Difference between revisions of "Aufgaben:Exercise 4.5: Locality Curve for DSB-AM"

From LNTwww
 
(10 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function
+
{{quiz-Header|Buchseite=Signal_Representation/Equivalent Low-Pass Signal and its Spectral Function
 
}}
 
}}
  
 
[[File:P_ID751__Sig_A_4_5_neu.png|250px|right|frame|Spectrum of the analytical signal]]
 
[[File:P_ID751__Sig_A_4_5_neu.png|250px|right|frame|Spectrum of the analytical signal]]
  
We consider a similar transmission scenario as in  [[Aufgaben:Aufgabe_4.4:_Zeigerdiagramm_bei_ZSB-AM|task 4.4]]  (but not the same):
+
We consider a similar transmission scenario as in  [[Aufgaben:Exercise_4.4:_Pointer_Diagram_for_DSB-AM|Exrcise 4.4]]  (but not the same):
* a sinusoidal message signal with amplitude  $A_{\rm N} = 2 \ \text{V}$   and the frequency  $f_{\rm N} = 10 \ \text{kHz}$,
+
* A sinusoidal source signal with amplitude  $A_{\rm N} = 2 \ \text{V}$   and frequency  $f_{\rm N} = 10 \ \text{kHz}$,
*DSB-Amplitude Modulation without carrier suppression with carrier frequency  $f_{\rm T} = 50 \ \text{kHz}$.
+
*Double-Sideband Amplitude Modulation without carrier suppression with carrier frequency  $f_{\rm T} = 50 \ \text{kHz}$.
  
  
 
Opposite you see the spectral function  $S_+(f)$  of the analytical signal  $s_+(t)$.  
 
Opposite you see the spectral function  $S_+(f)$  of the analytical signal  $s_+(t)$.  
  
When solving, take into account that the equivalent low pass signal is also in the form
+
When solving, take into account that the equivalent low-pass signal is in the form
 
   
 
   
:$$s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi(t)} $$
+
:$$s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi(t)},\hspace{0.5cm}  a(t) ≥ 0.$$
  
where&nbsp; $a(t) ≥ 0$&nbsp; shall hold. For&nbsp; $\phi(t)$&nbsp;, the range of values&nbsp; $–\pi < \phi(t) \leq +\pi$&nbsp; is permissible and the generally valid equation applies:
+
For&nbsp; $\phi(t)$,&nbsp; the range&nbsp; $–\pi < \phi(t) \leq +\pi$&nbsp; is permissible and the generally valid equation applies:
 
   
 
   
 
:$$\phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\big[s_{\rm
 
:$$\phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\big[s_{\rm
 
TP}(t)\big]}{{\rm Re}\big[s_{\rm TP}(t)\big]}.$$
 
TP}(t)\big]}{{\rm Re}\big[s_{\rm TP}(t)\big]}.$$
 
 
 
  
  
Line 29: Line 26:
  
 
''Hints:''  
 
''Hints:''  
*This exercise belongs to the chapter&nbsp; [[Signal_Representation/Equivalent_Low_Pass_Signal_and_Its_Spectral_Function|Equivalent Low Pass Signal and Its Spectral Function]].
+
*This exercise belongs to the chapter&nbsp; [[Signal_Representation/Equivalent_Low-Pass_Signal_and_its_Spectral_Function|Equivalent Low-Pass Signal and its Spectral Function]].
 
   
 
   
*You can check your solution with the interactive applet&nbsp; [[Applets:Physikalisches_Signal_%26_Äquivalentes_TP-Signal|Physical signal & equivalent LP signal]]&nbsp; &nbsp; &rArr; &nbsp; &bdquo;locus curve&rdquo;.
+
*You can check your solution with the interactive applet&nbsp; [[Applets:Physical_Signal_%26_Equivalent_Lowpass_Signal|Physical Signal & Equivalent Low-Pass Signal]]&nbsp; &nbsp; &rArr; &nbsp; "Locality Curve".
  
