Difference between revisions of "Mobile Communications/Multi-Path Reception in Mobile Communications"

From LNTwww
 
(12 intermediate revisions by 2 users not shown)
Line 9: Line 9:
 
We assume the scenario shown in the graph.  This assumes
 
We assume the scenario shown in the graph.  This assumes
 
[[File:EN_Mob_T_2_2_S1.png|right|frame|Time–invariant consideration of the two-way channel|class=fit]]
 
[[File:EN_Mob_T_2_2_S1.png|right|frame|Time–invariant consideration of the two-way channel|class=fit]]
*Transmitter and receiver are&nbsp; '''at rest''':&nbsp; <br>Then both the channel transfer function and the impulse response are time&ndash;independent.&nbsp; For all times&nbsp; $t$&nbsp; applies&nbsp; $H(f, \hspace{0.05cm}t) = H(f)$&nbsp; and&nbsp; $h(\tau, \hspace{0.05cm}t) = h(\tau)$.<br>
+
*Transmitter and receiver are&nbsp; &raquo;'''at rest'''&laquo;:&nbsp; <br>Then both the channel transfer function and the impulse response are time&ndash;independent.&nbsp; For all times&nbsp; $t$&nbsp; applies&nbsp; $H(f, \hspace{0.05cm}t) = H(f)$&nbsp; and&nbsp; $h(\tau, \hspace{0.05cm}t) = h(\tau)$.<br>
  
*A&nbsp; '''two-way channel''': &nbsp; <br>The transmission signal&nbsp; $s(t)$&nbsp; reaches the receiver on a direct path with the path length&nbsp; $d_1$,&nbsp; and there is also an echo due to the reflective ground&nbsp; $($the total path length is&nbsp; $d_2)$.
+
*A&nbsp; &raquo;'''two-way channel'''&laquo;: &nbsp; <br>The transmitted signal&nbsp; $s(t)$&nbsp; reaches the receiver on a direct path with the path length&nbsp; $d_1$,&nbsp; and there is also an echo due to the reflective ground&nbsp; $($the total path length is&nbsp; $d_2)$.
  
  
Line 20: Line 20:
 
<br clear=all>
 
<br clear=all>
 
The following statements should be noted:
 
The following statements should be noted:
*Compared to the transmission signal, the signal&nbsp; $r_1(t)$&nbsp; received via the direct path is attenuated by the factor&nbsp; $k_1$&nbsp; and delayed by &nbsp; $\tau_1$&nbsp;.
+
*Compared to the transmitted signal, the signal&nbsp; $r_1(t)$&nbsp; received via the direct path is attenuated by the factor&nbsp; $k_1$&nbsp; and delayed by &nbsp; $\tau_1$&nbsp;.
  
*The attenuation factor&nbsp; $k_1$&nbsp; is calculated with the&nbsp; [[Mobile_Communications/Distance dependent attenuation and shading#Common path loss model|path loss model]].&nbsp; The greater the transmission frequency&nbsp; $f_{\rm S}$,&nbsp; the distance&nbsp; $d_1$&nbsp; and the exponent&nbsp; $\gamma$&nbsp; are, the smaller is &nbsp; $k_1$&nbsp; and thus the greater is the loss.
+
*The attenuation factor&nbsp; $k_1$&nbsp; is calculated with the&nbsp; [[Mobile_Communications/Distance dependent attenuation and shading#Common path loss model|$\text{path loss model}$]].&nbsp; The greater the transmission frequency&nbsp; $f_{\rm S}$,&nbsp; the distance&nbsp; $d_1$&nbsp; and the exponent&nbsp; $\gamma$&nbsp; are, the smaller is &nbsp; $k_1$&nbsp; and thus the greater is the loss.
  
 
*The delay&nbsp; $\tau_1 = d_1/c$&nbsp; increases proportionally with the path length&nbsp; $d_1$&nbsp;. &nbsp; For example, for the distance&nbsp; $d_1 = 3 \ \rm km$&nbsp; and the speed of light&nbsp; $c = 3 \cdot 10^8 \ \rm m/s$&nbsp; the delay will be&nbsp; $\tau_1 = 10 \ \rm &micro; s$.<br>
 
*The delay&nbsp; $\tau_1 = d_1/c$&nbsp; increases proportionally with the path length&nbsp; $d_1$&nbsp;. &nbsp; For example, for the distance&nbsp; $d_1 = 3 \ \rm km$&nbsp; and the speed of light&nbsp; $c = 3 \cdot 10^8 \ \rm m/s$&nbsp; the delay will be&nbsp; $\tau_1 = 10 \ \rm &micro; s$.<br>
Line 30: Line 30:
 
