Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 4.09: Recursive Systematic Convolutional Codes"

From LNTwww
 
(39 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{quiz-Header|Buchseite=Kanalcodierung/Grundlegendes zu den Turbocodes}}
+
{{quiz-Header|Buchseite=Channel_Coding/The_Basics_of_Turbo_Codes}}
  
[[File:P_ID3040__KC_A_4_9_v1.png|right|frame|Zustandsübergangsdiagramm eines RSC–Codes]]
+
[[File:P_ID3040__KC_A_4_9_v1.png|right|frame|State transition diagram <br>of an RSC code]]
In der [[Aufgaben:4.08_Wiederholung_zu_den_Faltungscodes|Aufgabe A4.8]] wurden bereits wichtige Eigenschaften von Faltungscodes aus dem Zustandsübergangsdiagramm abgeleitet, wobei von einer nichtrekursiven Filterstruktur ausgegangen wurde.
+
In&nbsp; [[Aufgaben:Exercise_4.08:_Repetition_to_the_Convolutional_Codes|$\text{Exercise 4.8}$]]&nbsp; important properties of convolutional codes have already been derived from the state transition diagram,&nbsp; assuming a non-recursive filter structure.
  
Nun wird ein Rate&ndash;1/2&ndash;RSC&ndash;Code in ähnlicher Weise behandelt. Hierbei steht &bdquo;RSC&rdquo; für &bdquo;Recursive Systematic Convolutional&rdquo;.
+
Now a rate&nbsp; $1/2$&nbsp; RSC code is treated in a similar manner.&nbsp; Here&nbsp; RSC&nbsp; stands for&nbsp; "recursive systematic convolutional".
  
Die Übertragungsfunktionsmatrix eines RSC&ndash;Faltungscodes kann wie folgt angegeben werden:
+
The transfer function matrix of an RSC convolutional code can be specified as follows:
 
:$${\boldsymbol{\rm G}}(D) = \left [  1\hspace{0.05cm},\hspace{0.3cm} G^{(2)}(D)/G^{(1)}(D)  \right ]  
 
:$${\boldsymbol{\rm G}}(D) = \left [  1\hspace{0.05cm},\hspace{0.3cm} G^{(2)}(D)/G^{(1)}(D)  \right ]  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Ansonsten gelten hier die genau gleichen Voraussetzungen wie bei Aufgabe A4.8. Wir verweisen wieder auf folgende Theorieseiten:
+
Otherwise,&nbsp; exactly the same conditions apply here as in Exercise 4.8.&nbsp; We refer again to the following theory pages:
  
[[Kanalcodierung/Algebraische_und_polynomische_Beschreibung#Systematische_Faltungscodes|Systematische Faltungscodes (1)]]
+
#[[Channel_Coding/Algebraic_and_Polynomial_Description#Systematic_convolutional_codes|"Systematic convolutional codes"]]
 +
#[[Channel_Coding/Code_Description_with_State_and_Trellis_Diagram#Representation_in_the_state_transition_diagram|"Representation in the state transition diagram"]]
 +
#[[Channel_Coding/Code_Description_with_State_and_Trellis_Diagram#Definition_of_the_free_distance|"Definition of the free distance"]]
 +
#[[Channel_Coding/Algebraic_and_Polynomial_Description#GF.282.29_description_forms_of_a_digital_filter|"GF(2) description forms of a digital filter"]]
 +
#[[Channel_Coding/Algebraic_and_Polynomial_Description#Application_of_the_D.E2.80.93transform_to_rate_.7F.27.22.60UNIQ-MathJax158-QINU.60.22.27.7F_convolution_encoders| "Application of the&nbsp;  D–transform  to rate&nbsp;  $1/n$&nbsp; convolution encoders"]]
 +
#[[Channel_Coding/Algebraic_and_Polynomial_Description#Filter_structure_with_fractional.E2.80.93rational_transfer_function|"Filter structure with fractional–rational transfer function"]]
  
