Difference between revisions of "Aufgaben:Exercise 3.4Z: Continuous Phase Frequency Shift Keying"

From LNTwww
 
(7 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
}}  
 
}}  
  
[[File:P_ID1231__Bei_Z_3_4.png|right|frame|Signals for  $\rm CP FSK$]]
+
[[File:P_ID1231__Bei_Z_3_4.png|right|frame|Signals for  $\text{CP-FSK}$]]
The graph shows three FSK transmit signals which differ with respect to the frequency deviation  $\Delta f_{\rm A}$  and thus also by their modulation index
+
The graph shows three frequency shift keying  $\rm (FSK)$  transmitted signals which differ with respect to the frequency deviation  $\Delta f_{\rm A}$  distinguish and thus also by their modulation index
:$$h = 2 \cdot \Delta f_{\rm A} \cdot T$$
+
:$$h = 2 \cdot \Delta f_{\rm A} \cdot T.$$
distinguish.
+
  
The digital source signal  $q(t)$ underlying the signals  $s_{\rm A}(t),  s_{\rm B}(t)$  and  $s_{\rm C}(t)$  is shown above. All considered signals are normalized to amplitude  $1$  and time duration  $T$  and are based on a cosine carrier with frequency $f_{\rm T}$.
+
The digital source signal  $q(t)$ underlying the signals  $s_{\rm A}(t),  s_{\rm B}(t)$  and  $s_{\rm C}(t)$  is shown above.  All considered signals are normalized to amplitude  $1$  and time duration  $T$  and based on a cosine carrier with frequency  $f_{\rm T}$.
  
With binary FSK (''Binary Frequency Shift Keying'') only two different frequencies occur.
+
With binary FSK  $($"Binary Frequency Shift Keying"$)$  only two different frequencies occur,  each of which remains constant over a bit duration:
 
*$f_{1}$  $($if  $a_{\nu} = +1)$,
 
*$f_{1}$  $($if  $a_{\nu} = +1)$,
*$f_{2}$  $($if  $a_{\nu} = -1)$
 
  
 +
*$f_{2}$  $($if  $a_{\nu} = -1)$.
  
each of which remains constant over a bit duration.
 
 
If the modulation index is not a multiple of  $2$, continuous phase adjustment is required to avoid phase jumps. This is called  ''Continuous Phase Frequency Shift Keying''  $ (\rm CP– FSK)$.
 
 
An important special case is represented by binary FSK with modulation index  $h = 0.5$  which is also called  ''Minimum Shift Keying''  $(\rm MSK)$. This will be discussed in this exercise. 
 
  
 +
If the modulation index is not a multiple of  $2$,  continuous phase adjustment is required to avoid phase jumps.  This is called  "Continuous Phase Frequency Shift Keying"   $(\text{CP-FSK)}$.
  
 +
An important special case is represented by binary FSK with modulation index  $h = 0.5$  which is also called  "Minimum Shift Keying"  $(\rm MSK)$.  This will be discussed in this exercise. 
  
  
  
  
 +
<u>Hints:</u>
  
 +
*This exercise belongs to the chapter&nbsp; [[Examples_of_Communication_Systems/Radio_Interface|"Radio Interface"]].
  
Hints:
+
*Reference is made in particular to the section&nbsp; [[Examples_of_Communication_Systems/Radio_Interface#Continuous_phase_adjustment_with_FSK|"Continuous phase adjustment with FSK]].
*This exercise belongs to the chapter&nbsp; [[Examples_of_Communication_Systems/Radio_Interface|"Radio Interface"]].
 
*Reference is made in particular to the page&nbsp; [[Examples_of_Communication_Systems/Radio_Interface#Continuous_phase_adjustment_with_FSK|"Continuous phase adjustment with FSK]].
 
 
   
 
   
*The interactive applet&nbsp; [[Applets:Frequency_Shift_Keying_%26_Continuous_Phase_Modulation|"Frequency Shift Keying & Continuous Phase Modulation"]]&nbsp; illustrates the topic covered here.
 