*In addition, it must be taken into account that the reflection from buildings or the ground leads to a phase rotation of&nbsp; $\pi \ (180^\circ)$.&nbsp; This causes the factor&nbsp; $k_2$&nbsp; to become negative.&nbsp; In the following, however, the negative sign of&nbsp; $k_2$&nbsp; is ignored.<br><br>
 
*In addition, it must be taken into account that the reflection from buildings or the ground leads to a phase rotation of&nbsp; $\pi \ (180^\circ)$.&nbsp; This causes the factor&nbsp; $k_2$&nbsp; to become negative.&nbsp; In the following, however, the negative sign of&nbsp; $k_2$&nbsp; is ignored.<br><br>
  
<i>Note:</i> &nbsp; We refer here to the SWF applet&nbsp; [[Applets:Multipath propagation and frequency selectivity (Applet)|Multipath propagation and frequency selectivity]]&nbsp; '''(German language!)'''.
+
<i>Note:</i> &nbsp; We refer here to the SWF applet&nbsp; [[Applets:Multipath propagation and frequency selectivity (Applet)|"Multipath propagation and frequency selectivity"]]&nbsp; '''(German language!)'''.
  
  
Line 53: Line 53:
 
::<math>r(t) = s(t) + k_0 \cdot s( t - \tau_0) \hspace{0.05cm}.</math>
 
::<math>r(t) = s(t) + k_0 \cdot s( t - \tau_0) \hspace{0.05cm}.</math>
  
From this simplified model&nbsp; (without the grey-shaded block)&nbsp; important descriptive variables can be easily calculated:
+
From this simplified model&nbsp; (without the gray-shaded block)&nbsp; important descriptive variables can be easily calculated:
*If you use the&nbsp;  [[Signal_Representation/Fourier_Transform_Theorems#Shifting_Theorem| Shifting Theorem]]&nbsp; you get the transfer function
+
*If you use the&nbsp;  [[Signal_Representation/Fourier_Transform_Theorems#Shifting_Theorem| $\text{Shifting Theorem}$]]&nbsp; you get the transfer function
  
 
::<math>H(f) = {R(f)}/{S(f)} = 1 + k_0 \cdot {\rm e}^{  - {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi f \hspace{0.05cm} \cdot \hspace{0.05cm} \tau_0} \hspace{0.05cm}.</math>
 
::<math>H(f) = {R(f)}/{S(f)} = 1 + k_0 \cdot {\rm e}^{  - {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi f \hspace{0.05cm} \cdot \hspace{0.05cm} \tau_0} \hspace{0.05cm}.</math>
  
*Through the&nbsp; [[Signal_Representation/Fourier_Transform_and_Its_Inverse#The_Second_Fourier_Integral|inverse Fourier transform]]&nbsp; one obtains the impulse response
+
*Through the&nbsp; [[Signal_Representation/Fourier_Transform_and_its_Inverse#The_second_Fourier_integral|$\text{inverse Fourier transform}$]]&nbsp; one obtains the impulse response
  
 
::<math>h(\tau) =  1 + k_0 \cdot \delta(\tau - \tau_0) \hspace{0.05cm}.</math>
 
::<math>h(\tau) =  1 + k_0 \cdot \delta(\tau - \tau_0) \hspace{0.05cm}.</math>
Line 70: Line 70:
 
*The transfer function&nbsp; $H(f)$&nbsp; and also its absolute value is periodic with&nbsp; $1/\tau_0 = 500 \ \rm kHz$.
 
*The transfer function&nbsp; $H(f)$&nbsp; and also its absolute value is periodic with&nbsp; $1/\tau_0 = 500 \ \rm kHz$.
 