[[Kanalcodierung/Codebeschreibung_mit_Zustands%E2%80%93_und_Trellisdiagramm#Darstellung_im_Zustands.C3.BCbergangsdiagramm|Darstellung im Zustandsübergangsdiagramm (1)]]
 
  
[[Kanalcodierung/Codebeschreibung_mit_Zustands%E2%80%93_und_Trellisdiagramm#Definition_der_freien_Distanz|Definition der freien Distanz (1)]]
+
In the state transition diagram,&nbsp; two arrows go from each state.&nbsp; The label is&nbsp; "$u_i \hspace{0.05cm}| \hspace{0.05cm} x_i^{(1)}x_i^{(2)}$".&nbsp; For a systematic code,&nbsp; this involves:
 +
* The first code bit is identical to the information bit: &nbsp; $\hspace{0.2cm} x_i^{(1)} = u_i &#8712; \{0, \, 1\}$.
 +
* The second code bit is the parity-check bit: &nbsp; \hspace{0.2cm} x_i^{(2)} = p_i &#8712; \{0, \, 1\}.
  
[[Kanalcodierung/Algebraische_und_polynomische_Beschreibung#GF.282.29.E2.80.93Beschreibungsformen_eines_Digitalen_Filters|GF(2)&ndash;Beschreibungsformen eines Digitalen Filters (2)]]
 
  
[[Kanalcodierung/Algebraische_und_polynomische_Beschreibung#Anwendung_der_D.E2.80.93Transformation_auf_Rate.E2.80.931.2Fn.E2.80.93Faltungscoder| Anwendung der D&ndash;Transformation auf Rate&ndash;1/n&ndash;Faltungscodes (2)]]
 
  
[[Kanalcodierung/Algebraische_und_polynomische_Beschreibung#Filterstruktur_bei_gebrochen.E2.80.93rationaler_.C3.9Cbertragungsfunktion|Filterstruktur bei gebrochen&ndash;rationaler Übertragungsfunktion]]
 
  
Im Zustandsübergangsdiagramm wird grundsätzlich vom Zustand S0 ausgegangen. Von jedem Zustand gehen zwei Pfeile ab. Die Beschriftung lautet &bdquo;ui|x(1)ix(2)i&rdquo;. Bei einem systematischen Code gilt dabei:
 
* Das erste Codebit ist identisch mit dem Informationsbit: \hspace{0.2cm} x_i^{(1)} = u_i &#8712; \{0, \, 1\}.
 
* Das zweite Codebit ist das Prüfbit (Paritybit): \hspace{0.2cm} x_i^{(2)} = p_i &#8712; \{0, \, 1\}.
 
  
  
''Hinweise:''
 
* Die Aufgabe bezieht sich auf das Kapitel [[...]].
 
* Ähnliche Aufgaben finden Sie in den Kapiteln 3.1 bis 3.3.
 
* In den Fragen zu dieser Aufgabe werden folgende vektoriellen Größen verwendet:
 
** Informationssequenz: u_=(u1,u2,...),
 
** Paritysequenz: p_=(p1,p2,...),
 
** Impulsantwort: g_=(g1,g2,...); diese ist gleich der Paritysequenz p_ für u_=(1,0,0,...).
 
  
 +
<u>Hints:</u>
 +
* The exercise refers to the chapter&nbsp; [[Channel_Coding/The_Basics_of_Turbo_Codes|"Basics of Turbo Codes"]].
 +
 +
* The following vectorial quantities are used in the questions for this exercise:
  
 +
:* the information sequence:&nbsp; u_=(u1,u2,...),
 +
:* the parity-check sequence:&nbsp; p_=(p1,p2,...),
 +
:* the impulse response:&nbsp; g_=(g1,g2,...); this is equal to the parity sequence&nbsp; p_&nbsp; for&nbsp; u_=(1,0,0,...).
  