 
  
 
===Questions===
 
===Questions===
Line 39: Line 34:
 
<quiz display=simple>
 
<quiz display=simple>
  
{Welche Aussagen treffen für die FSK und speziell für die MSK zu?
+
{Which statements are true for FSK and specifically for MSK?
 
|type="[]"}
 
|type="[]"}
+ Die FSK ist im allgemeinen ein nichtlineares Modulationsverfahren.
+
+ FSK is generally a nonlinear modulation method.
+ Die MSK ist als Offset–QPSK realisierbar und damit linear.
+
+ MSK can be implemented as offset QPSK and is therefore linear.
- Es ergibt sich die gleiche Bitfehlerrate wie für die QPSK.
+
- This results in the same bit error rate as for QPSK.
+ Eine Bandbegrenzung ist weniger störend als bei QPSK
+
+ A band limitation is less disturbing than with QPSK.
+ Die MSK–Hüllkurve ist auch bei Spektralformumg konstant.
+
+ The MSK envelope is constant even with spectral shaping.
 
 
{Welche Frequenzen&nbsp; $f_{1}$&nbsp; $($für Amplitudenkoeffizient&nbsp; $a_{\nu} = +1)$&nbsp; und $f_{2}$&nbsp; $($für&nbsp; $a_{\nu} = -1)$&nbsp; beinhaltet das Signal&nbsp; $s_{\rm A}(t)$?
+
{What frequencies&nbsp; $f_{1}$&nbsp; $($for amplitude coefficient&nbsp; $a_{\nu} = +1)$&nbsp; and $f_{2}$&nbsp; $($for&nbsp; $a_{\nu} = -1)$&nbsp; does the signal&nbsp; $s_{\rm A}(t)$&nbsp; contain?
 
|type="{}"}
 
|type="{}"}
 
$f_{1} \cdot T \ = \ $ { 5 3% }
 
$f_{1} \cdot T \ = \ $ { 5 3% }
 
$f_{2} \cdot T \ = \ $ { 3 3% }
 
$f_{2} \cdot T \ = \ $ { 3 3% }
  
{Wie groß sind beim Signal&nbsp; $s_{\rm A}(t)$&nbsp; die Trägerfrequenz&nbsp; $f_{\rm T}$, der Frequenzhub&nbsp; $\Delta f_{\rm A}$&nbsp; und der Modulationsindex&nbsp; $h$?
+
{What are the carrier frequency&nbsp; $f_{\rm T}$,&nbsp; the frequency deviation&nbsp; $\Delta f_{\rm A}$&nbsp; and the modulation index&nbsp; $h$&nbsp; for signal&nbsp; $s_{\rm A}(t)$?
 
|type="{}"}
 
|type="{}"}
 
$f_{\rm T} \cdot T \ = \ $ { 4 3% }
 
$f_{\rm T} \cdot T \ = \ $ { 4 3% }
Line 58: Line 53:
 
$h \ = \ $ { 2 3% }
 
$h \ = \ $ { 2 3% }
  
{Wie groß ist der Modulationsindex beim Signal&nbsp; $s_{\rm B}(t)$?
+
{What is the modulation index for signal&nbsp; $s_{\rm B}(t)$?
 
|type="{}"}
 
|type="{}"}
 
$h \ = \ $ { 1 3% }
 
$h \ = \ $ { 1 3% }
  
{Wie groß ist der Modulationsindex beim Signal&nbsp; $s_{\rm C}(t)$?
+
{What is the modulation index for signal&nbsp; $s_{\rm C}(t)$?
 
|type="{}"}
 
|type="{}"}
 
$h \ = \ $ { 0.5 3% }
 
$h \ = \ $ { 0.5 3% }
  
{Bei welchen Signalen war eine kontinuierliche Phasenanpassung erforderlich?
+
{Which signals required continuous phase adjustment?
 
|type="[]"}
 
|type="[]"}
 
- $s_{\rm A}(t)$,
 
- $s_{\rm A}(t)$,
Line 72: Line 67:
 
+ $s_{\rm C}(t)$.
 
+ $s_{\rm C}(t)$.
  