   
 
   
*This frequency period here is also the&nbsp; [[Mobile_Communications/The GWSSUS channel model#Parameters of the GWSSUS model|coherence bandwidth]] .<br>
+
*This frequency period here is also the&nbsp; [[Mobile_Communications/The GWSSUS channel model#Parameters of the GWSSUS model|$\text{coherence bandwidth}$]] .<br>
  
 
*The fluctuations around the mean value&nbsp; $\vert H(f) \vert = 1$&nbsp; are the stronger, the larger the&nbsp; (relative)&nbsp; contribution&nbsp; $k_0$&nbsp; of the second path is&nbsp; (i.e. the echo).}}<br>
 
*The fluctuations around the mean value&nbsp; $\vert H(f) \vert = 1$&nbsp; are the stronger, the larger the&nbsp; (relative)&nbsp; contribution&nbsp; $k_0$&nbsp; of the second path is&nbsp; (i.e. the echo).}}<br>
Line 87: Line 87:
  
 
We now compare  
 
We now compare  
*the <i>two-way channel</i>&nbsp; $(M = 2)$&nbsp; with the parameters
+
*the&nbsp; "two-way channel"&nbsp; $(M = 2)$&nbsp; with the parameters
  
 
::<math>\tau_1 = 1\,\,{\rm &micro; s}\hspace{0.05cm}, \hspace{0.2cm} k_1 = 0.8\hspace{0.05cm}, \hspace{0.2cm}
 
::<math>\tau_1 = 1\,\,{\rm &micro; s}\hspace{0.05cm}, \hspace{0.2cm} k_1 = 0.8\hspace{0.05cm}, \hspace{0.2cm}
 
  \tau_2 = 3\,\,{\rm &micro; s}\hspace{0.05cm}, \hspace{0.2cm} k_2 = 0.6</math>
 
  \tau_2 = 3\,\,{\rm &micro; s}\hspace{0.05cm}, \hspace{0.2cm} k_2 = 0.6</math>
  
*and the following <i>three-way channel</i>&nbsp; $(M = 3)$:
+
*and the following&nbsp; "three-way channel"&nbsp; $(M = 3)$:
  
 
:$$\tau_1 = 1\,\,{\rm &micro; s}\hspace{0.05cm}, \hspace{0.2cm} k_1 = 0.8\hspace{0.05cm}, \hspace{0.2cm}
 
:$$\tau_1 = 1\,\,{\rm &micro; s}\hspace{0.05cm}, \hspace{0.2cm} k_1 = 0.8\hspace{0.05cm}, \hspace{0.2cm}
Line 98: Line 98:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
With the selected constants, both channels have the root mean square value&nbsp; ${\rm E}\big [k_m^2\big ] = 1$&nbsp;.
+
With the selected constants, both channels have the root mean square value&nbsp; ${\rm E}\big [k_m^2\big ] = 1$.
  
 
The graph shows the magnitude functions&nbsp; $ |H(f)|$&nbsp; of both channels and the corresponding impulse responses&nbsp; $h(\tau)$.&nbsp; One can see from these graphs:
 
The graph shows the magnitude functions&nbsp; $ |H(f)|$&nbsp; of both channels and the corresponding impulse responses&nbsp; $h(\tau)$.&nbsp; One can see from these graphs:
*In the blue channel&nbsp; $(M = 2)$&nbsp; the Dirac functions occur in a range of width&nbsp; $\Delta \tau_{\rm max} = 2 \ \rm &micro; s$. &nbsp;  
+
*In the blue channel&nbsp; $(M = 2)$&nbsp; the Dirac delta functions occur in a range of width&nbsp; $\Delta \tau_{\rm max} = 2 \ \rm &micro; s$. &nbsp;
*With the red channel&nbsp; $(M = 3)$&nbsp; this value is four times as large: &nbsp; $\Delta \tau_{\rm max} = 8 \ \rm &micro; s$.<br>
+
 +
*With the red channel&nbsp; $(M = 3)$&nbsp; this value is four times as large: &nbsp; $\Delta \tau_{\rm max} = 8 \ \rm &micro; s$.
  
*As a first approximation for&nbsp; [[Mobile_Communications/The GWSSUS channel model#Parameters of the GWSSUS model|coherence bandwidth]]&nbsp; $B_{\rm K}\hspace{0.01cm}'\approx 1/ \Delta \tau_{\rm max}$ is often used, which may differ from the correct value by a factor of&nbsp; $2$&nbsp; or more.&nbsp;  
+
*As a first approximation for&nbsp; [[Mobile_Communications/The GWSSUS channel model#Parameters of the GWSSUS model|$\text{coherence bandwidth}$]]&nbsp; $B_{\rm K}\hspace{0.01cm}'\approx 1/ \Delta \tau_{\rm max}$ is often used, which may differ from the correct value by a factor of&nbsp; $2$&nbsp; or more.&nbsp;
 +
 
*This simple approximation, marked with an apostrophe, results for the blue channel to&nbsp; $B_{\rm K}\hspace{0.01cm}'= 500 \ \rm kHz$.
 
