Difference between revisions of "Aufgaben:Exercise 3.6: Adaptive Multi Rate Codec"

From LNTwww
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/Sprachcodierung }} [[File:|right|frame|]] ===Fragebogen=== <quiz display=simple> {Multiple-Cho…“)
 
 
(28 intermediate revisions by 6 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/Sprachcodierung
+
{{quiz-Header|Buchseite=Examples_of_Communication_Systems/Voice_Coding
 
}}  
 
}}  
  
[[File:|right|frame|]]
+
[[File:En_Bei_A_3_6.png|right|frame|Tracks of the AMR codec]]
 +
In the late 1990s,&nbsp; a very flexible,&nbsp; adaptive speech codec was developed and standardized in the form of&nbsp; $\rm AMR$&nbsp; codec.&nbsp; This provides a total of eight different modes with data rates between&nbsp; $4.75 \ \rm kbit/s$&nbsp; and&nbsp; $12.2 \ \rm kbit/s$.
  
 +
The AMR codec,&nbsp; like the full rate codec&nbsp; $\rm (FRC)$&nbsp; discussed in&nbsp; [[Aufgaben:Exercise_3.5:_GSM_Full_Rate_Vocoder|$\text{Exercise 3.5}$]],&nbsp; includes both a short-term prediction&nbsp; $\rm (LPC)$&nbsp; and a long-term prediction&nbsp; $\rm (LTP)$.&nbsp; However,&nbsp; these two components are realized differently from FRC.
  
===Fragebogen===
+
The main difference between AMR and FRC is the encoding of the residual signal&nbsp; $($after LPC and LTP$)$:
 +
#Instead of&nbsp; "Regular Pulse Excitation"&nbsp; $\rm (RPE)$,&nbsp; here the&nbsp; "Algebraic Code Excitation Linear Prediction"&nbsp; $\rm (ACELP)$&nbsp; is used.
 +
#From the fixed code book&nbsp; $\rm (FCB)$,&nbsp; for each subframe of&nbsp; $5 \ \rm ms$&nbsp; duration,&nbsp; the&nbsp; "FCB pulse"&nbsp; and the&nbsp; "FCB gain"&nbsp; that best match the residual signal&nbsp; $($for which the mean square error of the difference signal becomes minimum$)$&nbsp; is selected.
 +
 
 +
 
 +
Each entry in the fixed code book identifies a pulse where exactly&nbsp; $10$&nbsp; of&nbsp; $40$&nbsp; positions are occupied by&nbsp; $\pm1$.&nbsp;
 +
 
 +
In this regard it should be noted:
 +
*The pulse is divided into five tracks with eight possible positions each, where track&nbsp; $1$&nbsp; contains the positions&nbsp; $1,\ 6,\ 11$, ... , $36$&nbsp; of the subframe and track&nbsp; $5$&nbsp;  describes the positions&nbsp; $5,\ 10,\ 15$, ... , $40$.
 +
 
 +
*In each track there are exactly two values&nbsp; $\pm1$,&nbsp; while all the other six values are&nbsp; zero.&nbsp;
 +
 
 +
*The two&nbsp; $±1$-positions are each assigned three bits &ndash; &nbsp; i.e. encoded with&nbsp; "$000$", ... ,&nbsp; "$111$".
 +
 
 +
*Another bit is used for the&nbsp; "sign of the first-mentioned pulse",&nbsp; where a&nbsp; "$1$"&nbsp; indicates a positive sign and a&nbsp; "$0$"&nbsp; a negative sign.
 +
 
 +
*If the pulse position of the second pulse is greater than that of the first pulse,&nbsp; the second pulse has the same sign as the first,&nbsp; otherwise the opposite.
 +
 
 +
*Thus,&nbsp; seven bits per track are transmitted to the receiver,&nbsp; plus five bits for the so-called&nbsp; "FCB amplification''.
 +
 
 +
 
 +
In the diagram,&nbsp; the&nbsp; $35$&nbsp; bits describing an FCB pulse are given as an example:
 +
 +
&rArr; &nbsp; '''Track 1'''&nbsp; includes
 +
#a positive pulse&nbsp; $({\rm sign} = 1)$&nbsp; at position&nbsp; $\big [1$&nbsp; (first possible position for track 1)&nbsp; $\hspace{0.02cm}\text{plus}\hspace{0.2cm}0$&nbsp; (bit specification for&nbsp; "000") $= 1\big]$,
 +
#another positive pulse&nbsp; $($since $110 > 000)$&nbsp; at position&nbsp; $\big [1 \hspace{0.2cm}\text{plus}\hspace{0.2cm}5$ (pulse spacing in each track) $\hspace{0.02cm}\text{times}\hspace{0.2cm}6$&nbsp; (bit specification for " 110") = $31\hspace{0.05cm}\big].$
 +
 
