Difference between revisions of "Aufgaben:Exercise 2.3: DSB-AM Realization"
(13 intermediate revisions by 2 users not shown) | |||
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File:EN_Mod_A_2_3.png|right|frame| | + | [[File:EN_Mod_A_2_3.png|right|frame|Nonlinear characteristic curve <br>for DSB-AM realization]] |
− | + | In order to realize the so-called "Double-Sideband Amplitude Modulation (DSB-AM) with carrier", an amplifier with the following characteristic curve must be used: | |
:y=g(x)=U⋅(1−e−x/U) | :y=g(x)=U⋅(1−e−x/U) | ||
− | + | *Here, x=x(t) and y=y(t) are time-dependent voltages at the input and output of the amplifier, respectively. | |
+ | *The parameter U=3 V indicates the saturation voltage of the amplifier. | ||
− | + | ||
+ | This curve is used at the operating point A0=2 V. This is achieved, for example, by the input signal | ||
:x(t)=A0+z(t)+q(t). | :x(t)=A0+z(t)+q(t). | ||
− | + | Assume cosine oscillations for both the carrier and the source signal: | |
:z(t)=AT⋅cos(2πfTt),AT=1V,fT=30kHz, | :z(t)=AT⋅cos(2πfTt),AT=1V,fT=30kHz, | ||
:q(t)=AN⋅cos(2πfNt),AN=1V,fN=3kHz. | :q(t)=AN⋅cos(2πfNt),AN=1V,fN=3kHz. | ||
− | + | In solving this problem, use the auxiliary quantity | |
:w(t)=x(t)−A0=z(t)+q(t). | :w(t)=x(t)−A0=z(t)+q(t). | ||
− | + | The nonlinear characteristic curve can be developed according to a "Taylor series" around the operating point: | |
:$$y(x) = y(A_0) + \frac{1}{1!} \cdot y\hspace{0.08cm}{\rm '}(A_0) \cdot (x - A_0)+ \frac{1}{2!} \cdot y\hspace{0.08cm}''(A_0) \cdot (x - A_0)^2+ | :$$y(x) = y(A_0) + \frac{1}{1!} \cdot y\hspace{0.08cm}{\rm '}(A_0) \cdot (x - A_0)+ \frac{1}{2!} \cdot y\hspace{0.08cm}''(A_0) \cdot (x - A_0)^2+ | ||
\frac{1}{3!} \cdot y\hspace{0.08cm}'''(A_0) \cdot (x - A_0)^3 + \text{ ...}$$ | \frac{1}{3!} \cdot y\hspace{0.08cm}'''(A_0) \cdot (x - A_0)^3 + \text{ ...}$$ | ||
− | + | The output signal can then also be represented as depending on the auxiliary quantity w(t) as follows: | |
:y(t)=c0+c1⋅w(t)+c2⋅w2(t)+c3⋅w3(t)+ ... | :y(t)=c0+c1⋅w(t)+c2⋅w2(t)+c3⋅w3(t)+ ... | ||
− | + | *The DSB–AM signal s(t) is obtained by band-limiting y(t) to the frequency range from 23 kHz to 37 kHz. | |
− | + | *That is, all frequencies other than fT, fT±fN and fT±2fN are removed by the band-pass. | |
− | |||
− | |||
− | |||
+ | The graph shows the characteristic curve g(x) and the approximations g1(x), g2(x) and g3(x), when the Taylor series is truncated after the first, second, or third term. It can be seen that the approximation g3(x) is indistinguishable from g(x) in the range shown. | ||
− | + | Hints: | |
− | * | + | *This exercise belongs to the chapter [[Modulation_Methods/Double-Sideband_Amplitude_Modulation|Double-Sideband Amplitude Modulation]]. |
− | * | + | *Reference will also be made to the chapter [[Linear_and_Time_Invariant_Systems/Nonlinear_Distortions#Description_of_nonlinear_systems|Description of nonlinear systems]] in the book "Linear and Time Invariant Systems". |
− | === | + | ===Questions=== |
<quiz display=simple> | <quiz display=simple> | ||
− | {In | + | {In what range can the input signal x(t) vary? Give the minimum and maximum values of the auxiliary variable w(t)=x(t)−A0. |
|type="{}"} | |type="{}"} | ||
wmin = { -2.06--1.94 } V | wmin = { -2.06--1.94 } V | ||
wmax = { 2 3% } V | wmax = { 2 3% } V | ||
