Difference between revisions of "Aufgaben:Exercise 4.5Z: About Spread Spectrum with UMTS"

From LNTwww
m (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
 
(12 intermediate revisions by 3 users not shown)
Line 1: Line 1:
  
{{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/Nachrichtentechnische Aspekte von UMTS
+
{{quiz-Header|Buchseite=Examples_of_Communication_Systems/Telecommunications_Aspects_of_UMTS
  
  
 
}}
 
}}
  
[[File:P_ID1974__Bei_Z_4_5.png|right|frame|Quellensignal und Spreizsignal]]
+
[[File:P_ID1974__Bei_Z_4_5.png|right|frame|Source signal and spread signal]]
Bei UMTS/CDMA wird die so genannte  „Pseudo Noise”–Modulation (englisch: ''Direct Sequence Spread Spectrum'', abgekürzt '''DS–SS''') angewandt:
+
With UMTS/CDMA,  the so-called  "Pseudo-noise modulation"  is applied.  Or:  "Direct Sequence Spread Spectrum":
*Das rechteckförmige Digitalsignal $q(t)$ wird dabei mit dem Spreizsignal $c(t)$ multipliziert und ergibt das Sendesignal $s(t)$.  
+
*The rectangular digital signal  $q(t)$  is thereby multiplied by the spreading signal  $c(t)$  to give the transmitted signal  $s(t)$.
*Dieses ist um den Spreizfaktor $J$ höherfrequenter als $q(t)$, und man spricht von ''Bandspreizung''.  
+
*Beim Empfänger wird das gleiche Spreizsignal $c(t)$ phasensynchron zugesetzt und damit die Bandspreizung rückgängig gemacht    ⇒     ''Bandstauchung''.
+
*This is higher in frequency than  $q(t)$  by the spreading factor  $J$,  and is referred to as  "spread spectrum".  
 +
 
 +
*At the receiver,  the same spreading signal  $c(t)$  is multiplied in phase synchronism,  reversing the  spreading process  ⇒   "despreading".
 +
 
 +
 
 +
The graph shows example signal waveforms for  $q(t)$  and  $c(t)$.  
  
 +
In the subtask  '''(5)'''  is asked about transmit chips. For example, the "transmit chip"  $s_{3}$  denotes the constant signal value of  $s(t)$  in the time interval  $2 T_{\rm C} ... 3 T_{\rm C}$.
  
Die Grafik zeigt beispielhafte Signalverläufe von $q(t)$ und $c(t)$. In Teilaufgabe (5) wird nach Sendechips gefragt. Zum Beispiel bezeichnet das „Sendechip” $s_{3}$ den konstanten Signalwert von $s(t)$ im Zeitintervall $2 T_{\rm C} ... 3 T_{\rm C}$.
 
  
  
Line 19: Line 24:
  
  
''Hinweise:''
 
  
*Die Aufgabe bezieht sich meist auf [[Beispiele_von_Nachrichtensystemen/Nachrichtentechnische_Aspekte_von_UMTS|Nachrichtentechnische Aspekte von UMTS]].  
+
Hints:
*Zur Berechnung der Chipdauer $T_{\rm C}$ wird auf die Theorieseite [[Beispiele_von_Nachrichtensystemen/UMTS–Netzarchitektur#Physikalische_Kan.C3.A4le|Physikalische Kanäle]] im Kapitel „UMTS–Netzarchitektur” verwiesen.  
+
 
*Dort findet man unter anderem die Information, dass auf dem so genannten ''Dedicated Physical Channel'' ('''DPCH''' ) in zehn Millisekunden genau $15 \cdot 2560$ Chips übertragen werden.
+
*This exercise mostly refers to the page  [[Examples_of_Communication_Systems/Telecommunications_Aspects_of_UMTS|"Telecommunications Aspects of UMTS"]].  
 +
*For calculation of chip duration  $T_{\rm C}$  reference is made to the theory page  [[Examples_of_Communication_Systems/UMTS_Network_Architecture#Physical_channels|"Physical channels"]]  in the chapter "UMTS network architecture".  
 +
*There you will find, among other things, the information that on the so-called  ''Dedicated Physical Channel'''  ('''DPCH''' )  in ten milliseconds exactly  $15 \cdot 2560$ chips are transmitted.
 