*This simple approximation, marked with an apostrophe, results for the blue channel to&nbsp; $B_{\rm K}\hspace{0.01cm}'= 500 \ \rm kHz$.
 +
 
* For the red channel it is&nbsp; $B_{\rm K}\hspace{0.01cm}'= 125 \ \rm kHz$&nbsp; which is just one fourth of the blue channel's.<br>
 
* For the red channel it is&nbsp; $B_{\rm K}\hspace{0.01cm}'= 125 \ \rm kHz$&nbsp; which is just one fourth of the blue channel's.<br>
  
Line 111: Line 114:
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{In general the following applies:} $
 
$\text{In general the following applies:} $
#&nbsp; If the signal bandwidth&nbsp; $B_{\rm S} = 1/T_{\rm S}$&nbsp; is much smaller than the coherence bandwidth&nbsp; $B_{\rm K}$, then the channel can be considered as <i>non-frequency selective</i>&nbsp;&nbsp; &nbsp;<br>$(T_{\rm S}$&nbsp; denotes the symbol duration$)$.<br>
+
#&nbsp; If the signal bandwidth&nbsp; $B_{\rm S} = 1/T_{\rm S}$&nbsp; is much smaller than the coherence bandwidth&nbsp; $B_{\rm K}$, then the channel can be considered as &raquo;<b>non-frequency selective</b>&laquo;&nbsp;&nbsp; &nbsp;<br>$(T_{\rm S}$&nbsp; denotes the symbol duration$)$.<br>
#&nbsp; In other words: &nbsp; For a given&nbsp; $B_{\rm S}$&nbsp; the smaller the coherence bandwidth&nbsp; $B_{\rm K}$&nbsp; or the larger the maximum delay&nbsp; $\Delta \tau_{\rm max}$&nbsp; the greater the frequency selectivity.
+
#&nbsp; In other words: &nbsp; For a given&nbsp; $B_{\rm S}$&nbsp; the smaller the coherence bandwidth&nbsp; $B_{\rm K}$&nbsp; or the larger the maximum delay&nbsp; $\Delta \tau_{\rm max}$,&nbsp; the greater the frequency selectivity.
 
#&nbsp; This also means: &nbsp; The frequency selectivity is often determined by the longest echo.
 
#&nbsp; This also means: &nbsp; The frequency selectivity is often determined by the longest echo.
 
#&nbsp; Many short echoes with a total energy&nbsp; $E$&nbsp; are less disturbing than one long echo of the same energy&nbsp; $E$.<br>}}
 
#&nbsp; Many short echoes with a total energy&nbsp; $E$&nbsp; are less disturbing than one long echo of the same energy&nbsp; $E$.<br>}}
Line 123: Line 126:
 
[[File:P ID3104 Mob T 2 2 S2b v1.png|right|frame|Mobile channel model considering time variance and echoes|class=fit]]
 
[[File:P ID3104 Mob T 2 2 S2b v1.png|right|frame|Mobile channel model considering time variance and echoes|class=fit]]
  
*The magnitudes of the complex weighting factors&nbsp; $z_m(t)$&nbsp; are Rayleigh distributed according to the page&nbsp; [[Mobile_Communications/Probability_Density_of_Rayleigh_Fading#Exemplary_signal_curves_with_Rayleigh_fading|Exemplary signal curves with Rayleigh fading]]&nbsp; or &ndash; with line-of-sight connection &ndash; Rice distributed, as described in&nbsp; [[Mobile_Communications/Non-Frequency_Selective_Fading_With_Direct_Component#Example_of_signal_behaviour_with_Rice_fading|Exemplary signal curves with Rice fading]]&nbsp;.<br>
+
*The magnitudes of the complex weighting factors&nbsp; $z_m(t)$&nbsp; are Rayleigh distributed according to the section&nbsp; [[Mobile_Communications/Probability_Density_of_Rayleigh_Fading#Exemplary_signal_curves_with_Rayleigh_fading|"Exemplary signal curves with Rayleigh fading"]]&nbsp; or &ndash; with line-of-sight connection &ndash; Rice distributed, as described in&nbsp; [[Mobile_Communications/Non-Frequency_Selective_Fading_With_Direct_Component#Example_of_signal_behaviour_with_Rice_fading|"Exemplary signal curves with Rice fading"]]&nbsp;.<br>
  