− | { | + | {Calculate the coefficients c0 and c1 of the Taylor series. |
|type="{}"} | |type="{}"} | ||
c0 = { 1.46 3% } V | c0 = { 1.46 3% } V | ||
c1 = { 0.513 3% } | c1 = { 0.513 3% } | ||
− | { | + | {What are the coefficients c2 and c3 of the nonlinear characteristic curve? |
|type="{}"} | |type="{}"} | ||
c2 = { -0.088--0.084 } V−1 | c2 = { -0.088--0.084 } V−1 | ||
c3 = { 0.0095 3% } V−2 | c3 = { 0.0095 3% } V−2 | ||
− | { | + | {Show that a "DSB-AM with carrier" constellation results when c3 is considered negligibly small. What is the modulation depth m? |
|type="{}"} | |type="{}"} | ||
m = { 0.335 3% } | m = { 0.335 3% } | ||
− | { | + | {Assuming that c3 cannot be considered negligibly small, which of the following statements are true? |
|type="[]"} | |type="[]"} | ||
− | - | + | - The weight of the spectral line at fT is unchanged. |
− | + s(t) | + | + s(t) now includes Dirac delta lines at fT±2fN. |
− | + | + | + The cubic term leads to nonlinear distortions. |
− | - | + | - The cubic term leads to linear distortions. |
</quiz> | </quiz> | ||
− | === | + | ===Solution=== |
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' From x(t)=A0+z(t)+q(t), with A0=2 V and AT=AN=1 V, we get the possible range 0 V≤x(t)≤4 V. |
− | * | + | *Thus, the auxiliary quantity w(t) can take values between wmin=−2 V_ and wmax=+2 V_. |
− | '''(2)''' | + | '''(2)''' The coefficient c0 is equal to the characteristic value at the operating point. Using A0=2 V and U=3 V we obtain: |
:c0=y(A0)=U⋅(1−e−A0/U)=1.460V_. | :c0=y(A0)=U⋅(1−e−A0/U)=1.460V_. | ||
− | * | + | *Accordingly, for the Taylor coefficient c1: |
:c1=y′(A0)=e−A0/U=0.513_. | :c1=y′(A0)=e−A0/U=0.513_. | ||
− | '''(3)''' | + | '''(3)''' The further derivatives (n≥2) are: |
:y(n)(A0)=(−1)n−1Un−1⋅e−A0/U. | :y(n)(A0)=(−1)n−1Un−1⋅e−A0/U. | ||
− | * | + | *This results in the following coefficients: |
:c2=12!⋅y(2)(A0)=12U⋅e−A0/U=−0.086V−1_, | :c2=12!⋅y(2)(A0)=12U⋅e−A0/U=−0.086V−1_, | ||
:c3=13!⋅y(3)(A0)=16U2⋅e−A0/U=0.0095V−2_. | :c3=13!⋅y(3)(A0)=16U2⋅e−A0/U=0.0095V−2_. | ||
− | '''(4)''' | + | '''(4)''' Setting c3=0, the output signal of the amplifier is: |
:y(t)=c0+c1⋅(z(t)+q(t))+c2⋅(z2(t)+q2(t)+2⋅z(t)⋅q(t)). | :y(t)=c0+c1⋅(z(t)+q(t))+c2⋅(z2(t)+q2(t)+2⋅z(t)⋅q(t)). | ||
− | * | + | *Thus, after the band-pass, the following signal components remain: |
:$$s(t) = c_1 \cdot z(t) + 2 \cdot c_2 \cdot z(t) \cdot q(t) | :$$s(t) = c_1 \cdot z(t) + 2 \cdot c_2 \cdot z(t) \cdot q(t) | ||
= \left[c_1 \cdot A_{\rm T} + 2 \cdot c_2 \cdot A_{\rm T} \cdot A_{\rm N} \cdot \cos(\omega_{\rm N} t)\right] \cdot \cos(\omega_{\rm T} t)\hspace{0.05cm}.$$ | = \left[c_1 \cdot A_{\rm T} + 2 \cdot c_2 \cdot A_{\rm T} \cdot A_{\rm N} \cdot \cos(\omega_{\rm N} t)\right] \cdot \cos(\omega_{\rm T} t)\hspace{0.05cm}.$$ | ||
− | * | + | *The modulation depth is then determined as the quotient of the "amplitude of the message oscillation" over the "amplitude of the carrier": |
:m=2⋅|c2|⋅AT⋅AN|c1|⋅AT=2⋅|c2|⋅AN|c1|=2⋅0.086⋅1V0.513=0.335_. | :m=2⋅|c2|⋅AT⋅AN|c1|⋅AT=2⋅|c2|⋅AN|c1|=2⋅0.086⋅1V0.513=0.335_. | ||
− | '''(5)''' | + | '''(5)''' <u>Answers 2 and 3</u> are correct: |
− | * | + | *Considering the cubic part, y(t) includes the following other components: |
:$$y_3(t) = c_3 \cdot (z(t) + q(t))^3 | :$$y_3(t) = c_3 \cdot (z(t) + q(t))^3 | ||