 +
 
 +
'''Track 2''' includes.
 +
#a negative pulse (${\rm sign} = 0$)&nbsp; at position&nbsp; $\big [2$ (first possible position for track 2)&nbsp; $\hspace{0.02cm}\text{plus}\hspace{0.2cm}5\hspace{0.2cm}\text{times}\hspace{0.2cm}4$&nbsp; (bit specification for&nbsp; " 100")&nbsp;  $=22\hspace{0.05cm}\big],$
 +
#a positive pulse&nbsp; $($sign reversal due to&nbsp; $011 > 100)$&nbsp; at position&nbsp; $\big [2 \hspace{0.2cm}\text{plus}\hspace{0.2cm}5\hspace{0.2cm}\text{times}\hspace{0.2cm}3$&nbsp; (bit specification for&nbsp; " 011")&nbsp;  $=17\hspace{0.05cm}\big].$
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<u>Hint:</u>
 +
 
 +
*This exercise belongs to the chapter&nbsp; [[Examples_of_Communication_Systems/Voice_Coding|"Speech Coding"]].
 +
 +
*When entering the pulse positions&nbsp; $N_{1}$&nbsp; denotes the first triple of bits and&nbsp; $N_{2}$&nbsp; the second.
 +
 
 +
*For example,&nbsp; for track&nbsp; $2$&nbsp; one would have to enter the values&nbsp; $N_{1}=-22$&nbsp; and&nbsp; $N_{2}=+17$. 
 +
 
 +
 
 +
 
 +
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
 
|type="[]"}
 
- Falsch
 
+ Richtig
 
  
 +
{How many bits describe a speech frame $($of duration&nbsp; $20 \ \rm ms)$&nbsp; in&nbsp; $12.2 \ \rm kbit/s$ mode?
 +
|type="{}"}
 +
$N_{12.2} \ = \ $ { 244 3% } $ \ \rm bits$
  
{Input-Box Frage
+
{How many bits are needed for FCB pulse and gain per frame?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$N_{\rm FCB} \ = \ $ { 160 3% } $ \ \rm bits$
  
 +
{ How many bits are left for LPC and LTP?
 +
|type="{}"}
 +
$N_{\rm LPC/LTP} \ = \ $ { 84 3% } $ \ \rm bits$
  
 +
{What subframe pulse positions and signs does track&nbsp; $3$&nbsp; describe?&nbsp; Follow the instructions for input on the information page.
 +
|type="{}"}
 +
$N_{1} \ = \ $ { -8.24--7.76 }
 +
$N_{2} \ = \ $ { -18.54--17.46 }
  
 +
{What pulse positions including sign describe the track&nbsp; $4$?
 +
|type="{}"}
 +
$N_{1} \ = \ $ { 39 3% }
 +
$N_{2} \ = \ $ { -14.42--13.58 }
 +
 +
{What pulse positions including sign describe the track&nbsp; $5$?
 +
|type="{}"}
 +
$N_{1} \ = \ $ { -30.9--29.1 }
 +
$N_{2} \ = \ $ { 5 3% }
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  
+
 
'''(2)'''&nbsp;  
+
'''(1)'''&nbsp; With the data rate&nbsp; $R_{\rm C} = 12.2 \ \rm kbit/s$,&nbsp; exactly&nbsp; $\underline{244 \ \rm bits}$&nbsp; results within&nbsp; $20 \ \rm ms$,&nbsp; while e.g. in&nbsp; $4.75 \ \rm kbit/s$&nbsp; mode only&nbsp; $95 \ \rm bits$&nbsp; are transmitted.
'''(3)'''&nbsp;  
+
 
'''(4)'''&nbsp;  
+
 
'''(5)'''&nbsp;  
+
'''(2)'''&nbsp; In each subframe,&nbsp; the FCB pulse requires&nbsp; $35 \ \rm bits$&nbsp; (five tracks of seven bits each)&nbsp; and the FCB gain requires five bits.
'''(6)'''&nbsp;  
+
 