   
 
   
  
  
  
===Fragebogen===
+
===Questions===
  
 
<quiz display=simple>
 
<quiz display=simple>
  
{Welche Aussagen sind richtig?
+
{Which statements are correct?
 
|type="[]"}
 
|type="[]"}
- Bei UMTS ist die Bitdauer $T_{\rm B}$ fest vorgegeben.
+
- With UMTS, the bit duration&nbsp; $T_{\rm B}$&nbsp; is fixed.
+ Bei UMTS ist die Chipdauer $T_{\rm C}$ fest vorgegeben.
+
+ For UMTS, the chip duration&nbsp; $T_{\rm C}$&nbsp; is fixed.
- Beide Größen hängen von den Kanalbedingungen ab.
+
- Both quantities depend on the channel conditions.
  
{Geben Sie die Chipdauer $T_{\rm C}$ und die Chiprate $R_{\rm C}$ im Downlink an.
+
{Specify the chip duration&nbsp; $T_{\rm C}$&nbsp; and chip rate&nbsp; $R_{\rm C}$&nbsp; in the downlink.
 
|type="{}"}
 
|type="{}"}
 
$T_{\rm C} \hspace{0.28cm} = \ $ { 0.26 3% } $ \ \rm &micro; s$
 
$T_{\rm C} \hspace{0.28cm} = \ $ { 0.26 3% } $ \ \rm &micro; s$
 
$R_{\rm C} \hspace{0.2cm} = \ $ { 3.84 3% } $ \ \rm Mchip/s$
 
$R_{\rm C} \hspace{0.2cm} = \ $ { 3.84 3% } $ \ \rm Mchip/s$
  
{Welcher Spreizfaktor ist aus der Grafik auf der Angabenseite ablesbar?
+
{What spreading factor can be read from the graph on the information page?
 
|type="{}"}
 
|type="{}"}
 
$J \ = \ ${ 4 }  
 
$J \ = \ ${ 4 }  
  
{Welche Bitrate ergibt sich bei diesem Spreizfaktor?
+
{What is the bit rate at this spreading factor?
 
|type="{}"}
 
|type="{}"}
 
$ R_{\rm B} \ = \ $ { 960 3% } $ \ \rm kbit/s$
 
$ R_{\rm B} \ = \ $ { 960 3% } $ \ \rm kbit/s$
  
{Welche Werte $(\pm 1)$ haben die „Chips” des Sendesignals $s(t)$?
+
{What are the values&nbsp; $(\pm 1)$&nbsp; of the "chips" of the transmitted signal&nbsp; $s(t)$?
 
|type="{}"}
 
|type="{}"}
 
$s_{3} \ = \ $ { -1.03--0.97 }
 
$s_{3} \ = \ $ { -1.03--0.97 }
Line 60: Line 66:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''&nbsp; Richtig ist die  <u>Antwort 2</u>:
+
'''(1)'''&nbsp; Correct is the <u>answer 2</u>:
*Fest vorgegeben ist bei UMTS die Chipdauer $T_{\rm C}$, die in der Teilaufgabe (2) noch berechnet werden soll.  
+
*Fixed for UMTS is the chip duration&nbsp; $T_{\rm C}$, which is still to be calculated in the subtask '''(2)'''.  
Je größer der Spreizgrad $J$ ist, desto größer ist die Bitdauer.
+
*The larger the spreading degree&nbsp; $J$&nbsp; is, the larger the bit duration is.
 
   
 
   
  
'''(2)'''&nbsp; Laut dem Hinweis auf der Angabenseite werden in zehn Millisekunden genau $15 \cdot 2560 = 38400$ Chips übertragen.
 
*Damit beträgt die Chiprate $R_{\rm C} = 100 \cdot 38400 \ {\rm Chips/s} \hspace{0.15cm}\underline{= 3.84 \ \rm Mchip/s}$.
 