*The bindings within the process&nbsp; $z_m(t)$&nbsp; are related to the mobility properties&nbsp; (speed, direction, etc.)&nbsp; to the&nbsp; [[Mobile_Communications/Statistical_Bindings_within_the_Rayleigh_Process#ACF_and_PDS_with_Rayleigh.E2.80.93Fading|Jakes Spectrum]]&nbsp;.<br><br>
+
*The bindings within the process&nbsp; $z_m(t)$&nbsp; are related to the mobility properties&nbsp; (speed, direction, etc.)&nbsp; to the&nbsp; [[Mobile_Communications/Statistical_Bindings_within_the_Rayleigh_Process#ACF_and_PSD_with_Rayleigh.E2.80.93Fading|$\text{Jakes Spectrum}$]]&nbsp;.<br><br>
  
 
The figure shows the generally valid model for the mobile communications channel.&nbsp; "Generally valid" but only with reservations, as explained at the end of&nbsp; $\text{Example 2}$.  
 
The figure shows the generally valid model for the mobile communications channel.&nbsp; "Generally valid" but only with reservations, as explained at the end of&nbsp; $\text{Example 2}$.  
  
For an understanding of the figure we refer to the chapter&nbsp; [[Mobile_Communications/Probability density of Rayleigh fading#A very general description of the mobile communication channel|General description of the mobile communications channel]]. Please note:  
+
For an understanding of the figure we refer to the chapter&nbsp; [[Mobile_Communications/Probability density of Rayleigh fading#A very general description of the mobile communication channel|"General description of the mobile communications channel"]]. Please note:  
 
*The&nbsp; $M$&nbsp; main paths are characterized by large propagation time differences.
 
*The&nbsp; $M$&nbsp; main paths are characterized by large propagation time differences.
 
*The time-variant complex coefficients&nbsp; $z_m(t)$&nbsp; result from the sum of many secondary paths whose delay times are all approximately the same&nbsp; $\tau_m$&nbsp;.
 
*The time-variant complex coefficients&nbsp; $z_m(t)$&nbsp; result from the sum of many secondary paths whose delay times are all approximately the same&nbsp; $\tau_m$&nbsp;.
Line 136: Line 139:
 
$\text{Example 2:}$&nbsp; Studies have shown that in mobile communications no more than four or five main pathways are effective at the same time.
 
$\text{Example 2:}$&nbsp; Studies have shown that in mobile communications no more than four or five main pathways are effective at the same time.
  
[[File:P ID2151 Mob T 2 2 S3b v1.png|right|frame|2D-Impulse response with&nbsp; $M = 3$&nbsp; paths|class=fit]]
+
[[File:P ID2151 Mob T 2 2 S3b v1.png|right|frame|Two-dimensional impulse response with&nbsp; $M = 3$&nbsp; paths|class=fit]]
  
 
The represented 2D&ndash;impulse response&nbsp; $h(\tau,\hspace{0.1cm} t)$&nbsp; applies to&nbsp; $M = 3$&nbsp; main paths with time-variant behavior, where the received power decreases with increasing delay in the statistical average.&nbsp; For this graph the above sketched channel model is used as a basis.  
 
The represented 2D&ndash;impulse response&nbsp; $h(\tau,\hspace{0.1cm} t)$&nbsp; applies to&nbsp; $M = 3$&nbsp; main paths with time-variant behavior, where the received power decreases with increasing delay in the statistical average.&nbsp; For this graph the above sketched channel model is used as a basis.  
Line 144: Line 147:
 
*The viewing direction in the right image is rotated by&nbsp; $90^\circ$&nbsp;.&nbsp; By using the color coding, the representation should be understandable.<br>
 
*The viewing direction in the right image is rotated by&nbsp; $90^\circ$&nbsp;.&nbsp; By using the color coding, the representation should be understandable.<br>
 
<br clear=all>
 
<br clear=all>
This geaphic also shows the weak point of our mobile communications channel model: &nbsp; Although the coefficients&nbsp; $z_m(t)$&nbsp; are variable, the delay times&nbsp; $\tau_m$&nbsp; are fixed. &nbsp; This does not correspond to reality, if the mobile station is moving and the connection takes place in a changing environment.&nbsp; &nbsp; $\tau_m(t)$&nbsp; should be considered.}}<br>
+
This graphic also shows the weak point of our mobile communications channel model: &nbsp; Although the coefficients&nbsp; $z_m(t)$&nbsp; are variable, the delay times&nbsp; $\tau_m$&nbsp; are fixed. &nbsp; This does not correspond to reality, if the mobile station is moving and the connection takes place in a changing environment.&nbsp; &nbsp; $\tau_m(t)$&nbsp; should be considered.}}<br>
  
  
Line 159: Line 162:
 
Here, too, usually no more than&nbsp; $M = 5$&nbsp; main paths simultaneously provide a relevant contribution to the impulse response.  
 
