Loading [MathJax]/jax/element/mml/optable/GreekAndCoptic.js

Difference between revisions of "Exercise 2.4: DSL/DMT with IDFT/DFT"

From LNTwww
 
(18 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 
   
 
   
{{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/xDSL als Übertragungstechnik
+
{{quiz-Header|Buchseite=Examples_of_Communication_Systems/xDSL_as_Transmission_Technology
  
 
}}
 
}}
  
[[File:P_ID1972__Bei_A_2_4.png|right|frame|Zeitabtastwerte bei 3 verschiedenen DMT-Spektralbelegungen]]
+
[[File:EN_Bei_A_2_4.png|right|frame|time samples with different DMT spectral allocations]]
  
Eine [[Beispiele_von_Nachrichtensystemen/xDSL_als_Übertragungstechnik#DMT.E2.80.93Realisierung_mit_IDFT.2FDFT|Realisierungsform]] des DMT–Verfahrens (steht für ''Discrete Multitone Transmission'') basiert auf der Inversen Diskreten Fouriertransformation (IDFT) sowie der DFT am Empfänger.
+
A  [[Examples_of_Communication_Systems/xDSL_as_Transmission_Technology#DMT_realization_with_IDFT.2 FDFT|"realization form"]]  of the  DMT method (stands for ''Discrete Multitone Transmission'') is based on the ''Inverse Discrete Fourier Transform''   $\rm (IDFT)  at the transmitter and the ''Discrete Fourier Transform''  \rm (DFT)$  at the receiver.
  
Beim Sender werden $N/2–1$ Nutzer durch die komplexen Spektralkoeffizienten $D_{k} (k = 1, ..., N/2–1)$ den Frequenzen fk=kf0 zugewiesen, wobei die Grundfrequenz f0 der Kehrwert der Symboldauer T ist.
+
At the transmitter  $N/2-1$  users are represented by the complex spectral coefficients  $D_{k} \ (k = 1,$ ... , $N/2-1)$  allocated to the frequencies  fk=kf0  . The fundamental frequency  f0  is the reciprocal of the symbol duration  T.
  
Es gilt Dk±1±j, falls ein Kanal belegt ist, im anderen Fall Dk=0. Die Koeffizienten D0 und DN/2 sind stets 0. Die obersten Koeffizienten werden konjugiert–komplex belegt:
+
*It holds  $D_{k} \in \{ ±1 ± {\rm j} \}$ if one channel is allocated , in the other case  Dk=0.  
:Dk=DNk,k=N/2+1,...,N1.
+
*The coefficients  D0  and  DN/2  are always zero.  
 +
*The top coefficients are allocated conjugate-complex:
 +
:$$D_k = D_{N-k}^{\star},\hspace{0.2cm}k = N/2 +1,\hspace{0.05cm} \text{...} \hspace{0.05cm}, N-1 \hspace{0.05cm}.$$
  
Dadurch wird sicher gestellt, dass das Zeitsignal s(t) stets reell ist. Die Abtastwerte $s_{0}, ... , s_{N–1}$ dieses Signals werden dabei durch die IDFT gebildet, wobei der zeitliche Abstand zweier Abtastwerte Δt=T/N=1/(Nf0) beträgt. Durch Tiefpassfilterung erhält man das zeitkontinuierliche Signal.
+
This ensures that the time signal  s(t)  is always real. The sample values  $s_{0}$, ... , $s_{N-1}$  of this signal are thereby formed by the IDFT, where the temporal distance of two samples is
 +
:$$\Delta t = T/N = 1/(N \cdot f_{0}).$$
 +
Low-pass filtering is used to obtain the continuous-time signal.
  