'''(7)'''&nbsp;  
+
*With four subframes,&nbsp; this gives $N_{\rm FCB} \hspace{0.15cm}\underline{= 160 \ \rm bits}$.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; This leaves the difference from&nbsp; '''(1)'''&nbsp; and&nbsp; '''(2)''',&nbsp; i.e. $N_{\rm LPC/LTP}\hspace{0.15cm} \underline{ = 84\  \rm bits}$.
 +
 
 +
 
 +
'''(4)'''&nbsp; The sign bit&nbsp; "$0$"&nbsp; indicates a negative first pulse.
 +
*Because&nbsp; $001 < 011$,&nbsp; the second pulse has the same sign.
 +
 +
*The two magnitudes result in
 +
:$$|N_1| \ = \ 3 \hspace{0.1cm}{\rm(since \hspace{0.1cm} track \hspace{0.1cm}3)} + 5\cdot 1 \hspace{0.1cm} {\rm(bit\:specification \hspace{0.1cm} 001)} = 8\hspace{0.05cm}, $$
 +
:$$ |N_2| \ = \ 3 \hspace{0.1cm}{\rm(since \hspace{0.1cm} track \hspace{0.1cm}3)} + 5\cdot 3 \hspace{0.1cm} {\rm(bit\:specification \hspace{0.1cm} 011)} = 18\hspace{0.05cm}.$$
 +
*Therefore,&nbsp; to be entered for the third track is&nbsp; $N_{1}\hspace{0.15cm} \underline{ = -8}$&nbsp; and&nbsp; $N_{2} \hspace{0.15cm}\underline{ = -18}.$
 +
 
 +
 
 +
'''(5)'''&nbsp; In an analogous way,&nbsp; for track&nbsp; $4$&nbsp; we obtain the values&nbsp; $N_{1}\hspace{0.15cm} \underline{ = +39}$&nbsp; and&nbsp; $N_{2}\hspace{0.15cm} \underline{ = -14}$.
 +
 
 +
 
 +
'''(6)'''&nbsp; The fifth track provides&nbsp; $N_{1}\hspace{0.15cm} \underline{ =-30}$&nbsp; and&nbsp; $N_{2}\hspace{0.15cm} \underline{ = +5}$
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Beispiele von Nachrichtensystemen|^3.3 Sprachcodierung^]]
+
[[Category:Examples of Communication Systems: Exercises|^3.3 Speech Coding^]]

Latest revision as of 13:58, 25 January 2023

Tracks of the AMR codec

In the late 1990s,  a very flexible,  adaptive speech codec was developed and standardized in the form of  $\rm AMR$  codec.  This provides a total of eight different modes with data rates between  $4.75 \ \rm kbit/s$  and  $12.2 \ \rm kbit/s$.

The AMR codec,  like the full rate codec  $\rm (FRC)$  discussed in  $\text{Exercise 3.5}$,  includes both a short-term prediction  $\rm (LPC)$  and a long-term prediction  $\rm (LTP)$.  However,  these two components are realized differently from FRC.

The main difference between AMR and FRC is the encoding of the residual signal  $($after LPC and LTP$)$:

  1. Instead of  "Regular Pulse Excitation"  $\rm (RPE)$,  here the  "Algebraic Code Excitation Linear Prediction"  $\rm (ACELP)$  is used.
  2. From the fixed code book  $\rm (FCB)$,  for each subframe of  $5 \ \rm ms$  duration,  the  "FCB pulse"  and the  "FCB gain"  that best match the residual signal  $($for which the mean square error of the difference signal becomes minimum$)$  is selected.


Each entry in the fixed code book identifies a pulse where exactly  $10$  of  $40$  positions are occupied by  $\pm1$. 

In this regard it should be noted:

  • The pulse is divided into five tracks with eight possible positions each, where track  $1$  contains the positions  $1,\ 6,\ 11$, ... , $36$  of the subframe and track  $5$  describes the positions  $5,\ 10,\ 15$, ... , $40$.
  • In each track there are exactly two values  $\pm1$,  while all the other six values are  zero. 
  • The two  $±1$-positions are each assigned three bits –   i.e. encoded with  "$000$", ... ,  "$111$".
  • Another bit is used for the  "sign of the first-mentioned pulse",  where a  "$1$"  indicates a positive sign and a  "$0$"  a negative sign.
  • If the pulse position of the second pulse is greater than that of the first pulse,  the second pulse has the same sign as the first,  otherwise the opposite.
  • Thus,  seven bits per track are transmitted to the receiver,  plus five bits for the so-called  "FCB amplification.


