s}) \; \underline { = 0},
\phi(t = 75 \ {\rm µ} \text{s}) \; \underline { = 180^{\circ}}\; (= \pi).