= c_3 \cdot z^3(t) + 3 \cdot c_3 \cdot z^2(t) \cdot q(t)+ 3 \cdot c_3 \cdot z(t) \cdot q^2(t) + c_3 \cdot q^3(t) \hspace{0.05cm}.$$ | = c_3 \cdot z^3(t) + 3 \cdot c_3 \cdot z^2(t) \cdot q(t)+ 3 \cdot c_3 \cdot z(t) \cdot q^2(t) + c_3 \cdot q^3(t) \hspace{0.05cm}.$$ | ||
− | * | + | *The first term results in components at fT and 3fT, and the last term results in components at fN and 3fN. |
+ | *The second term gives a component at fN and others at 2fT±fN: | ||
:3⋅c3⋅z2(t)⋅q(t)=3/2⋅A2T⋅AN⋅[cos(ωNt)+cos(2ωTt)⋅cos(ωNt)]. | :3⋅c3⋅z2(t)⋅q(t)=3/2⋅A2T⋅AN⋅[cos(ωNt)+cos(2ωTt)⋅cos(ωNt)]. | ||
− | * | + | *Accordingly, the third summand in the above equation leads to |
:3⋅c3⋅z(t)⋅q2(t)=3/2⋅AT⋅A2N⋅[cos(ωTt)+cos(ωTt)⋅cos(2ωNt)]. | :3⋅c3⋅z(t)⋅q2(t)=3/2⋅AT⋅A2N⋅[cos(ωTt)+cos(ωTt)⋅cos(2ωNt)]. | ||
− | * | + | *Thus, within the frequency range from 23 kHz to 37 kHz, there is indeed a change in the spectral line at fT <br>and new Dirac delta lines are formed at fT±2fN, i.e., at 24 kHz and 36 kHz. |
− | * | + | *The resulting distortions are thus nonlinear ⇒ Answer 3 ist correct and Answer 4 is wrong. |
{{ML-Fuß}} | {{ML-Fuß}} | ||
Line 114: | Line 115: | ||
− | [[Category:Modulation Methods: Exercises|^2.1 | + | [[Category:Modulation Methods: Exercises|^2.1 Double Sideband Amplitude Modulation^]] |
Latest revision as of 16:18, 18 January 2023
In order to realize the so-called "Double-Sideband Amplitude Modulation (DSB-AM) with carrier", an amplifier with the following characteristic curve must be used:
- y=g(x)=U⋅(1−e−x/U)
- Here, x=x(t) and y=y(t) are time-dependent voltages at the input and output of the amplifier, respectively.
- The parameter U=3 V indicates the saturation voltage of the amplifier.
This curve is used at the operating point A0=2 V. This is achieved, for example, by the input signal
- x(t)=A0+z(t)+q(t).
Assume cosine oscillations for both the carrier and the source signal:
- z(t)=AT⋅cos(2πfTt),AT=1V,fT=30kHz,
- q(t)=AN⋅cos(2πfNt),AN=1V,fN=3kHz.
In solving this problem, use the auxiliary quantity
- w(t)=x(t)−A0=z(t)+q(t).
The nonlinear characteristic curve can be developed according to a "Taylor series" around the operating point:
- y(x)=y(A0)+11!⋅y′(A0)⋅(x−A0)+12!⋅y″
The output signal can then also be represented as depending on the auxiliary quantity w(t) as follows:
- y(t) = c_0 + c_1 \cdot w(t) + c_2 \cdot w^2(t)+ c_3 \cdot w^3(t) +\text{ ...}
- The DSB–AM signal s(t) is obtained by band-limiting y(t) to the frequency range from \text{23 kHz} to \text{37 kHz}.
- That is, all frequencies other than f_{\rm T}, f_{\rm T}±f_{\rm N} and f_{\rm T}±2f_{\rm N} are removed by the band-pass.
The graph shows the characteristic curve g(x) and the approximations g_1(x), g_2(x) and g_3(x), when the Taylor series is truncated after the first, second, or third term. It can be seen that the approximation g_3(x) is indistinguishable from g(x) in the range shown.
Hints:
- This exercise belongs to the chapter Double-Sideband Amplitude Modulation.
- Reference will also be made to the chapter Description of nonlinear systems in the book "Linear and Time Invariant Systems".
Questions
Solution
- Thus, the auxiliary quantity w(t) can take values between w_{\rm min}\hspace{0.15cm}\underline{ = -2 \ \rm V} and w_{\rm max}\hspace{0.15cm}\underline{ = +2 \ \rm V}.