===Fragebogen===
+
 
 +
 
 +
===Questions===
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice
+
{What is the impulse response&nbsp; g_&nbsp;?
 +
|type="()"}
 +
+&nbsp;  g_=(1,1,1,0,1,1,0,1,1,...).
 +
-&nbsp;  g_=(1,0,1,0,0,0,0,0,0,...).
 +
 
 +
{It holds &nbsp; u_=(1,1,0,1).&nbsp; Which statements hold for the parity sequence&nbsp; p_&nbsp;?
 
|type="[]"}
 
|type="[]"}
+ correct
+
-&nbsp;  p_=(1,0,1,0,0,0,0,0,0,0,0,0,...).
- false
+
+&nbsp;  p_=(1,0,0,0,0,1,1,0,1,1,0,1,...).
 +
- With limited information sequence&nbsp; u_ &nbsp; &rArr; &nbsp; p_&nbsp; is also limited.
  
{Input-Box Frage
+
{What is the&nbsp; D&ndash;transfer function&nbsp; G(D)?
 +
|type="[]"}
 +
+&nbsp;  G(D)=1+D+D2+D4+D5+D7+D8+....
 +
+&nbsp;  G(D)=(1+D2)/(1+D+D2).
 +
-&nbsp;  G(D)=(1+D+D2)/(1+D2).
 +
 
 +
{Now let&nbsp; u_=(1,1,1).&nbsp; Which statements hold for the parity sequence&nbsp; p_?
 +
|type="[]"}
 +
+&nbsp;  p_=(1,0,1,0,0,0,0,0,0,0,0,0,...).
 +
-&nbsp;  p_=(1,0,0,0,0,1,1,0,1,1,0,1,...).
 +
- With limited information sequence&nbsp; u_ &nbsp; &rArr; &nbsp; p_&nbsp; is also limited.
 +
 
 +
{What is the free distance&nbsp; dF&nbsp; of this RSC encoder?
 
|type="{}"}
 
|type="{}"}
$xyz \ = \ ${ 5.4 3% } ab
+
$d_{\rm F} \ = \ ${ 5 3% }
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  
+
'''(1)'''&nbsp; Tracing the transitions in the state diagram for the sequence &nbsp;  u_=(1,0,0,0,0,0,0,0,0) &nbsp;  at the input,&nbsp; we get the path
'''(2)'''&nbsp;  
+
:S_0 &#8594; S_1 &#8594; S_3 &#8594; S_2 &#8594; S_1 &#8594; S_3 &#8594; S_2 &#8594; S_1 &#8594; S_3 &#8594; \hspace{0.05cm}\text{...}  \hspace{0.05cm}
'''(3)'''&nbsp;  
+
 
'''(4)'''&nbsp;  
+
*For each transition,&nbsp; the first code symbol&nbsp; x(1)i&nbsp; is equal to the information bit&nbsp; ui&nbsp; and the code symbol&nbsp; x(2)i&nbsp; indicates the parity-check bit&nbsp; pi.
'''(5)'''&nbsp;  
+
 +
*This gives the result corresponding to <u>solution proposition 1</u>:
 +
:$$\underline{p}= (\hspace{0.05cm}1\hspace{0.05cm},
 +
\hspace{0.05cm}1\hspace{0.05cm},
 +
\hspace{0.05cm}1\hspace{0.05cm},
 +
\hspace{0.05cm} 0\hspace{0.05cm},
 +
\hspace{0.05cm} 1\hspace{0.05cm},
 +
\hspace{0.05cm} 1\hspace{0.05cm},
 +
\hspace{0.05cm} 0\hspace{0.05cm},
 +
\hspace{0.05cm} 1\hspace{0.05cm},
 +
\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}\text{...}  \hspace{0.05cm})
 +
= \underline{g}\hspace{0.05cm}.$$
 +
 