 
   
 
   
Line 37: Line 34:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Calculate the equivalent low pass signal&nbsp; $s_{\rm TP}(t)$&nbsp; in the frequency and time domain. What is the value of&nbsp; $s_{\rm TP}(t)$&nbsp; at the start time&nbsp; $t = 0$?
+
{Calculate the equivalent low-pass signal&nbsp; $s_{\rm TP}(t)$&nbsp; in the frequency and time domain.&nbsp; What is the value of&nbsp; $s_{\rm TP}(t)$&nbsp; at the start time&nbsp; $t = 0$?
 
|type="{}"}
 
|type="{}"}
 
$\text{Re}[s_{\text{TP}}(t=0)]\ = \ $  { 1 3% }  &nbsp;$\text{V}$
 
$\text{Re}[s_{\text{TP}}(t=0)]\ = \ $  { 1 3% }  &nbsp;$\text{V}$
 
$\text{Im}[s_{\text{TP}}(t=0 )]\ = \ $ { 0. } &nbsp;$\text{V}$
 
$\text{Im}[s_{\text{TP}}(t=0 )]\ = \ $ { 0. } &nbsp;$\text{V}$
  
{What are the values of&nbsp; $s_{\rm TP}(t)$&nbsp; at&nbsp; $t = 10 \ {\rm &micro;} \text{s}= T_0/10$, &nbsp; &nbsp; $t = 25 \ {\rm &micro;} \text{s}= T_0/4$, &nbsp; &nbsp; $t = 75 \ {\rm &micro;} \text{s}= 3T_0/4$&nbsp; and&nbsp; $T_0 = 100 \ {\rm &micro;}s$? <br>Show that all values are purely real.
+
{What are the values of&nbsp; $s_{\rm TP}(t)$&nbsp; at&nbsp; $t = 10 \ {\rm &micro;} \text{s}= T_0/10$, &nbsp; &nbsp; $t = 25 \ {\rm &micro;} \text{s}= T_0/4$, &nbsp; &nbsp; $t = 75 \ {\rm &micro;} \text{s}= 3T_0/4$&nbsp; and&nbsp; $T_0 = 100 \ {\rm &micro;s}$? <br>Show that all values are purely real.
 
|type="{}"}
 
|type="{}"}
 
$\text{Re}[s_{\text{TP}}(t=10 \ {\rm &micro;} \text{s})]\ = \ $ { 2.176 3% } &nbsp;$\text{V}$
 
$\text{Re}[s_{\text{TP}}(t=10 \ {\rm &micro;} \text{s})]\ = \ $ { 2.176 3% } &nbsp;$\text{V}$
Line 49: Line 46:
 
$\text{Re}[s_{\text{TP}}(t=100 \ {\rm &micro;} \text{s})]\ = \ $ { 1 3% } &nbsp;$\text{V}$
 
$\text{Re}[s_{\text{TP}}(t=100 \ {\rm &micro;} \text{s})]\ = \ $ { 1 3% } &nbsp;$\text{V}$
  
{What is the magnitude function&nbsp; $a(t)$&nbsp; im Zeitbereich? in the time domain? What are the values at times&nbsp; $t = 25 \ {\rm &micro;} \text{s}$&nbsp; and&nbsp; $t = 75 \ {\rm &micro;} \text{s}$?
+
{What is the magnitude function&nbsp; $a(t)$&nbsp; in the time domain?&nbsp; What are the values at times&nbsp; $t = 25 \ {\rm &micro;} \text{s}$&nbsp; and&nbsp; $t = 75 \ {\rm &micro;} \text{s}$?
 
|type="{}"}
 
|type="{}"}
 
$a(t=25 \ {\rm &micro;} \text{s})\ = \ $ { 3 3% } &nbsp;$\text{V}$
 
$a(t=25 \ {\rm &micro;} \text{s})\ = \ $ { 3 3% } &nbsp;$\text{V}$
 
$a(t=75 \ {\rm &micro;} \text{s})\ = \ $ { 1 3% } &nbsp;$\text{V}$
 
$a(t=75 \ {\rm &micro;} \text{s})\ = \ $ { 1 3% } &nbsp;$\text{V}$
  
{Give the phase function&nbsp; $\phi(t)$&nbsp;  in the time domain in general. What values result at the times&nbsp; $t = 25 \ {\rm &micro;} \text{s}$&nbsp; and&nbsp; $t = 75 \ {\rm &micro;} \text{s}$?
+
{Give the phase function&nbsp; $\phi(t)$&nbsp;  in the time domain.&nbsp; What values result at the times&nbsp; $t = 25 \ {\rm &micro;} \text{s}$&nbsp; and&nbsp; $t = 75 \ {\rm &micro;} \text{s}$?
 