*Die Chipdauer ist der Kehrwert hierzu: $T_{\rm C} \hspace{0.15cm}\underline{\approx 0.26 \ \rm \mu s}$.
 
  
 +
'''(2)'''&nbsp; According to the note on the information page, exactly&nbsp; $15 \cdot 2560 = 38400$ chips are transferred in ten milliseconds.
 +
*Thus the chip rate&nbsp; $R_{\rm C} = 100 \cdot 38400 \ {\rm chips/s} \hspace{0.15cm}\underline{= 3.84 \ \rm Mchip/s}$.
 +
*The chip duration is the reciprocal of this: &nbsp; $T_{\rm C} \hspace{0.15cm}\underline{\approx 0.26 \ \rm &micro; s}$.
  
'''(3)'''&nbsp; Jedes Datenbit besteht aus vier Spreizchips &nbsp; &rArr; &nbsp; $\underline{J = 4}$.
 
  
  
'''(4)'''&nbsp; Die Bitrate ergibt sich mit $J = 4$ zu $R_{\rm B} \hspace{0.15cm}\underline{= 960 \ \rm kbit/s}$. Mit dem für UMTS maximalen Spreizfaktor $J = 512$ beträgt die Bitrate dagegen nur mehr $7.5 \ \rm kbit/s$.
+
'''(3)'''&nbsp; Each data bit consists of four spreading chips &nbsp; &rArr; &nbsp; $\underline{J = 4}$.
  
  
'''(5)'''&nbsp; Für das Sendesignal gilt $s(t) = q(t) \cdot c(t)$. Die Chips $s_{3}$ und $s_{4}$ des Sendesignals gehören zum ersten Datenbit $(q_{1} = +1)$:
+
 
 +
'''(4)'''&nbsp; The bit rate is given by&nbsp; $J = 4$&nbsp; to&nbsp; $R_{\rm B} \hspace{0.15cm}\underline{= 960 \ \rm kbit/s}$.
 +
*With the maximum spreading factor for UMTS&nbsp; $J = 512&nbsp;$, on the other hand, the bit rate is only more&nbsp; $7.5 \ \rm kbit/s$.
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; For the transmitted signal&nbsp; $s(t) = q(t) \cdot c(t)$.  
 +
*The chips&nbsp; $s_{3}$&nbsp; and&nbsp; $s_{4}$&nbsp; of the transmitted signal belong to the first data bit&nbsp; $(q_{1} = +1)$:
 
:$$s_3 = c_3 \hspace{0.15cm}\underline {= -1},\hspace{0.4cm}s_4 = c_4 \hspace{0.15cm}\underline {= +1}\hspace{0.05cm}.$$
 
:$$s_3 = c_3 \hspace{0.15cm}\underline {= -1},\hspace{0.4cm}s_4 = c_4 \hspace{0.15cm}\underline {= +1}\hspace{0.05cm}.$$
Dagegen sind die beiden weiteren gesuchten Sendechips dem zweiten Datenbit $(q_{2} = -1)$ zuzuordnen:
+
*In contrast, the two other transmitting chips we are looking for are associated with the second data bit&nbsp; $(q_{2} = -1)$&nbsp; :
 
:$$s_5 = -c_5= -c_1 \hspace{0.15cm}\underline {= -1},\hspace{0.4cm}s_6 = -c_6= -c_2 \hspace{0.15cm}\underline {= +1}\hspace{0.05cm}.$$
 
:$$s_5 = -c_5= -c_1 \hspace{0.15cm}\underline {= -1},\hspace{0.4cm}s_6 = -c_6= -c_2 \hspace{0.15cm}\underline {= +1}\hspace{0.05cm}.$$
  
Line 88: Line 100:
  
  
[[Category:Aufgaben zu Beispiele von Nachrichtensystemen|^4.3 Nachrichtentechnische Aspekte
+
[[Category:Examples of Communication Systems: Exercises|^4.3 Telecommunications Aspects^]]
 
 
 
 
^]]
 

Latest revision as of 14:33, 5 March 2023

Source signal and spread signal

With UMTS/CDMA,  the so-called  "Pseudo-noise modulation"  is applied.  Or:  "Direct Sequence Spread Spectrum":

  • The rectangular digital signal  $q(t)$  is thereby multiplied by the spreading signal  $c(t)$  to give the transmitted signal  $s(t)$.
  • This is higher in frequency than  $q(t)$  by the spreading factor  $J$,  and is referred to as  "spread spectrum".
  • At the receiver,  the same spreading signal  $c(t)$  is multiplied in phase synchronism,  reversing the spreading process  ⇒   "despreading".