{Welche Signale beschreiben&nbsp; ''Minimum Shift Keying''&nbsp; (MSK)?
+
{What signals describe&nbsp; "Minimum Shift Keying"&nbsp; $\rm (MSK)$?
 
|type="[]"}
 
|type="[]"}
 
- $s_{\rm A}(t)$,
 
- $s_{\rm A}(t)$,
Line 81: Line 76:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; <u>Alle Aussagen mit Ausnahme der dritten treffen zu</u>:  
+
'''(1)'''&nbsp; <u>All statements except the third are true</u>:  
*Die im allgemeinen nichtlineare FSK kann nur kohärent demoduliert werden, während bei MSK auch ein nichtkohärentes Demodulationsverfahren angewendet werden kann.  
+
*Generally nonlinear FSK can only be demodulated coherently,&nbsp; while MSK can also use a noncoherent demodulation method.
*Gegenüber der QPSK mit kohärenter Demodulation muss bei der MSK für die gleiche Bitfehlerrate ein um $3 \ \rm dB$ größeres $E_{\rm B}/N_{0}$ (Energie pro Bit bezogen auf die Rauschleistungsdichte) aufgewendet werden.
+
*Die erste Nullstelle im Leistungsdichtespektrum tritt zwar bei MSK später auf als bei der QSPK, aber es zeigt sich ein schnellerer asymptotischer Abfall als bei QSPK.
+
*Compared to QPSK with coherent demodulation,&nbsp; MSK requires&nbsp; $3 \ \rm dB$&nbsp; more&nbsp; $E_{\rm B}/N_{0}$&nbsp; $($energy per bit related to the noise power density$)$&nbsp; for the same bit error rate.
*Die konstante Hüllkurve der MSK führt dazu, dass Nichtlinearitäten in der Übertragungsstrecke keine Rolle spielen. Dies ermöglicht den Einsatz einfacher und kostengünstiger Leistungsverstärker mit geringerem Leistungsverbrauch und damit auch längere Betriebsdauern akkubetriebener Geräte.
 
  
 +
*The first zero in the power-spectral density occurs in MSK later than in QSPK,&nbsp; but it shows a faster asymptotic decay than in QSPK.
 +
 +
*The constant envelope of MSK means that nonlinearities in the transmission line do not play a role.&nbsp; This allows the use of simple and inexpensive power amplifiers with lower power consumption and thus longer operating times of battery-powered devices.
  
  
'''(2)'''&nbsp; Man erkennt aus der Grafik fünf bzw. drei Schwingungen pro Symboldauer:
+
 
 +
'''(2)'''&nbsp; One can see from the graph five and three oscillations per symbol duration,&nbsp; respectively:
 
:$$f_{\rm 1} \cdot T \hspace{0.15cm} \underline {= 5}\hspace{0.05cm},\hspace{0.2cm}f_{\rm 2} \cdot T \hspace{0.15cm} \underline { = 3}\hspace{0.05cm}.$$
 
:$$f_{\rm 1} \cdot T \hspace{0.15cm} \underline {= 5}\hspace{0.05cm},\hspace{0.2cm}f_{\rm 2} \cdot T \hspace{0.15cm} \underline { = 3}\hspace{0.05cm}.$$
  
  
'''(3)'''&nbsp; Bei FSK mit rechteckförmiger Impulsform treten nur die zwei Augenblicksfrequenzen $f_{1} = f_{\rm T} + \Delta f_{\rm A}$ und $f_{2} = f_{\rm T} \Delta f_{\rm A}$ auf.  
+
'''(3)'''&nbsp; For FSK with rectangular pulse shape,&nbsp; only the two instantaneous frequencies&nbsp; $f_{1} = f_{\rm T} + \Delta f_{\rm A}$&nbsp; and&nbsp; $f_{2} = f_{\rm T} - \Delta f_{\rm A}$&nbsp; occur.  
*Mit dem Ergebnis aus '''(2)''' erhält man somit:
+
*With the result from subtask&nbsp; '''(2)'''&nbsp; we thus obtain:
 
:$$f_{\rm T} \ = \ \frac{f_{\rm 1}+f_{\rm 2}}{2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm T} \cdot T \hspace{0.15cm} \underline {= 4}\hspace{0.05cm},$$
 