|type="{}"}
 
|type="{}"}
 
$\phi(t=25 \ {\rm &micro;} \text{s}) \ = \ $ { 0. } &nbsp;$\text{Grad}$
 
$\phi(t=25 \ {\rm &micro;} \text{s}) \ = \ $ { 0. } &nbsp;$\text{Grad}$
Line 66: Line 63:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
[[File:EN_Sig_A_4_5_a.png|250px|right|frame|Locus curve at time&nbsp; $t = 0$]]
+
[[File:EN_Sig_A_4_5_a.png|250px|right|frame|Locality curve at time&nbsp; $t = 0$]]
'''(1)'''&nbsp; If all diraclines are shifted to the left by&nbsp; $f_{\rm C} = 50 \ \text{kHz}$&nbsp;, they are located at&nbsp; $-\hspace{-0.08cm}10 \ \text{kHz}$,&nbsp; $0$&nbsp; and&nbsp; $+10 \ \text{kHz}$.  
+
'''(1)'''&nbsp; If all Dirac delta lines are shifted to the left by&nbsp; $f_{\rm T} = 50 \ \text{kHz}$&nbsp;, they are located at&nbsp; $-\hspace{-0.08cm}10 \ \text{kHz}$,&nbsp; $0$&nbsp; and&nbsp; $+10 \ \text{kHz}$.  
 
*The equation for&nbsp; $s_{\rm TP}(t)$&nbsp; is with&nbsp; $\omega_{10} = 2 \pi \cdot 10  \ \text{kHz}$:
 
*The equation for&nbsp; $s_{\rm TP}(t)$&nbsp; is with&nbsp; $\omega_{10} = 2 \pi \cdot 10  \ \text{kHz}$:
 
    
 
    
Line 94: Line 91:
 
{t}/{T_0}) .$$
 
{t}/{T_0}) .$$
  
*This shows that&nbsp; $s_{\rm TP}(t)$&nbsp; is real for all times&nbsp; $t$&nbsp .  
+
*This shows that&nbsp; $s_{\rm TP}(t)$&nbsp; is real for all times&nbsp; $t$.  
*For the numerical values we are looking for, we obtain:
+
*We obtain for the numerical values we are looking for:
 
      
 
      
 
:$$s_{\rm TP}(t = {\rm 10 \hspace{0.1cm} {\rm &micro;} s}) = {\rm 1
 
:$$s_{\rm TP}(t = {\rm 10 \hspace{0.1cm} {\rm &micro;} s}) = {\rm 1
Line 130: Line 127:
 
Re}\left[s_{\rm TP}(t)\right]}$$
 
Re}\left[s_{\rm TP}(t)\right]}$$
  
Due to the fact that here&nbsp; ${\rm Im}[s_{\rm TP}(t)] = 0$&nbsp; for all times, one obtains the result from this:
+
Due to the fact that here&nbsp; ${\rm Im}[s_{\rm TP}(t)] = 0$&nbsp; for all times, one obtains:
 
* If&nbsp; ${\rm Re}[s_{\rm TP}(t)] > 0$&nbsp; holds, the phase&nbsp; $\phi(t) = 0$.
 
* If&nbsp; ${\rm Re}[s_{\rm TP}(t)] > 0$&nbsp; holds, the phase&nbsp; $\phi(t) = 0$.
 
* On the other hand, if the real part is negative: &nbsp; &nbsp; $\phi(t) = \pi$.
 
* On the other hand, if the real part is negative: &nbsp; &nbsp; $\phi(t) = \pi$.
Line 142: Line 139:
 
:$$\sin(2 \pi \cdot  {t_1}/{T_0}) = -0.5 \hspace{0.3cm} \Rightarrow
 
:$$\sin(2 \pi \cdot  {t_1}/{T_0}) = -0.5 \hspace{0.3cm} \Rightarrow
 
\hspace{0.3cm} 2 \pi \cdot {t_1}/{T_0} = 2 \pi \cdot  
 
\hspace{0.3cm} 2 \pi \cdot {t_1}/{T_0} = 2 \pi \cdot  
{7}/{12}\hspace{0.3cm}{\rm (corresponds to}\hspace{0.2cm}210^\circ
+
{7}/{12}\hspace{0.3cm}{\text{(corresponds to}}\hspace{0.2cm}210^\circ
 
)$$
 
)$$
  
Line 155: Line 152:
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
[[Category:Signal Representation: Exercises|^4.3 Equivalent Low Pass Signal and Spectral Function^]]
+
[[Category:Signal Representation: Exercises|^4.3 Equivalent LP Signal and its Spectral Function^]]

Latest revision as of 14:22, 18 January 2023

Spectrum of the analytical signal

We consider a similar transmission scenario as in  Exrcise 4.4  (but not the same):

  • A sinusoidal source signal with amplitude  $A_{\rm N} = 2 \ \text{V}$  and frequency  $f_{\rm N} = 10 \ \text{kHz}$,
  • Double-Sideband Amplitude Modulation without carrier suppression with carrier frequency  $f_{\rm T} = 50 \ \text{kHz}$.


