Difference between revisions of "Exercise 2.3: QAM Signal Space Assignment"

From LNTwww
 
(17 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/xDSL als Übertragungstechnik
+
{{quiz-Header|Buchseite=Examples_of_Communication_Systems/xDSL_as_Transmission_Technology
  
 
}}
 
}}
  
[[File:P_ID1970__Bei_A_2_3.png|right|frame|QAM-Signalraumbelegung]]
+
[[File:P_ID1970__Bei_A_2_3.png|right|frame|Given QAM signal space allocation]]
  
Bei ADSL (''Asymmetric Digital Subscriber Line'') sind verschiedene Übertragungsverfahren anwendbar. Sowohl bei QAM als auch bei CAP und DMT findet dabei eine Signalraumzuordnung statt.
+
In  $\rm ADSL$  (''Asymmetric Digital Subscriber Line''), different transmission methods are applicable. For  $\rm QAM$  as well as for  $\rm CAP$  and  $\rm DMT$  a signal space allocation takes place.
  
Die Grafik zeigt den ersten Quadranten der betrachteten Signalraumzuordnung. Auf die farblich markierten Punkte wird in der Aufgabe Bezug genommen. Anzumerken ist:
+
The graph shows the first quadrant of the considered signal space mapping. The four color-coded points are referred to in the exercise. It should be noted:
  
*Die Inphase– und Quadraturkoeffizienten $(a_{\rm I}, a_{\rm Q})$ können hierbei jeweils die Werte $1, 3, ... , 15$ annehmen. In anderen Quadranten sind auch die negativen Werte $–1, –3, ... , –15$ möglich.
+
*The in-phase and quadrature coefficients  $(a_{\rm I}, \ a_{\rm Q})$  can here respectively take the values  $1, \ 3$,  ... ,  $15$  . In other quadrants also the negative values  $-1$,  $-3$, ... , $-15$  are possible.
  
*Jeweils $b \rm Bit$ werden zu einem Signalraumpunkt zusammengefasst, der durch die Koordinaten $a_{\rm I}$ und $a_{\rm Q}$ gekennzeichnet wird.
+
*Each  $b$  bit is combined into a signal space point, identified by the coordinates  $a_{\rm I}$  and  $a_{\rm Q}$.
  
*Wird eine Bitfolge $(q_{b–1}, q_{b–2}, ... , q_{0})$ übertragen, so bezeichnen die MSB (''Most Significant Bits'') $q_{b–1}$ und $q_{b–2}$ die Vorzeichen von $a_{\rm I}$ und $a_{\rm Q}$, und damit auch den Quadranten.
+
*If a bit sequence  $(q_{b-1}, \ q_{b-2}$, ... , $q_{0})$  transmitted, the  $\rm MSB$  (''Most Significant Bits'')  $q_{b-1}$  and  $q_{b-2}$  signify the sign of  $a_{\rm I}$  and  $a_{\rm Q}$, and hence the quadrant.
  
*Ist $q_{b–1} = 0$, so ist $a_{\rm I}$ positiv. Dagegen weist $q_{b–1} = 1$ auf ein negatives $a_{\rm I}$ hin. Der gleiche Zusammenhang besteht zwischen $q_{b–2}$ und $a_{\rm Q}$.
+
*If  $q_{b-1} = 0$, then  $a_{\rm I}$  is positive. In contrast  $q_{b-1} = 1$  indicates a negative  $a_{\rm I}$ . The same relationship exists between  $q_{b-2}$  and  $a_{\rm Q}$.
  
*Der Inphase–Anteil $a_{\rm I}$ ergibt sich als Dezimalwert der Binärzahl $(q_{b–1}, q_{b–3}, ... , q_{1}, 1)$. Negative Zahlen werden durch das Zweierkomplement dargestellt.
+
*The in-phase part  $a_{\rm I}$  is given as the decimal value of the binary number  $(q_{b-1}, \ q_{b-3}$, ... , $q_{1}, \ 1)$. Negative numbers are represented by the two's complement.
  