Here, too, usually no more than&nbsp; $M = 5$&nbsp; main paths simultaneously provide a relevant contribution to the impulse response.  
 
*The advantage over the first model is that for the delays now all values&nbsp; $\tau_m \le \tau_\text{max}$&nbsp; are possible, with a temporal resolution of&nbsp; $\Delta \tau$&nbsp;.  
 
*The advantage over the first model is that for the delays now all values&nbsp; $\tau_m \le \tau_\text{max}$&nbsp; are possible, with a temporal resolution of&nbsp; $\Delta \tau$&nbsp;.  
*At the end of next chapter&nbsp; [[Mobile_Communications/The GWSSUS channel model#Simulation according to the GWSSUS model|The GWSSUS channel model]]&nbsp; we will come back to this general model again.<br>}}
+
*At the end of next chapter&nbsp; [[Mobile_Communications/The GWSSUS channel model#Simulation according to the GWSSUS model|"The GWSSUS channel model"]]&nbsp; we will come back to this general model again.<br>}}
  
==Exercises to chapter==
+
==Exercises for the chapter==
 
<br>
 
<br>
 
[[Aufgaben: Exercise 2.2: Simple Two-Path Channel Model]]
 
[[Aufgaben: Exercise 2.2: Simple Two-Path Channel Model]]
Line 169: Line 172:
 
[[Aufgaben:Exercise 2.3: Yet Another Multi-Path Channel]]
 
[[Aufgaben:Exercise 2.3: Yet Another Multi-Path Channel]]
  
[[Aufgaben:Exercise 2.4: 2-D Transfer Function]]
+
[[Aufgaben:Exercise 2.4: 2D Transfer Function]]
  
  

Latest revision as of 14:44, 29 January 2023

Time-invariant description of the two-way channel


We assume the scenario shown in the graph.  This assumes

Time–invariant consideration of the two-way channel
  • Transmitter and receiver are  »at rest«: 
    Then both the channel transfer function and the impulse response are time–independent.  For all times  $t$  applies  $H(f, \hspace{0.05cm}t) = H(f)$  and  $h(\tau, \hspace{0.05cm}t) = h(\tau)$.
  • A  »two-way channel«:  
    The transmitted signal  $s(t)$  reaches the receiver on a direct path with the path length  $d_1$,  and there is also an echo due to the reflective ground  $($the total path length is  $d_2)$.


Thus, the following applies to the received signal:

\[r(t) = r_1(t) + r_2(t) = k_1 \cdot s( t - \tau_1) + k_2 \cdot s( t - \tau_2) \hspace{0.05cm}.\]


The following statements should be noted:

  • Compared to the transmitted signal, the signal  $r_1(t)$  received via the direct path is attenuated by the factor  $k_1$  and delayed by   $\tau_1$ .
  • The attenuation factor  $k_1$  is calculated with the  $\text{path loss model}$.  The greater the transmission frequency  $f_{\rm S}$,  the distance  $d_1$  and the exponent  $\gamma$  are, the smaller is   $k_1$  and thus the greater is the loss.
  • The delay  $\tau_1 = d_1/c$  increases proportionally with the path length  $d_1$ .   For example, for the distance  $d_1 = 3 \ \rm km$  and the speed of light  $c = 3 \cdot 10^8 \ \rm m/s$  the delay will be  $\tau_1 = 10 \ \rm µ s$.
  • Because of the larger path length  $(d_2 > d_1)$  the second path has a greater attenuation   ⇒   smaller pre-factor   ⇒   $(|k_2| < |k_1|)$  and accordingly also a greater delay   $(\tau_2 > \tau_1)$.
  • In addition, it must be taken into account that the reflection from buildings or the ground leads to a phase rotation of  $\pi \ (180^\circ)$.  This causes the factor  $k_2$  to become negative.  In the following, however, the negative sign of  $k_2$  is ignored.

Note:   We refer here to the SWF applet  "Multipath propagation and frequency selectivity"  (German language!).