Opposite you see the spectral function  $S_+(f)$  of the analytical signal  $s_+(t)$.

When solving, take into account that the equivalent low-pass signal is in the form

$$s_{\rm TP}(t) = a(t) \cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \phi(t)},\hspace{0.5cm} a(t) ≥ 0.$$

For  $\phi(t)$,  the range  $–\pi < \phi(t) \leq +\pi$  is permissible and the generally valid equation applies:

$$\phi(t)= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\big[s_{\rm TP}(t)\big]}{{\rm Re}\big[s_{\rm TP}(t)\big]}.$$



Hints:


Questions

1

Calculate the equivalent low-pass signal  $s_{\rm TP}(t)$  in the frequency and time domain.  What is the value of  $s_{\rm TP}(t)$  at the start time  $t = 0$?

$\text{Re}[s_{\text{TP}}(t=0)]\ = \ $

 $\text{V}$
$\text{Im}[s_{\text{TP}}(t=0 )]\ = \ $

 $\text{V}$

2

What are the values of  $s_{\rm TP}(t)$  at  $t = 10 \ {\rm µ} \text{s}= T_0/10$,     $t = 25 \ {\rm µ} \text{s}= T_0/4$,     $t = 75 \ {\rm µ} \text{s}= 3T_0/4$  and  $T_0 = 100 \ {\rm µs}$?
Show that all values are purely real.

$\text{Re}[s_{\text{TP}}(t=10 \ {\rm µ} \text{s})]\ = \ $

 $\text{V}$
$\text{Re}[s_{\text{TP}}(t=25 \ {\rm µ} \text{s})] \ = \ $

 $\text{V}$
$\text{Re}[s_{\text{TP}}(t=75 \ {\rm µ} \text{s})]\ = \ $

 $\text{V}$
$\text{Re}[s_{\text{TP}}(t=100 \ {\rm µ} \text{s})]\ = \ $

 $\text{V}$

3

What is the magnitude function  $a(t)$  in the time domain?  What are the values at times  $t = 25 \ {\rm µ} \text{s}$  and  $t = 75 \ {\rm µ} \text{s}$?

$a(t=25 \ {\rm µ} \text{s})\ = \ $

 $\text{V}$
$a(t=75 \ {\rm µ} \text{s})\ = \ $

 $\text{V}$

4

Give the phase function  $\phi(t)$  in the time domain.  What values result at the times  $t = 25 \ {\rm µ} \text{s}$  and  $t = 75 \ {\rm µ} \text{s}$?

$\phi(t=25 \ {\rm µ} \text{s}) \ = \ $

 $\text{Grad}$
$\phi(t=75\ {\rm µ} \text{s})\ = \ $

 $\text{Grad}$


Solution

Locality curve at time  $t = 0$

(1)  If all Dirac delta lines are shifted to the left by  $f_{\rm T} = 50 \ \text{kHz}$ , they are located at  $-\hspace{-0.08cm}10 \ \text{kHz}$,  $0$  and  $+10 \ \text{kHz}$.

  • The equation for  $s_{\rm TP}(t)$  is with  $\omega_{10} = 2 \pi \cdot 10 \ \text{kHz}$:
$$s_{\rm TP}(t) = {\rm 1 \hspace{0.05cm} V} - {\rm j}\cdot {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 10} \hspace{0.05cm} t }+{\rm j}\cdot {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \omega_{\rm 10} \hspace{0.05cm} t }$$
$$\Rightarrow \hspace{0.3cm} s_{\rm TP}(t = 0) = {\rm 1 \hspace{0.05cm} V} - {\rm j}\cdot {\rm 1 \hspace{0.05cm} V} +{\rm j}\cdot {\rm 1 \hspace{0.05cm} V}= {\rm 1 \hspace{0.05cm} V}.$$
$$\Rightarrow \hspace{0.3cm} {\rm Re}[s_{\rm TP}(t = 0) ] \hspace{0.15 cm}\underline{= {+\rm 1 \hspace{0.05cm} V}}, \hspace{0.2cm}{\rm Im}[s_{\rm TP}(t = 0) ] \hspace{0.15 cm}\underline{= 0} .$$