:$$f_{\rm T} \ = \ \frac{f_{\rm 1}+f_{\rm 2}}{2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm T} \cdot T \hspace{0.15cm} \underline {= 4}\hspace{0.05cm},$$
 
:$$ \Delta f_{\rm A} \ = \ \frac{f_{\rm 1}-f_{\rm 2}}{2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\Delta f_{\rm A} \cdot T \hspace{0.15cm} \underline { = 1}\hspace{0.05cm},$$  
 
:$$ \Delta f_{\rm A} \ = \ \frac{f_{\rm 1}-f_{\rm 2}}{2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\Delta f_{\rm A} \cdot T \hspace{0.15cm} \underline { = 1}\hspace{0.05cm},$$  
Line 103: Line 101:
  
  
'''(4)'''&nbsp; Aus der Grafik erkennt man die Frequenzen $f_{1} \cdot T = 4.5$ und $f_{2} \cdot T = 3.5$.  
+
'''(4)'''&nbsp; From the graph one can see the frequencies&nbsp; $f_{1} \cdot T = 4.5$&nbsp; and&nbsp; $f_{2} \cdot T = 3.5$.  
*Daraus ergibt sich der Frequenzhub $\Delta f_{\rm A} \cdot T = 0.5$ und der Modulationsindex $\underline{h = 1}$.
+
*This results in the frequency deviation&nbsp; $\Delta f_{\rm A} \cdot T = 0.5$&nbsp; and the modulation index&nbsp; $\underline{h = 1}$.
  
  
  
'''(5)'''&nbsp; Hier treten die beiden (normierten) Frequenzen $f_{1} \cdot T = 4.25$ und $f_{2} \cdot T = 3.75$ auf,  
+
'''(5)'''&nbsp; Here the two&nbsp; $($normalized$)$&nbsp; frequencies&nbsp; $f_{1} \cdot T = 4.25$&nbsp; and&nbsp; $f_{2} \cdot T = 3.75$&nbsp; occur,  
*womit sich der Frequenzhub $\Delta f_{\rm A} \cdot T = 0.25$ und der Modulationsindex $\underline{h = 0.5}$ berechnen lassen.
+
*which results in the frequency deviation&nbsp; $\Delta f_{\rm A} \cdot T = 0.25$&nbsp; and the modulation index&nbsp; $\underline{h = 0.5}$.
  
  
  
'''(6)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2 und 3</u>:
+
'''(6)'''&nbsp; Correct are the&nbsp; <u>solutions 2 and 3</u>:
*Lediglich bei $s_{\rm A}(t)$ wurde keine Phasenanpassung vorgenommen.  
+
*Only at&nbsp; $s_{\rm A}(t)$&nbsp; was no phase adjustment made.&nbsp; Here,&nbsp; the signal waveforms in the region of the first and second bit&nbsp; $(a_{1} = a_{2} = +1)$&nbsp; are each cosinusoidal like the carrier signal&nbsp; $($with respect to the symbol boundary$)$.
*Hier sind die Signalverläufe im Bereich des ersten und zweiten Bit ($a_{1} = a_{2} = +1$) jeweils cosinusförmig wie das Trägersignal (bezogen auf die Symbolgrenze).  
+
*Dagegen ist im zweiten Symbol von $s_{\rm B}(t)$ ein minus–cosinusförmiger Verlauf (Anfangsphase $\phi_{0} = π$ entsprechend $180^\circ$) zu erkennen und im zweiten Symbol von $s_{\rm C}(t)$ ein minus–sinusförmiger Verlauf ($\phi_{0} = π /2$ bzw. $90^\circ$).  
+
*In contrast,&nbsp; in the second symbol of&nbsp; $s_{\rm B}(t)$&nbsp; a minus-cosine-shaped course&nbsp; $($initial phase&nbsp; $\phi_{0} = π$,&nbsp; corresponding to&nbsp; $180^\circ)$&nbsp; can be seen and in the second symbol of&nbsp; $s_{\rm C}(t)$&nbsp; a minus-sine-shaped course&nbsp; $(\phi_{0} = π /2$&nbsp; or&nbsp; $90^\circ)$.
*Bei $s_{\rm A}(t)$ ist die Anfangsphase stets $0$, bei $s_{\rm B}(t)$ entweder $0$ oder $π$, während beim Signal $s_{\rm C}(t)$ mit Modulationsindex $h = 0.5$ insgesamt vier Anfangsphasen möglich sind: $0^\circ, \ 90^\circ, \ 180^\circ$ und $270^\circ$.
+
 +
*For $s_{\rm A}(t)$&nbsp; the initial phase is always zero,&nbsp; for&nbsp; $s_{\rm B}(t)$&nbsp; either zero or&nbsp; $π$,&nbsp; while for the signal $s_{\rm C}(t)$&nbsp; with modulation index&nbsp; $h = 0.5$&nbsp; a total of four initial phases are possible:&nbsp; $0^\circ, \ 90^\circ, \ 180^\circ$&nbsp; and&nbsp; $270^\circ$.
  