Simple time–invariant model of the two-way channel


Simple model for the two-way channel

For the frequency selectivity

  • the path loss  $($marked by  $k_1)$  and
  • the basic term  $\tau_1$ 


are irrelevant. The only decisive factors here are path loss differences and runtime differences.

We will now describe the two-way channel with the new parameters 

$$k_0 = |k_2 /k_1 |,\hspace{0.5cm} \tau_0 = \tau_2 - \tau_1.$$

This results in:

\[r(t) = r_1(t) + k_0 \cdot r_1( t - \tau_0) \hspace{0.5cm}{\rm with} \hspace{0.5cm} r_1(t) = k_1 \cdot s( t - \tau_1)\hspace{0.05cm}.\]

The figure illustrates the equation.  With the simplifications  $k_1 = 1$  and  $\tau_1 = 0$    ⇒   $r_1(t) = s(t)$  we obtain:

\[r(t) = s(t) + k_0 \cdot s( t - \tau_0) \hspace{0.05cm}.\]

From this simplified model  (without the gray-shaded block)  important descriptive variables can be easily calculated:

\[H(f) = {R(f)}/{S(f)} = 1 + k_0 \cdot {\rm e}^{ - {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi f \hspace{0.05cm} \cdot \hspace{0.05cm} \tau_0} \hspace{0.05cm}.\]
\[h(\tau) = 1 + k_0 \cdot \delta(\tau - \tau_0) \hspace{0.05cm}.\]

$\text{Example 1:}$  We consider a two-way channel with delay   $\tau_0 = 2 \ \ \rm µ s$  and some attenuation factors  $k_0$  between  $0$  and  $1$.

Absolute value of the transfer function of a two-way channel   $(\tau_0 = 2 \ \rm µ s)$

The graph shows the transfer function in terms of its absolute value in the range  $\pm 1 \ \rm MHz$.  You can see from this representation:

  • The transfer function  $H(f)$  and also its absolute value is periodic with  $1/\tau_0 = 500 \ \rm kHz$.
  • The fluctuations around the mean value  $\vert H(f) \vert = 1$  are the stronger, the larger the  (relative)  contribution  $k_0$  of the second path is  (i.e. the echo).


Coherence bandwidth as a function of M


We are now modifying the two-way model in such a way that we allow more than two paths, as is the case for mobile communications.

Frequency response at  $M = 2$  (blue) and  $M = 3$  (red)

In general, the multipath channel model is thus:

$$ r(t)= \sum_{m = 1}^{M}\hspace{0.15cm} k_m \cdot s( t - \tau_m)$$
$$\Rightarrow \hspace{0.3cm} h(\tau) = \sum_{m = 1}^{M}\hspace{0.15cm} k_m \cdot \delta( \tau - \tau_m) \hspace{0.05cm}.$$

We now compare

  • the  "two-way channel"  $(M = 2)$  with the parameters
\[\tau_1 = 1\,\,{\rm µ s}\hspace{0.05cm}, \hspace{0.2cm} k_1 = 0.8\hspace{0.05cm}, \hspace{0.2cm} \tau_2 = 3\,\,{\rm µ s}\hspace{0.05cm}, \hspace{0.2cm} k_2 = 0.6\]
  • and the following  "three-way channel"  $(M = 3)$:
$$\tau_1 = 1\,\,{\rm µ s}\hspace{0.05cm}, \hspace{0.2cm} k_1 = 0.8\hspace{0.05cm}, \hspace{0.2cm} \tau_2 = 3\,\,{\rm µ s}\hspace{0.05cm}, \hspace{0.2cm} k_2 \approx 0.43\hspace{0.05cm}, \hspace{0.2cm} \tau_3 = 9\,\,{\rm µ s}\hspace{0.05cm}, \hspace{0.2cm} k_3 \approx 0.43 \hspace{0.05cm}.$$

With the selected constants, both channels have the root mean square value  ${\rm E}\big [k_m^2\big ] = 1$.

The graph shows the magnitude functions  $ |H(f)|$  of both channels and the corresponding impulse responses  $h(\tau)$.  One can see from these graphs:

  • In the blue channel  $(M = 2)$  the Dirac delta functions occur in a range of width  $\Delta \tau_{\rm max} = 2 \ \rm µ s$.  
  • With the red channel  $(M = 3)$  this value is four times as large:   $\Delta \tau_{\rm max} = 8 \ \rm µ s$.
  • As a first approximation for  $\text{coherence bandwidth}$  $B_{\rm K}\hspace{0.01cm}'\approx 1/ \Delta \tau_{\rm max}$ is often used, which may differ from the correct value by a factor of  $2$  or more. 
  • This simple approximation, marked with an apostrophe, results for the blue channel to  $B_{\rm K}\hspace{0.01cm}'= 500 \ \rm kHz$.
  • For the red channel it is  $B_{\rm K}\hspace{0.01cm}'= 125 \ \rm kHz$  which is just one fourth of the blue channel's.