*Der Quadratur–Anteil $a_{\rm Q}$ ergibt sich als Dezimalwert der Binärzahl $(q_{b–2}, q_{b–4}, ... , q_{0}, 1)$. Negative Zahlen werden auch hier durch das Zweierkomplement dargestellt.
+
*The quadrature part  $a_{\rm Q}$  is given as the decimal value of the binary number  $(q_{b-2}, \ q_{b-4}$, ... , $q_{0}, \ 1)$. Negative numbers are also represented here by the two's complement.
  
Ziel dieser Aufgabe ist es, gegebene Bitfolgen dem richtigen Signalraumpunkt zuzuordnen. Die umgekehrte Zuordnung wird ebenfalls demonstriert.
 
  
''Hinweis:''
+
The goal of this exercise is to map given bit sequences to the correct signal space point. The reverse assignment is also demonstrated.
  
Die Aufgabe gehört zum Themengebiet von Kapitel [[Beispiele_von_Nachrichtensystemen/xDSL_als_Übertragungstechnik|xDSL als Übertragungstechnik]].
 
  
  
Line 31: Line 29:
  
  
===Fragebogen===
+
 
 +
 
 +
Hint:
 +
 
 +
*This exercise belongs to the chapter  [[Examples_of_Communication_Systems/xDSL_as_Transmission_Technology|"xDSL as Transmission Technology"]].
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
  
{Um welche Konstellationsgröße handelt es sich im betrachteten Beispiel?
+
{What is the constellation of the considered example?
|type="[]"}
+
|type="()"}
- 8–QAM,
+
- 8-QAM,
- 16–QAM,
+
- 16-QAM,
- 64–QAM,
+
- 64-QAM,
+ 256–QAM.
+
+ 256-QAM.
  
  
{Wie viele Bit werden zu einem Signalraumpunkt zusammengefasst?
+
{How many bits are combined to one signal space point?
 
|type="{}"}
 
|type="{}"}
 
$b \ = \ ${ 8 3% }  
 
$b \ = \ ${ 8 3% }  
  
{Welche MSB–Werte gelten für den in der Grafik dargesellten Quadranten?
+
{What are the MSB values for the quadrant shown in the graphic?
|type="[]"}
+
|type="()"}
+ $q_{7} = \boldsymbol{0}, q_{6} = \boldsymbol{0}\,$
+
+ $q_{7} = \boldsymbol{0}, q_{6} = \boldsymbol{0}\,$
- $q_{7} = \boldsymbol{1}, q_{6} = \boldsymbol{0},$
+
- $q_{7} = \boldsymbol{1}, q_{6} = \boldsymbol{0},$
- $q_{7} = \boldsymbol{1}, q_{6} = \boldsymbol{1},$
+
- $q_{7} = \boldsymbol{1}, q_{6} = \boldsymbol{1},$
- $q_{7} = \boldsymbol{0}, q_{6} = \boldsymbol{1}.$
+
- $q_{7} = \boldsymbol{0}, q_{6} = \boldsymbol{1}.$
  
{Wie lauten die Koordinaten der Bitfolge $\boldsymbol{10010011}$?
+
{What are the coordinates of the bit sequence&nbsp; $\boldsymbol{1001\hspace{0.05cm}0011}$?
 
|type="{}"}
 
|type="{}"}
$ a_{I} \ = \ ${ 13 3% }  
+
$ a_{\rm I} \ = \ ${ -13.3--12.7 }  
$ a_{Q} \ = \ ${ 11 3% }  
+
$ a_{\rm Q} \ = \ ${ 11 3% }  
  