  
  
'''(7)'''&nbsp; Richtig ist der <u>letzte Lösungsvorschlag</u>, da für dieses Signal $h = 0.5$ gilt.  
+
'''(7)'''&nbsp; Correct is the&nbsp; <u>last proposed solution</u>,&nbsp; since for this signal &nbsp; &rArr; &nbsp; $h = 0.5$.  
*Dies ist der kleinstmögliche Modulationsindex, für den Orthogonalität zwischen $f_{1}$ und $f_{2}$ innerhalb der Symboldauer $T$ besteht.
+
*This is the smallest possible modulation index for which there is orthogonality between&nbsp; $f_{1}$&nbsp; and&nbsp; $f_{2}$&nbsp; within the symbol duration&nbsp; $T$.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Latest revision as of 15:21, 22 January 2023

Signals for  $\text{CP-FSK}$

The graph shows three frequency shift keying  $\rm (FSK)$  transmitted signals which differ with respect to the frequency deviation  $\Delta f_{\rm A}$  distinguish and thus also by their modulation index

$$h = 2 \cdot \Delta f_{\rm A} \cdot T.$$


The digital source signal  $q(t)$ underlying the signals  $s_{\rm A}(t),  s_{\rm B}(t)$  and  $s_{\rm C}(t)$  is shown above.  All considered signals are normalized to amplitude  $1$  and time duration  $T$  and based on a cosine carrier with frequency  $f_{\rm T}$.

With binary FSK  $($"Binary Frequency Shift Keying"$)$  only two different frequencies occur,  each of which remains constant over a bit duration:

  • $f_{1}$  $($if  $a_{\nu} = +1)$,
  • $f_{2}$  $($if  $a_{\nu} = -1)$.


If the modulation index is not a multiple of  $2$,  continuous phase adjustment is required to avoid phase jumps.  This is called  "Continuous Phase Frequency Shift Keying"   $(\text{CP-FSK)}$.

An important special case is represented by binary FSK with modulation index  $h = 0.5$  which is also called  "Minimum Shift Keying"  $(\rm MSK)$.  This will be discussed in this exercise.



Hints:


Questions

1

Which statements are true for FSK and specifically for MSK?

FSK is generally a nonlinear modulation method.
MSK can be implemented as offset QPSK and is therefore linear.
This results in the same bit error rate as for QPSK.
A band limitation is less disturbing than with QPSK.
The MSK envelope is constant even with spectral shaping.

2

What frequencies  $f_{1}$  $($for amplitude coefficient  $a_{\nu} = +1)$  and $f_{2}$  $($for  $a_{\nu} = -1)$  does the signal  $s_{\rm A}(t)$  contain?

$f_{1} \cdot T \ = \ $

$f_{2} \cdot T \ = \ $

3

What are the carrier frequency  $f_{\rm T}$,  the frequency deviation  $\Delta f_{\rm A}$  and the modulation index  $h$  for signal  $s_{\rm A}(t)$?

$f_{\rm T} \cdot T \ = \ $

$\Delta f_{\rm A} \cdot T \ = \ $

$h \ = \ $

4

What is the modulation index for signal  $s_{\rm B}(t)$?

$h \ = \ $

5

What is the modulation index for signal  $s_{\rm C}(t)$?

$h \ = \ $

6

Which signals required continuous phase adjustment?