$\text{In general the following applies:} $

  1.   If the signal bandwidth  $B_{\rm S} = 1/T_{\rm S}$  is much smaller than the coherence bandwidth  $B_{\rm K}$, then the channel can be considered as »non-frequency selective«    
    $(T_{\rm S}$  denotes the symbol duration$)$.
  2.   In other words:   For a given  $B_{\rm S}$  the smaller the coherence bandwidth  $B_{\rm K}$  or the larger the maximum delay  $\Delta \tau_{\rm max}$,  the greater the frequency selectivity.
  3.   This also means:   The frequency selectivity is often determined by the longest echo.
  4.   Many short echoes with a total energy  $E$  are less disturbing than one long echo of the same energy  $E$.

Consideration of the time variance


Up to now the attenuation factors  $k_m$  were assumed to be constant.  For mobile radio, however, this channel model is only correct if transmitter and receiver are static, which is merely a special case for this communication system.

For a moving user, these constant factors  $k_m$  must be replaced by the time-variant factors  $z_m(t)$  which are each based on random processes. You should note this:

Mobile channel model considering time variance and echoes
  • The bindings within the process  $z_m(t)$  are related to the mobility properties  (speed, direction, etc.)  to the  $\text{Jakes Spectrum}$ .

The figure shows the generally valid model for the mobile communications channel.  "Generally valid" but only with reservations, as explained at the end of  $\text{Example 2}$.

For an understanding of the figure we refer to the chapter  "General description of the mobile communications channel". Please note:

  • The  $M$  main paths are characterized by large propagation time differences.
  • The time-variant complex coefficients  $z_m(t)$  result from the sum of many secondary paths whose delay times are all approximately the same  $\tau_m$ .


$\text{Example 2:}$  Studies have shown that in mobile communications no more than four or five main pathways are effective at the same time.

Two-dimensional impulse response with  $M = 3$  paths

The represented 2D–impulse response  $h(\tau,\hspace{0.1cm} t)$  applies to  $M = 3$  main paths with time-variant behavior, where the received power decreases with increasing delay in the statistical average.  For this graph the above sketched channel model is used as a basis.

Two different views are shown:

  • The left image shows  $h(\tau,\hspace{0.1cm} t)$  as a function of the delay time  $\tau$  at a fixed time  $t$.
  • The viewing direction in the right image is rotated by  $90^\circ$ .  By using the color coding, the representation should be understandable.


This graphic also shows the weak point of our mobile communications channel model:   Although the coefficients  $z_m(t)$  are variable, the delay times  $\tau_m$  are fixed.   This does not correspond to reality, if the mobile station is moving and the connection takes place in a changing environment.    $\tau_m(t)$  should be considered.



$\text{Conclusion:}$  It is helpful to make a slight modification to the above model:

General model of the mobile channel
  • One chooses the number  $M'$  of (possible) main paths much larger than necessary and sets  $\tau_m = m \cdot \Delta \tau$.
  • The incremental  (minimum resolvable)  delay  $\Delta \tau = T_{\rm S}$  results from the sampling rate and thus from the bandwidth  $B_{\rm S} = 1/T_{\rm S}$  of the signal  $s(t)$.
  • The maximum delay time  $\tau_\text{max} = M' \cdot \Delta \tau$  of this model is equal to the inverse of the coherence bandwidth  $B_{\rm K}$.  The number of paths considered is thus  $M' = B_{\rm S}/B_{\rm K}$.


Here, too, usually no more than  $M = 5$  main paths simultaneously provide a relevant contribution to the impulse response.

  • The advantage over the first model is that for the delays now all values  $\tau_m \le \tau_\text{max}$  are possible, with a temporal resolution of  $\Delta \tau$ .
  • At the end of next chapter  "The GWSSUS channel model"  we will come back to this general model again.

Exercises for the chapter


Exercise 2.2: Simple Two-Path Channel Model

Exercise 2.2Z: Real Two-Path Channel

Exercise 2.3: Yet Another Multi-Path Channel

Exercise 2.4: 2D Transfer Function