Bei ADSL/DMT gilt N=512 und f0=4.3125 kHz. In dem hier betrachteten Beispiel seien die Parameter zur Vereinfachung wie folgt angenommen:
+
For ADSL/DMT,  N=512  and  f0=4.3125 kHz. In the example considered here, let the parameters be assumed as follows for simplicity:
:$$N = 16,\hspace{0.2cm}\Delta t = 10\,{\rm \mu s} \hspace{0.05cm}.$$
+
:$$N = 16,\hspace{0.2cm}\delta t = 10\,{\rm µ s} \hspace{0.05cm}.$$
In der obigen Tabelle sind für drei verschiedene Dk–Belegungen die Abtastwerte sl(l=0,...,15) nach der IDFT angegeben. Gesucht sind die zugehörigen Spektralkoeffizienten $D_{k} (k = 0, ... , 15).$
+
In the above table, for three different  Dk allocations, the sample values  $s_{l} (l = 0$, ... , $15)$  according to the IDFT are given. The corresponding spectral coefficients  $D_{k}\ (k = 0$, ... , $15)$ are sought.
  
''Hinweis:''
 
  
Die Aufgabe gehört zum Kapitel [[Beispiele_von_Nachrichtensystemen/xDSL_als_Übertragungstechnik|xDSL als Übertragungstechnik]]. Das Sendesignal hat bei DSL die Form
+
 
:$$s(t) = \sum_{k = 1}^{K} \left [ 2 \cdot {\rm Re}\{D_k\} \cdot \cos(2\pi \cdot k f_0 \cdot t ) - 2 \cdot {\rm Im}\{D_k\} \cdot \sin(2\pi \cdot k f_0 \cdot t )\right ] \hspace{0.05cm}.$$
+
 
Beachten Sie auch die folgende trigonometrische Beziehung:
+
 
 +
 
 +
 
 +
 
 +
Hints:
 +
*This exercise belongs to the chapter  [[Examples_of_Communication_Systems/xDSL_as_Transmission_Technology|"xDSL as Transmission Technology"]].  
 +
*The transmission signal for DSL has the form
 +
:$$s(t) = \sum_{k = 1}^{K} \big [ 2 \cdot {\rm Re}\{D_k\} \cdot \cos(2\pi \cdot k f_0 \cdot t ) - 2 \cdot {\rm Im}\{D_k\} \cdot \sin(2\pi \cdot k f_0 \cdot t )\big ] \hspace{0.05cm}.$$
 +
*Note also the following trigonometric relationship:
 
:cos(2πf0t+ϕ0)=cos(ϕ0)cos(2πf0t)sin(ϕ0)sin(2πf0t).
 
:cos(2πf0t+ϕ0)=cos(ϕ0)cos(2πf0t)sin(ϕ0)sin(2πf0t).
Man bezeichnet als den ''Crestfaktor'' (oder den Scheitelfaktor) eines Signals das Verhältnis von Maximalwert und Effektivwert.
+
*The ratio of the maximum value and the rms value is called the  ''crest factor'''  (or the crest factor) of a signal.
 +
*You can check your solution with the interactive applet  [[Applets:Diskrete_Fouriertransformation_(Applet)|"Discrete Fourier Transform"]].
 +
 +
 
  
''Hinweis:''
 
  
Ihre Lösung können Sie mit dem folgenden Flash–Modul überprüfen:
 
  
Diskrete Fouriertransformation
 
  
 +
===Questions===
 +
<quiz display=simple>
 +
{ How many users&nbsp; (K)&nbsp; can be provided with this system?
 +
|type="{}"}
 +
K = { 7 }
  
 +
{What is the bandwidth&nbsp; B&nbsp; of the DMT system under consideration?
 +
|type="{}"}
 +
B = { 50 3% }  kHz
  
===Fragebogen===
+
{What are the spectral coefficients for allocation&nbsp; A?
<quiz display=simple>
+
|type="()"}
 +
- D1=1j, all other 0,
 +
+ D1=1+j, D15=1j, all others 0,
 +
- $D_{1} = 1 + {\rm j}, \ D_{15} = 1 + \rm j, \ all \ others \ 0.$
 +
 
 +
{What are the spectral coefficients for allocation&nbsp; B?
 +
|type="()"}
 +
- D2=1j, D14=1+j, all other 0,
 +
- D3=+1j, D13=+1+j, all others 0,
 +
+ D3=1j, D13=1+j, all others 0.
 +
 
 +
{What are the spectral coefficients for the allocation&nbsp; C&nbsp; with&nbsp; C=A+B?
 +
|type="()"}
 +
+ $D_{1} = 1 + {\rm j}, \ D_{3} = -1 -{\rm j}, \ D_{13} = -1 +{\rm j}, \ D_{15} = 1 - {\rm j}$,
 +
- $D_{k} = (-1)^k + {\rm j} \cdot (-1)^{k+1}$.
  