 +
*For any RSC code,&nbsp; the impulse response&nbsp; g_&nbsp; is infinite in length and becomes periodic at some point,&nbsp; in this example with period&nbsp; P=3&nbsp; and&nbsp; "0,1,1".
 +
 
 +
 
 +
 
 +
[[File:EN_KC_A_4_9b_v1.png|right|frame|Clarification of&nbsp;  p_=(1,1,0,1)TG]]
 +
'''(2)'''&nbsp; The graph shows the solution of this exercise according to the equation&nbsp; p_=u_TG.
 +
* Here the generator matrix&nbsp; G&nbsp; is infinitely extended downward and to the right.
 +
 +
*The correct solution is&nbsp; <u>proposal 2</u>.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; Correct are&nbsp; <u>the proposed solutions 1 and 2</u>:
 +
*Between the impulse response&nbsp; g_&nbsp; and the&nbsp; D&ndash;transfer function&nbsp; G(D)&nbsp; there is the relation according to the first proposed solution:
 +
:$$\underline{g}= (\hspace{-0.05cm}1\hspace{-0.05cm},
 +
\hspace{-0.07cm}1\hspace{-0.07cm},
 +
\hspace{-0.07cm}1\hspace{-0.07cm},
 +
\hspace{-0.07cm}0\hspace{-0.07cm},
 +
\hspace{-0.07cm}1\hspace{-0.07cm},
 +
\hspace{-0.07cm}1\hspace{-0.07cm},
 +
\hspace{-0.07cm}0\hspace{-0.07cm},
 +
\hspace{-0.07cm}1\hspace{-0.07cm},
 +
\hspace{-0.07cm}1\hspace{-0.07cm},
 +
... ) \hspace{0.3cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet \hspace{0.3cm}
 +
G(D) =  1\hspace{-0.05cm}+\hspace{-0.05cm} D\hspace{-0.05cm} +\hspace{-0.05cm} D^2\hspace{-0.05cm} +\hspace{-0.05cm} D^4 \hspace{-0.05cm}+\hspace{-0.05cm} D^5 \hspace{-0.05cm}+\hspace{-0.05cm} D^7 \hspace{-0.05cm}+\hspace{-0.05cm} D^8 +  \text{...} .$$
 +
 
 +
*Let us now examine the second proposal:
 +
:$$G(D) = \frac{1+  D^2}{1+ D  + D^2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 +
G(D) \cdot [1+ D  + D^2] = 1+  D^2 \hspace{0.05cm}.$$
 +
 
 +
*The following calculation shows that this equation is indeed true:
 +
:(1+D+D2+D4+D5+D7+D8+...)(1+D+D2)=
 +
:=1+D+D2+D4+D5+D7+D8+D10+...
 +
:+D+D2+D3+D5+D6+D8+D9+...
 +
:+D2+D3+D4+D6+D7+D9+D10+...
 +
:$$=\underline{1\hspace{0.72
 +
cm}+ D^2} \hspace{0.05cm}.$$
 +
 
 +
*But since equation&nbsp; '''(2)'''&nbsp; is true,&nbsp; the last equation must be false.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; Correct is only the&nbsp; <u>proposed solution 1</u>:
 +
*From &nbsp; u_=(1,1,1) &nbsp; follows &nbsp; U(D)=1+D+D2.&nbsp; Thus also holds:
 +
:$$P(D) = U(D) \cdot G(D) = (1+D+D^2) \cdot \frac{1+D^2}{1+D+D^2}= 1+D^2\hspace{0.3cm}
 +
\Rightarrow\hspace{0.3cm}  \underline{p}= (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}\text{...}\hspace{0.05cm})\hspace{0.05cm}. $$
 +
* If the variables &nbsp; ui &nbsp; and &nbsp; gi &nbsp; were real-valued,&nbsp; the&nbsp; (discrete)&nbsp; convolution &nbsp; p_=u_g_&nbsp;  would always lead to a broadening.
 +
[[File:EN_KC_A_4_9d_v1.png|right|frame|Clarification of&nbsp;  p_=(1,1,1,0,...)TG]]
 +
*In this case &nbsp; p_&nbsp; would be broader than &nbsp; u_ &nbsp; and also broader than &nbsp; g_.
 +
 