In the diagram,  the  $35$  bits describing an FCB pulse are given as an example:

⇒   Track 1  includes

  1. a positive pulse  $({\rm sign} = 1)$  at position  $\big [1$  (first possible position for track 1)  $\hspace{0.02cm}\text{plus}\hspace{0.2cm}0$  (bit specification for  "000") $= 1\big]$,
  2. another positive pulse  $($since $110 > 000)$  at position  $\big [1 \hspace{0.2cm}\text{plus}\hspace{0.2cm}5$ (pulse spacing in each track) $\hspace{0.02cm}\text{times}\hspace{0.2cm}6$  (bit specification for " 110") = $31\hspace{0.05cm}\big].$


Track 2 includes.

  1. a negative pulse (${\rm sign} = 0$)  at position  $\big [2$ (first possible position for track 2)  $\hspace{0.02cm}\text{plus}\hspace{0.2cm}5\hspace{0.2cm}\text{times}\hspace{0.2cm}4$  (bit specification for  " 100")  $=22\hspace{0.05cm}\big],$
  2. a positive pulse  $($sign reversal due to  $011 > 100)$  at position  $\big [2 \hspace{0.2cm}\text{plus}\hspace{0.2cm}5\hspace{0.2cm}\text{times}\hspace{0.2cm}3$  (bit specification for  " 011")  $=17\hspace{0.05cm}\big].$




Hint:

  • When entering the pulse positions  $N_{1}$  denotes the first triple of bits and  $N_{2}$  the second.
  • For example,  for track  $2$  one would have to enter the values  $N_{1}=-22$  and  $N_{2}=+17$.


Questions

1

How many bits describe a speech frame $($of duration  $20 \ \rm ms)$  in  $12.2 \ \rm kbit/s$ mode?

$N_{12.2} \ = \ $

$ \ \rm bits$

2

How many bits are needed for FCB pulse and gain per frame?

$N_{\rm FCB} \ = \ $

$ \ \rm bits$

3

How many bits are left for LPC and LTP?

$N_{\rm LPC/LTP} \ = \ $

$ \ \rm bits$

4

What subframe pulse positions and signs does track  $3$  describe?  Follow the instructions for input on the information page.

$N_{1} \ = \ $

$N_{2} \ = \ $

5

What pulse positions including sign describe the track  $4$?

$N_{1} \ = \ $

$N_{2} \ = \ $

6

What pulse positions including sign describe the track  $5$?

$N_{1} \ = \ $

$N_{2} \ = \ $


Solution

(1)  With the data rate  $R_{\rm C} = 12.2 \ \rm kbit/s$,  exactly  $\underline{244 \ \rm bits}$  results within  $20 \ \rm ms$,  while e.g. in  $4.75 \ \rm kbit/s$  mode only  $95 \ \rm bits$  are transmitted.


(2)  In each subframe,  the FCB pulse requires  $35 \ \rm bits$  (five tracks of seven bits each)  and the FCB gain requires five bits.

  • With four subframes,  this gives $N_{\rm FCB} \hspace{0.15cm}\underline{= 160 \ \rm bits}$.


(3)  This leaves the difference from  (1)  and  (2),  i.e. $N_{\rm LPC/LTP}\hspace{0.15cm} \underline{ = 84\ \rm bits}$.


(4)  The sign bit  "$0$"  indicates a negative first pulse.

  • Because  $001 < 011$,  the second pulse has the same sign.
  • The two magnitudes result in
$$|N_1| \ = \ 3 \hspace{0.1cm}{\rm(since \hspace{0.1cm} track \hspace{0.1cm}3)} + 5\cdot 1 \hspace{0.1cm} {\rm(bit\:specification \hspace{0.1cm} 001)} = 8\hspace{0.05cm}, $$
$$ |N_2| \ = \ 3 \hspace{0.1cm}{\rm(since \hspace{0.1cm} track \hspace{0.1cm}3)} + 5\cdot 3 \hspace{0.1cm} {\rm(bit\:specification \hspace{0.1cm} 011)} = 18\hspace{0.05cm}.$$
  • Therefore,  to be entered for the third track is  $N_{1}\hspace{0.15cm} \underline{ = -8}$  and  $N_{2} \hspace{0.15cm}\underline{ = -18}.$


(5)  In an analogous way,  for track  $4$  we obtain the values  $N_{1}\hspace{0.15cm} \underline{ = +39}$  and  $N_{2}\hspace{0.15cm} \underline{ = -14}$.


(6)  The fifth track provides  $N_{1}\hspace{0.15cm} \underline{ =-30}$  and  $N_{2}\hspace{0.15cm} \underline{ = +5}$