{Welche Bitfolge ist dem roten Punkt zugeordnet?
+
{Which bit sequence is associated with the red dot?
|type="[]"}
+
|type="()"}
- $\boldsymbol{00001011,}$
+
- $\boldsymbol{0000\hspace{0.05cm}1011,}$
- $\boldsymbol{00010011,}$
+
- $\boldsymbol{0001\hspace{0.05cm}0011,}$
+ $\boldsymbol{00010110,}$
+
+ $\boldsymbol{0001\hspace{0.05cm}0110,}$
- $\boldsymbol{00101110.}$
+
- $\boldsymbol{0010\hspace{0.05cm}1110.}$
  
{Welche Bitfolge ist dem blauen Punkt zugeordnet?
+
{Which bit sequence is associated with the blue dot?
|type="[]"}
+
|type="()"}
- $\boldsymbol{00001011,}$
+
- $\boldsymbol{0000\hspace{0.05cm}1011,}$
+ $\boldsymbol{00010011,}$
+
+ $\boldsymbol{0001\hspace{0.05cm}0011,}$
- $\boldsymbol{00010110,}$
+
- $\boldsymbol{0001\hspace{0.05cm}0110,}$
- $\boldsymbol{00101110.}$
+
- $\boldsymbol{0010\hspace{0.05cm}1110.}$
  
{Liegt hier eine Gray–Codierung vor?
+
{Is there a gray encoding here?
|type="[]"}
+
|type="()"}
+ Nein.
+
+ no.
- Ja.
+
- Yes.
  
{Welche Aussagen gelten hinsichtlich Gray–Codierung und Bitfehlerrate?
+
{Which statements are valid regarding Gray encoding and bit error rate?
|type="[]"}
+
|type="()"}
+ Gray–Codierung verkleinert die Bitfehlerrate.
+
+ Gray encoding decreases the bit error rate.
- Gray–Codierung vergrößert die Bitfehlerrate.
+
- Gray encoding increases the bit error rate.
- Gray–Codierung hat keinen Einfluss auf die Bitfehlerrate.
+
- Gray encoding has no effect on the bit error rate.
  
  
Line 87: Line 96:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Der erste Quadrant umfasst $8 \cdot 8\underline{ = 64}$ mögliche Punkte. Damit handelt es sich um eine $4 \cdot 64 = 256–\rm QAM.$
+
'''(1)'''&nbsp; Correct is the <u>proposed solution 4</u>:
 +
*The first quadrant includes $8 \cdot 8\ \underline{ = 64}$ possible points.  
 +
*Thus, it is a $4 \cdot 64 = 256$-QAM.
  
'''(2)'''&nbsp; Es muss $2^b = 256$ gelten. Daraus folgt: $\underline{b = 8}$.
 
  
'''(3)'''&nbsp; Die $\underline{ {\rm MSB} \  \boldsymbol{00}}$ zeigen an, dass $a_{\rm I}$ und $a_{\rm Q}$ positiv sind und markieren somit den hier betrachteten ersten Quadranten. Entsprechend gilt: $\boldsymbol{10}: 2.$ Quadrant, $\boldsymbol{11}: 3$. Quadrant, $\boldsymbol{01}: 4$. Quadrant.
+
'''(2)'''&nbsp; It must hold $2^b = 256$. It follows that $\underline{b = 8}$.
  
'''(4)'''&nbsp; Entsprechend der Angabe ist der Inphasenanteil negativ $(q_{7} = \boldsymbol{1})$. Aus $\boldsymbol{10011}_{\rm binär} = 19_{\rm dez} ergibt sich das Zweierkomplement 19 – 32 = –13. Der Quadraturanteil ergibt sich aus $\boldsymbol{01011}_{\rm binär} = 11:$
 