 +
* On the other hand,&nbsp;  for &nbsp; u_i &#8712; {\rm GF}(2) &nbsp; and &nbsp; g_i &#8712; {\rm GF}(2) &nbsp; it may&nbsp; (but need not)&nbsp; happen that even with unlimited &nbsp;  u_ &nbsp; or for unlimited &nbsp; g_ &nbsp; the convolution product &nbsp; p_=u_g_&nbsp; is limited.
 +
 
 +
*The result is finally checked according to the equation&nbsp; p_=u_TG&nbsp; is checked.&nbsp; See graph on the right.
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; Following a similar procedure as in&nbsp; [[Aufgaben:Exercise_4.08:_Repetition_to_the_Convolutional_Codes|Exercise A4.8,&nbsp; (4)]],&nbsp; one can see:
 +
*The free distance is again determined by the path&nbsp;
 +
:S_0 &#8594; S_0 &#8594; S_1 &#8594; S_2 &#8594; S_0 &#8594; S_0 &#8594; \hspace{0.05cm}\text{...}\hspace{0.05cm}.
 +
*But the associated encoded sequence&nbsp; x_&nbsp; is now &nbsp;" 00 11 10 11 00 ...".
 +
 +
*This gives the free distance to&nbsp; dF =5_.
 +
 +
*In contrast,&nbsp; in the non-recursive code&nbsp; (Exercise 4.8),&nbsp; the free distance was&nbsp; dF=3.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu  Kanalcodierung|^4.3 Grundlegendes zu den Turbocodes^]]
+
[[Category:Channel Coding: Exercises|^4.3 About the Turbo Codes^]]

Latest revision as of 18:06, 13 March 2023

State transition diagram
of an RSC code

In  Exercise 4.8  important properties of convolutional codes have already been derived from the state transition diagram,  assuming a non-recursive filter structure.

Now a rate  1/2  RSC code is treated in a similar manner.  Here  RSC  stands for  "recursive systematic convolutional".

The transfer function matrix of an RSC convolutional code can be specified as follows:

{\boldsymbol{\rm G}}(D) = \left [ 1\hspace{0.05cm},\hspace{0.3cm} G^{(2)}(D)/G^{(1)}(D) \right ] \hspace{0.05cm}.

Otherwise,  exactly the same conditions apply here as in Exercise 4.8.  We refer again to the following theory pages:

  1. "Systematic convolutional codes"
  2. "Representation in the state transition diagram"
  3. "Definition of the free distance"
  4. "GF(2) description forms of a digital filter"
  5. "Application of the  D–transform to rate  1/n  convolution encoders"
  6. "Filter structure with fractional–rational transfer function"


In the state transition diagram,  two arrows go from each state.  The label is  "u_i \hspace{0.05cm}| \hspace{0.05cm} x_i^{(1)}x_i^{(2)}".  For a systematic code,  this involves:

  • The first code bit is identical to the information bit:   \hspace{0.2cm} x_i^{(1)} = u_i ∈ \{0, \, 1\}.
  • The second code bit is the parity-check bit:   \hspace{0.2cm} x_i^{(2)} = p_i ∈ \{0, \, 1\}.




Hints:

  • The following vectorial quantities are used in the questions for this exercise:
  • the information sequence:  \hspace{0.2cm} \underline{u} = (u_1, \, u_2, \text{...} \hspace{0.05cm} ),
  • the parity-check sequence:  \hspace{0.2cm} \underline{p} = (p_1, \, p_2, \text{...} \hspace{0.05cm}),
  • the impulse response:  \hspace{0.2cm} \underline{g} = (g_1, \, g_2, \text{...} \hspace{0.05cm} ); \hspace{0.2cm} this is equal to the parity sequence  \underline{p}  for  \underline{u} = (1, \, 0, \, 0, \text{...} \hspace{0.05cm} ).