$s_{\rm A}(t)$,
$s_{\rm B}(t)$,
$s_{\rm C}(t)$.

7

What signals describe  "Minimum Shift Keying"  $\rm (MSK)$?

$s_{\rm A}(t)$,
$s_{\rm B}(t)$,
$s_{\rm C}(t)$.


Solution

(1)  All statements except the third are true:

  • Generally nonlinear FSK can only be demodulated coherently,  while MSK can also use a noncoherent demodulation method.
  • Compared to QPSK with coherent demodulation,  MSK requires  $3 \ \rm dB$  more  $E_{\rm B}/N_{0}$  $($energy per bit related to the noise power density$)$  for the same bit error rate.
  • The first zero in the power-spectral density occurs in MSK later than in QSPK,  but it shows a faster asymptotic decay than in QSPK.
  • The constant envelope of MSK means that nonlinearities in the transmission line do not play a role.  This allows the use of simple and inexpensive power amplifiers with lower power consumption and thus longer operating times of battery-powered devices.


(2)  One can see from the graph five and three oscillations per symbol duration,  respectively:

$$f_{\rm 1} \cdot T \hspace{0.15cm} \underline {= 5}\hspace{0.05cm},\hspace{0.2cm}f_{\rm 2} \cdot T \hspace{0.15cm} \underline { = 3}\hspace{0.05cm}.$$


(3)  For FSK with rectangular pulse shape,  only the two instantaneous frequencies  $f_{1} = f_{\rm T} + \Delta f_{\rm A}$  and  $f_{2} = f_{\rm T} - \Delta f_{\rm A}$  occur.

  • With the result from subtask  (2)  we thus obtain:
$$f_{\rm T} \ = \ \frac{f_{\rm 1}+f_{\rm 2}}{2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}f_{\rm T} \cdot T \hspace{0.15cm} \underline {= 4}\hspace{0.05cm},$$
$$ \Delta f_{\rm A} \ = \ \frac{f_{\rm 1}-f_{\rm 2}}{2}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\Delta f_{\rm A} \cdot T \hspace{0.15cm} \underline { = 1}\hspace{0.05cm},$$
$$h \ = \ 2 \cdot \Delta f_{\rm A} \cdot T \hspace{0.15cm} \underline {= 2} \hspace{0.05cm}.$$


(4)  From the graph one can see the frequencies  $f_{1} \cdot T = 4.5$  and  $f_{2} \cdot T = 3.5$.

  • This results in the frequency deviation  $\Delta f_{\rm A} \cdot T = 0.5$  and the modulation index  $\underline{h = 1}$.


(5)  Here the two  $($normalized$)$  frequencies  $f_{1} \cdot T = 4.25$  and  $f_{2} \cdot T = 3.75$  occur,

  • which results in the frequency deviation  $\Delta f_{\rm A} \cdot T = 0.25$  and the modulation index  $\underline{h = 0.5}$.


(6)  Correct are the  solutions 2 and 3:

  • Only at  $s_{\rm A}(t)$  was no phase adjustment made.  Here,  the signal waveforms in the region of the first and second bit  $(a_{1} = a_{2} = +1)$  are each cosinusoidal like the carrier signal  $($with respect to the symbol boundary$)$.
  • In contrast,  in the second symbol of  $s_{\rm B}(t)$  a minus-cosine-shaped course  $($initial phase  $\phi_{0} = π$,  corresponding to  $180^\circ)$  can be seen and in the second symbol of  $s_{\rm C}(t)$  a minus-sine-shaped course  $(\phi_{0} = π /2$  or  $90^\circ)$.
  • For $s_{\rm A}(t)$  the initial phase is always zero,  for  $s_{\rm B}(t)$  either zero or  $π$,  while for the signal $s_{\rm C}(t)$  with modulation index  $h = 0.5$  a total of four initial phases are possible:  $0^\circ, \ 90^\circ, \ 180^\circ$  and  $270^\circ$.


(7)  Correct is the  last proposed solution,  since for this signal   ⇒   $h = 0.5$.

  • This is the smallest possible modulation index for which there is orthogonality between  $f_{1}$  and  $f_{2}$  within the symbol duration  $T$.