The graph shows example signal waveforms for  $q(t)$  and  $c(t)$.

In the subtask  (5)  is asked about transmit chips. For example, the "transmit chip"  $s_{3}$  denotes the constant signal value of  $s(t)$  in the time interval  $2 T_{\rm C} ... 3 T_{\rm C}$.





Hints:

  • This exercise mostly refers to the page  "Telecommunications Aspects of UMTS".
  • For calculation of chip duration  $T_{\rm C}$  reference is made to the theory page  "Physical channels"  in the chapter "UMTS network architecture".
  • There you will find, among other things, the information that on the so-called  Dedicated Physical Channel  ('DPCH )  in ten milliseconds exactly  $15 \cdot 2560$ chips are transmitted.



Questions

1

Which statements are correct?

With UMTS, the bit duration  $T_{\rm B}$  is fixed.
For UMTS, the chip duration  $T_{\rm C}$  is fixed.
Both quantities depend on the channel conditions.

2

Specify the chip duration  $T_{\rm C}$  and chip rate  $R_{\rm C}$  in the downlink.

$T_{\rm C} \hspace{0.28cm} = \ $

$ \ \rm µ s$
$R_{\rm C} \hspace{0.2cm} = \ $

$ \ \rm Mchip/s$

3

What spreading factor can be read from the graph on the information page?

$J \ = \ $

4

What is the bit rate at this spreading factor?

$ R_{\rm B} \ = \ $

$ \ \rm kbit/s$

5

What are the values  $(\pm 1)$  of the "chips" of the transmitted signal  $s(t)$?

$s_{3} \ = \ $

$s_{4} \ = \ $

$s_{5} \ = \ $

$s_{6} \ = \ $


Solution

(1)  Correct is the answer 2:

  • Fixed for UMTS is the chip duration  $T_{\rm C}$, which is still to be calculated in the subtask (2).
  • The larger the spreading degree  $J$  is, the larger the bit duration is.


(2)  According to the note on the information page, exactly  $15 \cdot 2560 = 38400$ chips are transferred in ten milliseconds.

  • Thus the chip rate  $R_{\rm C} = 100 \cdot 38400 \ {\rm chips/s} \hspace{0.15cm}\underline{= 3.84 \ \rm Mchip/s}$.
  • The chip duration is the reciprocal of this:   $T_{\rm C} \hspace{0.15cm}\underline{\approx 0.26 \ \rm µ s}$.


(3)  Each data bit consists of four spreading chips   ⇒   $\underline{J = 4}$.


(4)  The bit rate is given by  $J = 4$  to  $R_{\rm B} \hspace{0.15cm}\underline{= 960 \ \rm kbit/s}$.

  • With the maximum spreading factor for UMTS  $J = 512 $, on the other hand, the bit rate is only more  $7.5 \ \rm kbit/s$.


(5)  For the transmitted signal  $s(t) = q(t) \cdot c(t)$.

  • The chips  $s_{3}$  and  $s_{4}$  of the transmitted signal belong to the first data bit  $(q_{1} = +1)$:
$$s_3 = c_3 \hspace{0.15cm}\underline {= -1},\hspace{0.4cm}s_4 = c_4 \hspace{0.15cm}\underline {= +1}\hspace{0.05cm}.$$
  • In contrast, the two other transmitting chips we are looking for are associated with the second data bit  $(q_{2} = -1)$  :
$$s_5 = -c_5= -c_1 \hspace{0.15cm}\underline {= -1},\hspace{0.4cm}s_6 = -c_6= -c_2 \hspace{0.15cm}\underline {= +1}\hspace{0.05cm}.$$