  
 +
'''(3)'''&nbsp; The correct solution is <u>proposition 1</u>:
 +
*The $\underline{ {\rm MSB} \boldsymbol{00}}$ indicate that $a_{\rm I}$ and $a_{\rm Q}$ are positive and thus mark the first quadrant considered here.
 +
*Correspondingly, &nbsp; &nbsp; $\boldsymbol{10}$ &nbsp; &rArr; &nbsp; 2nd quadrant, &nbsp; &nbsp; $\boldsymbol{11}$&nbsp; &rArr; &nbsp; 3rd quadrant, &nbsp; &nbsp; $\boldsymbol{01}$ &nbsp; &rArr; &nbsp; 4th quadrant.
 +
 +
 +
'''(4)'''&nbsp; According to the specification, the in-phase fraction is negative $(q_{7} = \boldsymbol{1})$.
 +
*From $\boldsymbol{10011}_{\rm binary} = 19_{\rm dec}$ we get the two's complement $19 - 32= -13$.
 +
*The quadrature part is given by $\boldsymbol{01011}_{\rm binary} = 11:$
 
:$$\underline{a_{\rm I} = -13,\hspace{0.2cm}a_{\rm Q} = +11} \hspace{0.05cm}.$$
 
:$$\underline{a_{\rm I} = -13,\hspace{0.2cm}a_{\rm Q} = +11} \hspace{0.05cm}.$$
  
'''(5)'''&nbsp;
 
  
 +
'''(5)'''&nbsp; The correct solution is <u>proposed solution 3</u>:
 +
*According to the specification, it must be:
 +
 +
:$$ \ \ \ \ a_{\rm I} = 3\text{:} \ \ \ \ q_{5} = \boldsymbol{0}, \ q_{3} = \boldsymbol{0}, \ q_{1} = \boldsymbol{1} \Rightarrow \boldsymbol{0011}_{\rm binary} = 3,$$
 +
:$$ \ \ \ a_{\rm Q} = 13\text{:}  \ \ \ \ q_{4} = \boldsymbol{1}, q_{2} = \boldsymbol{1}, q_{0} = \boldsymbol{0}  \Rightarrow \boldsymbol{1101}_{\rm binary} = 13.$$
 +
From this follows a total of:&nbsp; $\langle \hspace{0.05cm} q_{7}, \ q_{6}, \ q_{5}$, ... , $q_{1}, \ q_{0} \hspace{0.05cm} \rangle = \boldsymbol{0001\hspace{0.05cm}0110}.$
 +
 +
 +
'''(6)'''&nbsp; Correct is <u>the proposed solution 2</u>:
 +
*Compared to the last exercise, there is no change with respect to $a_{\rm I}$.
 +
*On the other hand now
 +
:$$a_{\rm Q} = 11\text{:}  q_{4} = \boldsymbol{1}, q_{2} = \boldsymbol{0}, q_{0} = \boldsymbol{1}    \Rightarrow \boldsymbol{1011}_{\rm binary} = 11.$$
 +
From this follows a total of:&nbsp; $\langle \hspace{0.05cm}q_{7}, \ q_{6}, \ q_{5}$, ... , $q_{1}, \ q_{0} \hspace{0.05cm} \rangle = \boldsymbol{0001\hspace{0.05cm}0010}.$
 +
 +
 +
'''(7)'''&nbsp; There is <u>no Gray encoding</u> because the two adjacent signal space points "red" and "blue" differ by more than one bit.
 +
 +
 +
'''(8)'''&nbsp; Correct here is <u>the proposed solution 1</u>:
 +
*For Gray coding, each symbol error results in only a single bit error.
 +
*For the bit error probability, we get $p_{\rm B} = p_{\rm S}/b$, since the number of transmitted bits is greater than the number of QAM symbols by a factor of $b$.
 +
*With other encoding, this minimum value is not reached.
 +
 +
 +
[[File:P_ID1978__Bei_A_2_3_Loesung.png|right|frame|$\rm256&ndash;QAM$: Full allocation of the first quadrant]]
 +
The final graph shows all the signal space points of the first quadrant, with the points labeled with the decimal values of the binary sequences.
 +
 +
The thinly drawn lines indicate a second approach to determining signal space occupancy, which is explained in the [[Examples_of_Communication_Systems/xDSL_as_Transmission_Technology#Possible_QAM_signal_space_constellations|"theory section"]].
  