  
 +
{What is the crest factor&nbsp; (smax/seff)&nbsp; for allocation&nbsp; C?
 +
|type="{}"}
 +
smax/seff = { 1.85 3% }
  
  
Line 44: Line 80:
 
</quiz>
 
</quiz>
  
===Musterlösung===
+
===Solution===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;  
+
'''(1)'''&nbsp; The system is designed for K=N/21=7 users_ (N=16).
 +
 
 +
 
 +
'''(2)'''&nbsp; The frame duration T is given by Nδt=0.16ms.
 +
*The fundamental frequency here is accordingly f0=1/T=6.25 kHz and the total bandwidth is B=8f0 =50 kHz_.
 +
*For comparison, for ADSL, this bandwidth results in 2564.3125 kHz=1104 kHz.
 +
 
 +
 
 +
'''(3)'''&nbsp; Correct is <u>the second proposed solution</u>:
 +
* From the 16 samples sl in the first column of the table &nbsp;(allocation A)&nbsp; we see that s(t) describes a harmonic oscillation with period T0=T (only one oscillation). The amplitude is equal to 22=2.828 and the phase is \phi_0 = 45^\circ \ (π/4).
 +
*Thus, for the continuous-time signal, we can write &nbsp;(with f_{0} = 1/T):
 +
:s(t) = 2 \cdot \sqrt{2}\cdot \cos(2\pi f_0 t + \pi /4) \hspace{0.05cm}.
 +
*With the given trigonometric transformation and {\rm cos} \ (π/4) \ = \ {\rm sin} \ (π/4) \ = \ \sqrt{2} still holds:
 +
:s(t) = 2 \cdot \cos(2\pi f_0 t ) - 2 \cdot \sin(2\pi f_0 t ) \hspace{0.05cm}.
 +
*A coefficient comparison with the further equation.
 +
:s(t) = \sum_{k = 1}^{K} \left [ 2 \cdot {\rm Re}[D_k] \cdot \cos(2\pi \cdot k f_0 \cdot t ) - 2 \cdot {\rm Im}[D_k] \cdot \sin(2\pi \cdot k f_0 \cdot t )\right ] \hspace{0.05cm}
 +
:returns the result:
 +
:2 \cdot {\rm Re}[D_1] = 2 \hspace{0.3cm} \ \Rightarrow \ \hspace{0.3cm} {\rm Re}[D_1] = 1\hspace{0.05cm},
 +
:2 \cdot {\rm Im}[D_1] = 2 \hspace{0.3cm} \ \Rightarrow \ \hspace{0.3cm} {\rm Im}[D_1] = 1\hspace{0.05cm}.
 +
*Further note that the coefficient D_{15} is to be allocated the conjugate complex value:
 +
:D_{15} = D_{1}^{\star} = 1 - {\rm j}\hspace{0.05cm}.
 +
 