(2) The coefficient c_0 is equal to the characteristic value at the operating point. Using A_0 = 2 \ \rm V and U = 3 \ \rm V we obtain:
- c_0 = y(A_0) = U \cdot \left( 1 -{\rm e} ^{-A_0/U}\right) \hspace{0.15cm}\underline {= 1.460\,{\rm V}}\hspace{0.05cm}.
- Accordingly, for the Taylor coefficient c_1:
- c_1 = y\hspace{0.06cm}'(A_0)= {\rm e} ^{-A_0/U}\hspace{0.15cm}\underline { = 0.513}\hspace{0.05cm}.
(3) The further derivatives (n ≥ 2) are:
- y^{(n)}(A_0)= \frac{(-1)^{n-1}}{U^{n-1}} \cdot {\rm e} ^{-A_0/U} \hspace{0.05cm}.
- This results in the following coefficients:
- c_2 = \frac{1}{2!} \cdot y^{(2)}(A_0)= \frac{1}{2U} \cdot {\rm e}^{-A_0/U} \hspace{0.15cm}\underline {= -0.086\,{\rm V^{-1}}}\hspace{0.05cm},
- c_3 = \frac{1}{3!} \cdot y^{(3)}(A_0)= \frac{1}{6U^2} \cdot {\rm e}^{-A_0/U}\hspace{0.15cm}\underline { = 0.0095\,{\rm V^{-2}}}\hspace{0.05cm}.
(4) Setting c_3 = 0, the output signal of the amplifier is:
- y(t) = c_0 + c_1 \cdot (z(t) + q(t)) + c_2 \cdot (z^2(t) + q^2(t) + 2 \cdot z(t) \cdot q(t))\hspace{0.05cm}.
- Thus, after the band-pass, the following signal components remain:
- s(t) = c_1 \cdot z(t) + 2 \cdot c_2 \cdot z(t) \cdot q(t) = \left[c_1 \cdot A_{\rm T} + 2 \cdot c_2 \cdot A_{\rm T} \cdot A_{\rm N} \cdot \cos(\omega_{\rm N} t)\right] \cdot \cos(\omega_{\rm T} t)\hspace{0.05cm}.
- The modulation depth is then determined as the quotient of the "amplitude of the message oscillation" over the "amplitude of the carrier":
- m = \frac{2 \cdot |c_2| \cdot A_{\rm T} \cdot A_{\rm N}}{|c_1| \cdot A_{\rm T}} = \frac{2 \cdot |c_2| \cdot A_{\rm N}}{|c_1| }= \frac{2 \cdot 0.086 \cdot 1\,{\rm V}}{0.513 }\hspace{0.15cm}\underline { = 0.335}\hspace{0.05cm}.
(5) Answers 2 and 3 are correct:
- Considering the cubic part, y(t) includes the following other components:
- y_3(t) = c_3 \cdot (z(t) + q(t))^3 = c_3 \cdot z^3(t) + 3 \cdot c_3 \cdot z^2(t) \cdot q(t)+ 3 \cdot c_3 \cdot z(t) \cdot q^2(t) + c_3 \cdot q^3(t) \hspace{0.05cm}.
- The first term results in components at f_{\rm T} and 3f_{\rm T}, and the last term results in components at f_{\rm N} and 3f_{\rm N}.
- The second term gives a component at f_{\rm N} and others at 2f_{\rm T} ± f_{\rm N}:
- 3 \cdot c_3 \cdot z^2(t) \cdot q(t)= {3}/{2 } \cdot A_{\rm T}^2 \cdot A_{\rm N} \cdot \left[ \cos(\omega_{\rm N} t) + \cos(2\omega_{\rm T} t) \cdot \cos(\omega_{\rm N} t)\right] \hspace{0.05cm}.
- Accordingly, the third summand in the above equation leads to
- 3 \cdot c_3 \cdot z(t) \cdot q^2(t)= {3}/{2 } \cdot A_{\rm T} \cdot A_{\rm N}^2 \cdot \left[ \cos(\omega_{\rm T} t) + \cos(\omega_{\rm T} t)\cdot \cos(2 \omega_{\rm N} t)\right] \hspace{0.05cm}.
- Thus, within the frequency range from \text{23 kHz} to \text{37 kHz}, there is indeed a change in the spectral line at f_{\rm T}
and new Dirac delta lines are formed at f_{\rm T} ± 2f_{\rm N}, i.e., at \text{24 kHz} and \text{36 kHz}. - The resulting distortions are thus nonlinear ⇒ Answer 3 ist correct and Answer 4 is wrong.