  
[[Category:Aufgaben zu Beispiele von Nachrichtensystemen|^2.3 xDSL als Übertragungstechnik
+
[[Category:Examples of Communication Systems: Exercises|^2.3 xDSL Transmission Technology
  
 
^]]
 
^]]

Latest revision as of 15:14, 7 March 2023

Given QAM signal space allocation

In  $\rm ADSL$  (Asymmetric Digital Subscriber Line), different transmission methods are applicable. For  $\rm QAM$  as well as for  $\rm CAP$  and  $\rm DMT$  a signal space allocation takes place.

The graph shows the first quadrant of the considered signal space mapping. The four color-coded points are referred to in the exercise. It should be noted:

  • The in-phase and quadrature coefficients  $(a_{\rm I}, \ a_{\rm Q})$  can here respectively take the values  $1, \ 3$,  ... ,  $15$  . In other quadrants also the negative values  $-1$,  $-3$, ... , $-15$  are possible.
  • Each  $b$  bit is combined into a signal space point, identified by the coordinates  $a_{\rm I}$  and  $a_{\rm Q}$.
  • If a bit sequence  $(q_{b-1}, \ q_{b-2}$, ... , $q_{0})$  transmitted, the  $\rm MSB$  (Most Significant Bits)  $q_{b-1}$  and  $q_{b-2}$  signify the sign of  $a_{\rm I}$  and  $a_{\rm Q}$, and hence the quadrant.
  • If  $q_{b-1} = 0$, then  $a_{\rm I}$  is positive. In contrast  $q_{b-1} = 1$  indicates a negative  $a_{\rm I}$ . The same relationship exists between  $q_{b-2}$  and  $a_{\rm Q}$.
  • The in-phase part  $a_{\rm I}$  is given as the decimal value of the binary number  $(q_{b-1}, \ q_{b-3}$, ... , $q_{1}, \ 1)$. Negative numbers are represented by the two's complement.
  • The quadrature part  $a_{\rm Q}$  is given as the decimal value of the binary number  $(q_{b-2}, \ q_{b-4}$, ... , $q_{0}, \ 1)$. Negative numbers are also represented here by the two's complement.


The goal of this exercise is to map given bit sequences to the correct signal space point. The reverse assignment is also demonstrated.





Hint:




Questions

1

What is the constellation of the considered example?

8-QAM,
16-QAM,
64-QAM,
256-QAM.

2

How many bits are combined to one signal space point?

$b \ = \ $

3

What are the MSB values for the quadrant shown in the graphic?

$q_{7} = \boldsymbol{0}, q_{6} = \boldsymbol{0}\,$
$q_{7} = \boldsymbol{1}, q_{6} = \boldsymbol{0},$
$q_{7} = \boldsymbol{1}, q_{6} = \boldsymbol{1},$
$q_{7} = \boldsymbol{0}, q_{6} = \boldsymbol{1}.$

4

What are the coordinates of the bit sequence  $\boldsymbol{1001\hspace{0.05cm}0011}$?

$ a_{\rm I} \ = \ $

$ a_{\rm Q} \ = \ $

5

Which bit sequence is associated with the red dot?

$\boldsymbol{0000\hspace{0.05cm}1011,}$
$\boldsymbol{0001\hspace{0.05cm}0011,}$
$\boldsymbol{0001\hspace{0.05cm}0110,}$
$\boldsymbol{0010\hspace{0.05cm}1110.}$

6

Which bit sequence is associated with the blue dot?

$\boldsymbol{0000\hspace{0.05cm}1011,}$
$\boldsymbol{0001\hspace{0.05cm}0011,}$
$\boldsymbol{0001\hspace{0.05cm}0110,}$
$\boldsymbol{0010\hspace{0.05cm}1110.}$

7

Is there a gray encoding here?

no.
Yes.