Questions

1

What is the impulse response  \underline{g} ?

  \underline{g} = (1, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \text{...} \hspace{0.05cm}).
  \underline{g} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{...} \hspace{0.05cm}).

2

It holds   \underline{u} = (1, \, 1, \, 0, \, 1).  Which statements hold for the parity sequence  \underline{p} ?

  \underline{p} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{...} \hspace{0.05cm}).
  \underline{p} = (1, \, 0, \, 0, \, 0, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \text{...} \hspace{0.05cm}).
With limited information sequence  \underline{u}   ⇒   \underline{p}  is also limited.

3

What is the  D–transfer function  G(D)?

  G(D) = 1 + D + D^2 + D^4 + D^5 + D^7 + D^8 + \text{...} \hspace{0.05cm}.
  G(D) = (1 + D^2)/(1 + D + D^2).
  G(D) = (1 + D + D^2)/(1 + D^2).

4

Now let  \underline{u} = (1, \, 1, \, 1).  Which statements hold for the parity sequence  \underline{p}?

  \underline{p} = (1, \, 0, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \text{...} \hspace{0.05cm}).
  \underline{p} = (1, \, 0, \, 0, \, 0, \, 0, \, 1, \, 1, \, 0, \, 1, \, 1, \, 0, \, 1, \text{...} \hspace{0.05cm}).
With limited information sequence  \underline{u}   ⇒   \underline{p}  is also limited.

5

What is the free distance  d_{\rm F}  of this RSC encoder?

d_{\rm F} \ = \


Solution

(1)  Tracing the transitions in the state diagram for the sequence   \underline{u} = (1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0)   at the input,  we get the path

S_0 → S_1 → S_3 → S_2 → S_1 → S_3 → S_2 → S_1 → S_3 → \hspace{0.05cm}\text{...} \hspace{0.05cm}
  • For each transition,  the first code symbol  x_i^{(1)}  is equal to the information bit  u_i  and the code symbol  x_i^{(2)}  indicates the parity-check bit  p_i.
  • This gives the result corresponding to solution proposition 1:
\underline{p}= (\hspace{0.05cm}1\hspace{0.05cm}, \hspace{0.05cm}1\hspace{0.05cm}, \hspace{0.05cm}1\hspace{0.05cm}, \hspace{0.05cm} 0\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 0\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm}, \hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm}\text{...} \hspace{0.05cm}) = \underline{g}\hspace{0.05cm}.
  • For any RSC code,  the impulse response  \underline{g}  is infinite in length and becomes periodic at some point,  in this example with period  P = 3  and  "0, \, 1, \, 1".


Clarification of  \underline{p} = (1, \, 1, \, 0, \, 1)^{\rm T} \cdot \mathbf{G}

(2)  The graph shows the solution of this exercise according to the equation  \underline{p} = \underline{u}^{\rm T} \cdot \mathbf{G}.

  • Here the generator matrix  \mathbf{G}  is infinitely extended downward and to the right.
  • The correct solution is  proposal 2.


(3)  Correct are  the proposed solutions 1 and 2:

  • Between the impulse response  \underline{g}  and the  D–transfer function  \mathbf{G}(D)  there is the relation according to the first proposed solution:
\underline{g}= (\hspace{-0.05cm}1\hspace{-0.05cm}, \hspace{-0.07cm}1\hspace{-0.07cm}, \hspace{-0.07cm}1\hspace{-0.07cm}, \hspace{-0.07cm}0\hspace{-0.07cm}, \hspace{-0.07cm}1\hspace{-0.07cm}, \hspace{-0.07cm}1\hspace{-0.07cm}, \hspace{-0.07cm}0\hspace{-0.07cm}, \hspace{-0.07cm}1\hspace{-0.07cm}, \hspace{-0.07cm}1\hspace{-0.07cm}, ... ) \hspace{0.3cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet \hspace{0.3cm} G(D) = 1\hspace{-0.05cm}+\hspace{-0.05cm} D\hspace{-0.05cm} +\hspace{-0.05cm} D^2\hspace{-0.05cm} +\hspace{-0.05cm} D^4 \hspace{-0.05cm}+\hspace{-0.05cm} D^5 \hspace{-0.05cm}+\hspace{-0.05cm} D^7 \hspace{-0.05cm}+\hspace{-0.05cm} D^8 + \text{...} .
  • Let us now examine the second proposal:
G(D) = \frac{1+ D^2}{1+ D + D^2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} G(D) \cdot [1+ D + D^2] = 1+ D^2 \hspace{0.05cm}.
  • The following calculation shows that this equation is indeed true:
(1+ D+ D^2+ D^4 +D^5 + D^7 + D^8 + \hspace{0.05cm} \text{...}) \cdot (1+ D+ D^2 ) =
=1+ D+ D^2\hspace{1.05cm} +D^4 + D^5 \hspace{1.05cm} +D^7 + D^8 \hspace{1.05cm} + D^{10}+ \hspace{0.05cm} \text{...}
+ \hspace{0.8cm}D+ D^2+D^3 \hspace{1.05cm}+ D^5 + D^6 \hspace{1.05cm} +D^8 + D^9 \hspace{1.25cm} +\hspace{0.05cm} \text{...}
+ \hspace{1.63cm} D^2+D^3+ D^4 \hspace{1.05cm}+ D^6 +D^7 \hspace{1.05cm}+ D^9 + D^{10} \hspace{0.12cm}+ \hspace{0.05cm} \text{...}
=\underline{1\hspace{0.72 cm}+ D^2} \hspace{0.05cm}.
  • But since equation  (2)  is true,  the last equation must be false.


(4)  Correct is only the  proposed solution 1:

  • From   \underline{u} = (1, \, 1, \, 1)   follows   U(D) = 1 + D + D^2.  Thus also holds:
P(D) = U(D) \cdot G(D) = (1+D+D^2) \cdot \frac{1+D^2}{1+D+D^2}= 1+D^2\hspace{0.3cm} \Rightarrow\hspace{0.3cm} \underline{p}= (\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}\text{...}\hspace{0.05cm})\hspace{0.05cm}.
  • If the variables   u_i   and   g_i   were real-valued,  the  (discrete)  convolution   \underline{p} = \underline{u} * \underline{g}   would always lead to a broadening.
Clarification of  \underline{p} = (1, \, 1, \, 1, \, 0, \, ...)^{\rm T} \cdot \mathbf{G}
  • In this case   \underline{p}  would be broader than   \underline{u}   and also broader than   \underline{g}.
  • On the other hand,  for   u_i ∈ {\rm GF}(2)   and   g_i ∈ {\rm GF}(2)   it may  (but need not)  happen that even with unlimited   \underline{u}   or for unlimited   \underline{g}   the convolution product   \underline{p} = \underline{u} * \underline{g}  is limited.
  • The result is finally checked according to the equation  \underline{p} = \underline{u}^{\rm T} \cdot \mathbf{G}  is checked.  See graph on the right.


(5)  Following a similar procedure as in  \text{Exercise A4.8},  (4),  one can see:

  • The free distance is again determined by the path 
S_0 → S_0 → S_1 → S_2 → S_0 → S_0 → \hspace{0.05cm}\text{...}\hspace{0.05cm}.
  • But the associated encoded sequence  \underline{x}  is now  " 00 \ 11 \ 10 \ 11 \ 00 \ ... ".
  • This gives the free distance to  d_{\rm F} \ \underline{= 5}.
  • In contrast,  in the non-recursive code  (Exercise 4.8),  the free distance was  d_{\rm F} = 3.