 +
 
 +
The same result would have been obtained by evaluating the (continuous-time) Fourier transform of s(t):
 +
:S(f) = (1 + {\rm j}) \cdot \delta (f - f_0) + (1 - {\rm j}) \cdot \delta (f + f_0)\hspace{0.05cm}.
 +
The coefficient D_1 describes the weight at the first Dirac function (i.e., at f = f_0), and the coefficient D_{15} = D_{-1} describes the weight of the Dirac function at f = -f_0. Here, the implicit periodic continuation in the DFT (or IDFT) should be noted.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; Correct is <u>the proposed solution 3</u>, where now D_{13} = D_{3}^∗ has to be considered.
 +
*If one plots the samples s_l, one now recognizes the 3-fold frequency. For example, comparing s_2 and s_{10} gives:
 +
:8 \cdot \Delta t ={T}/{2} = 1.5 \cdot T_0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} T_0 = {T}/{3}\hspace{0.05cm}.
 +
*The amplitude is unchanged compared to the allocation \boldsymbol{\rm A}. The phase \phi_0 can be recognized from the first maximum at l = 2:
 +
: s(t) \ = \ 2 \cdot \sqrt{2}\cdot \cos(2\pi \cdot 3 f_0 \cdot ( t - 2 \cdot \delta t)) = \ 2 \cdot \sqrt{2}\cdot \cos(2\pi \cdot 3 f_0 \cdot t + \phi_0), \hspace{0.3cm} \phi_0 = 12 \pi \cdot \frac{\delta t}{T} = \frac{3 \pi}{4} \hspace{0.05cm}.
 +
*Following the same procedure as in exercise '''(3)''', we now obtain {\rm cos}(3π/4) \ = \sin(3π/4) = -\sqrt{2}/2:
 +
:{\rm Re}\{D_3\} = -1, \hspace{0.2cm} {\rm Im}\{D_3\} = -1\hspace{0.05cm}.
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; The correct solution here is <u>the first proposed solution</u>:
 +
* Due to the linearity of the IDFT, the coefficients D_1, D_3, D_{13} and D_{15} are obtained according to the results of the subtasks '''(4)''' and '''(5)'''.
 +
 
 +
 
 +
 
 +
 
 +
'''(6)'''&nbsp; The allocation \boldsymbol{\rm C} leads to the sum of two harmonic oscillations (with f_0 and 3f_0, respectively), each with the same amplitude A. Thus, the average signal power is given by:
 +
:P_{\rm S} = 2 \cdot \frac{A^2}{2} = A^2 = 8\hspace{0.05cm}.
 +
The rms value is equal to the square root of the transmitted power P_{\rm S}:
 +
:s_{\rm eff} = \sqrt{P_{\rm S}} = A = 2.828\hspace{0.05cm}.
 +
The maximum value can be read from the table:
 +
:s_{\rm max} = 5.226\hspace{0.3cm} \Rightarrow \hspace{0.3cm} s_{\rm max}/s_{\rm eff} = \frac{5.226}{2.828} \hspace{0.15cm} \underline{\approx 1.85 \hspace{0.05cm}}.
 +
In contrast, s_{\rm max}/s_{\rm eff}= \sqrt{2} = 1.414 would hold for both \boldsymbol{\rm A} and \boldsymbol{\rm B} allocations.
 +
 
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Line 52: Line 140:
  
  
[[Category:Aufgaben zu Beispiele von Nachrichtensystemen|^2.3 xDSL als Übertragungstechnik
+
[[Category:Examples of Communication Systems: Exercises|^2.3 xDSL Transmission Technology
 
 
 
^]]
 
^]]

Latest revision as of 19:30, 25 March 2023

time samples with different DMT spectral allocations

"realization form"  of the  \rm DMT method (stands for Discrete Multitone Transmission) is based on the Inverse Discrete Fourier Transform   \rm (IDFT)  at the transmitter and the Discrete Fourier Transform   \rm (DFT)  at the receiver.

At the transmitter  N/2-1  users are represented by the complex spectral coefficients  D_{k} \ (k = 1, ... , N/2-1)  allocated to the frequencies  f_{k} = k \cdot f_{0}  . The fundamental frequency  f_{0}  is the reciprocal of the symbol duration  T.

  • It holds  D_{k} \in \{ ±1 ± {\rm j} \} if one channel is allocated , in the other case  D_{k} = 0.
  • The coefficients  D_{0}  and  D_{N/2}  are always zero.
  • The top coefficients are allocated conjugate-complex:
D_k = D_{N-k}^{\star},\hspace{0.2cm}k = N/2 +1,\hspace{0.05cm} \text{...} \hspace{0.05cm}, N-1 \hspace{0.05cm}.