8

Which statements are valid regarding Gray encoding and bit error rate?

Gray encoding decreases the bit error rate.
Gray encoding increases the bit error rate.
Gray encoding has no effect on the bit error rate.


Solution

(1)  Correct is the proposed solution 4:

  • The first quadrant includes $8 \cdot 8\ \underline{ = 64}$ possible points.
  • Thus, it is a $4 \cdot 64 = 256$-QAM.


(2)  It must hold $2^b = 256$. It follows that $\underline{b = 8}$.


(3)  The correct solution is proposition 1:

  • The $\underline{ {\rm MSB} \boldsymbol{00}}$ indicate that $a_{\rm I}$ and $a_{\rm Q}$ are positive and thus mark the first quadrant considered here.
  • Correspondingly,     $\boldsymbol{10}$   ⇒   2nd quadrant,     $\boldsymbol{11}$  ⇒   3rd quadrant,     $\boldsymbol{01}$   ⇒   4th quadrant.


(4)  According to the specification, the in-phase fraction is negative $(q_{7} = \boldsymbol{1})$.

  • From $\boldsymbol{10011}_{\rm binary} = 19_{\rm dec}$ we get the two's complement $19 - 32= -13$.
  • The quadrature part is given by $\boldsymbol{01011}_{\rm binary} = 11:$
$$\underline{a_{\rm I} = -13,\hspace{0.2cm}a_{\rm Q} = +11} \hspace{0.05cm}.$$


(5)  The correct solution is proposed solution 3:

  • According to the specification, it must be:
$$ \ \ \ \ a_{\rm I} = 3\text{:} \ \ \ \ q_{5} = \boldsymbol{0}, \ q_{3} = \boldsymbol{0}, \ q_{1} = \boldsymbol{1} \Rightarrow \boldsymbol{0011}_{\rm binary} = 3,$$
$$ \ \ \ a_{\rm Q} = 13\text{:} \ \ \ \ q_{4} = \boldsymbol{1}, q_{2} = \boldsymbol{1}, q_{0} = \boldsymbol{0} \Rightarrow \boldsymbol{1101}_{\rm binary} = 13.$$

From this follows a total of:  $\langle \hspace{0.05cm} q_{7}, \ q_{6}, \ q_{5}$, ... , $q_{1}, \ q_{0} \hspace{0.05cm} \rangle = \boldsymbol{0001\hspace{0.05cm}0110}.$


(6)  Correct is the proposed solution 2:

  • Compared to the last exercise, there is no change with respect to $a_{\rm I}$.
  • On the other hand now
$$a_{\rm Q} = 11\text{:} q_{4} = \boldsymbol{1}, q_{2} = \boldsymbol{0}, q_{0} = \boldsymbol{1} \Rightarrow \boldsymbol{1011}_{\rm binary} = 11.$$

From this follows a total of:  $\langle \hspace{0.05cm}q_{7}, \ q_{6}, \ q_{5}$, ... , $q_{1}, \ q_{0} \hspace{0.05cm} \rangle = \boldsymbol{0001\hspace{0.05cm}0010}.$


(7)  There is no Gray encoding because the two adjacent signal space points "red" and "blue" differ by more than one bit.


(8)  Correct here is the proposed solution 1:

  • For Gray coding, each symbol error results in only a single bit error.
  • For the bit error probability, we get $p_{\rm B} = p_{\rm S}/b$, since the number of transmitted bits is greater than the number of QAM symbols by a factor of $b$.
  • With other encoding, this minimum value is not reached.


$\rm256–QAM$: Full allocation of the first quadrant

The final graph shows all the signal space points of the first quadrant, with the points labeled with the decimal values of the binary sequences.

The thinly drawn lines indicate a second approach to determining signal space occupancy, which is explained in the "theory section".