(2)  The above equation can be transformed according to  Euler's theorem  with  $T_0 = 1/f_{\rm N} = 100 \ {\rm µ} \text{s}$  as follows:

$$\frac{s_{\rm TP}(t)}{{\rm 1 \hspace{0.05cm} V}}\hspace{-0.05cm} =\hspace{-0.05cm}1\hspace{-0.05cm} - \hspace{-0.05cm}{\rm j}\cdot \cos({ \omega_{\rm 10}\hspace{0.05cm} t }) \hspace{-0.05cm}+\hspace{-0.05cm} \sin({ \omega_{\rm 10}\hspace{0.05cm} t }) \hspace{-0.05cm}+\hspace{-0.05cm}{\rm j}\cdot \cos({ \omega_{\rm 10}\hspace{0.05cm} t })\hspace{-0.05cm} + \hspace{-0.05cm} \sin({ \omega_{\rm 10}\hspace{0.05cm} t }) = 1+2 \cdot \sin(2 \pi {t}/{T_0}) .$$
  • This shows that  $s_{\rm TP}(t)$  is real for all times  $t$.
  • We obtain for the numerical values we are looking for:
$$s_{\rm TP}(t = {\rm 10 \hspace{0.1cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(36^\circ)\right]\hspace{0.15 cm}\underline{={{\rm +2.176 \hspace{0.05cm} V}}},$$
$$s_{\rm TP}(t = {\rm 25 \hspace{0.1cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(90^\circ)\right]\hspace{0.15 cm}\underline{={{\rm +3 \hspace{0.05cm} V}}},$$
$$s_{\rm TP}(t = {\rm 75 \hspace{0.1cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot \left[1+2 \cdot \sin(270^\circ)\right]\hspace{0.15 cm}\underline{= -{{\rm 1 \hspace{0.05cm} V}}},$$
$$s_{\rm TP}(t = {\rm 100 \hspace{0.1cm}{\rm µ} s}) = s_{\rm TP}(t = 0) \hspace{0.15 cm}\underline{={{\rm +1 \hspace{0.05cm} V}}}.$$


(3)  By definition,  $a(t) = |s_{\rm TP}(t)|$. This gives the following numerical values:

$$a(t = {\rm 25 \hspace{0.1cm} {\rm µ} s}) = s_{\rm TP}(t = {\rm 25 \hspace{0.05cm}{\rm µ} s}) \hspace{0.15 cm}\underline{= {\rm +3 \hspace{0.05cm} V}} , \hspace{4.15 cm}$$
$$a(t = {\rm 75 \hspace{0.1cm} {\rm µ} s}) = |s_{\rm TP}(t = {\rm 75 \hspace{0.05cm} {\rm µ} s})| \hspace{0.15 cm}\underline{= {\rm +1 \hspace{0.05cm} V}} .$$


(4)  In general, the phase function is:

$$\phi(t)= {\rm arc} \left[s_{\rm TP}(t)\right]= {\rm arctan} \hspace{0.1cm}\frac{{\rm Im}\left[s_{\rm TP}(t)\right]}{{\rm Re}\left[s_{\rm TP}(t)\right]}$$

Due to the fact that here  ${\rm Im}[s_{\rm TP}(t)] = 0$  for all times, one obtains:

  • If  ${\rm Re}[s_{\rm TP}(t)] > 0$  holds, the phase  $\phi(t) = 0$.
  • On the other hand, if the real part is negative:     $\phi(t) = \pi$.


We restrict ourselves here to the time range of one period:   $0 \leq t \leq T_0$.

  • In the range between  $t_1$  and  $t_2$  there is a phase of  $180^\circ$  otherwise  $\text{Re}[s_{\rm TP}(t)] \geq 0$.
  • To calculate  $t_1$ , the result of subtask  (2)  can be used:
$$\sin(2 \pi \cdot {t_1}/{T_0}) = -0.5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 2 \pi \cdot {t_1}/{T_0} = 2 \pi \cdot {7}/{12}\hspace{0.3cm}{\text{(corresponds to}}\hspace{0.2cm}210^\circ )$$
  • From this one obtains  $t_1 = 7/12 · T_0 = 58.33 \ {\rm µ} \text{s}$.
  • By similar reasoning one arrives at the result:  $t_2 = 11/12 · T_0 = 91.63 \ {\rm µ} \text{s}$.


The values we are looking for are therefore: 

$$\phi(t = 25 \ {\rm µ} \text{s}) \; \underline { = 0},$$
$$\phi(t = 75 \ {\rm µ} \text{s}) \; \underline { = 180^{\circ}}\; (= \pi).$$