This ensures that the time signal  s(t)  is always real. The sample values  s_{0}, ... , s_{N-1}  of this signal are thereby formed by the IDFT, where the temporal distance of two samples is

\Delta t = T/N = 1/(N \cdot f_{0}).

Low-pass filtering is used to obtain the continuous-time signal.

For ADSL/DMT,  N = 512  and  f_{0} = 4.3125 \ \rm kHz. In the example considered here, let the parameters be assumed as follows for simplicity:

N = 16,\hspace{0.2cm}\delta t = 10\,{\rm µ s} \hspace{0.05cm}.

In the above table, for three different  D_{k} allocations, the sample values  s_{l} (l = 0, ... , 15)  according to the IDFT are given. The corresponding spectral coefficients  D_{k}\ (k = 0, ... , 15) are sought.





Hints:

s(t) = \sum_{k = 1}^{K} \big [ 2 \cdot {\rm Re}\{D_k\} \cdot \cos(2\pi \cdot k f_0 \cdot t ) - 2 \cdot {\rm Im}\{D_k\} \cdot \sin(2\pi \cdot k f_0 \cdot t )\big ] \hspace{0.05cm}.
  • Note also the following trigonometric relationship:
\cos(2\pi f_0 t + \phi_0) = \cos( \phi_0) \cdot \cos(2\pi f_0 t ) - \sin( \phi_0) \cdot \sin(2\pi f_0 t ) \hspace{0.05cm}.
  • The ratio of the maximum value and the rms value is called the  crest factor'  (or the crest factor) of a signal.
  • You can check your solution with the interactive applet  "Discrete Fourier Transform".




Questions

1

How many users  (K)  can be provided with this system?

K \ = \

2

What is the bandwidth  B  of the DMT system under consideration?

B \ = \

\ \rm kHz

3

What are the spectral coefficients for allocation  \boldsymbol{\rm A}?

D_{1} = 1- \rm j, \ all \ other \ 0,
D_{1} = 1 + {\rm j}, \ D_{15} = 1 - \rm j, \ all \ others \ 0,
D_{1} = 1 + {\rm j}, \ D_{15} = 1 + \rm j, \ all \ others \ 0.

4

What are the spectral coefficients for allocation  \boldsymbol{\rm B}?

D_{2} = -1 - {\rm j}, \ D_{14} = -1 + \rm j, \ all \ other \ 0,
D_{3} = +1 - {\rm j}, \ D_{13} = +1 + \rm j, \ all \ others \ 0,
D_{3} = -1 - {\rm j}, \ D_{13} = -1 + \rm j, \ all \ others \ 0.

5

What are the spectral coefficients for the allocation  \boldsymbol{\rm C}  with  \boldsymbol{\rm C} = \boldsymbol{\rm A} + \boldsymbol{\rm B}?

D_{1} = 1 + {\rm j}, \ D_{3} = -1 -{\rm j}, \ D_{13} = -1 +{\rm j}, \ D_{15} = 1 - {\rm j},
D_{k} = (-1)^k + {\rm j} \cdot (-1)^{k+1}.

6

What is the crest factor  (s_{\rm max}/s_{\rm eff})  for allocation  \boldsymbol{\rm C}?

s_{\rm max}/s_{\rm eff} \ = \


Solution

(1)  The system is designed for K = N/2 - 1 \underline{= 7 \ {\rm users}} (N = 16).


(2)  The frame duration T is given by N \cdot \delta t = 0.16 \rm ms.

  • The fundamental frequency here is accordingly f_{0} = 1/T = 6.25 \ \rm kHz and the total bandwidth is B = 8 \cdot f_{0} \ \underline{= 50 \ \rm kHz}.
  • For comparison, for ADSL, this bandwidth results in 256 \cdot 4.3125 \ \rm kHz= 1104 \ kHz.


(3)  Correct is the second proposed solution:

  • From the 16 samples s_{l} in the first column of the table  (allocation \boldsymbol{\rm A})  we see that s(t) describes a harmonic oscillation with period T_{0} = T (only one oscillation). The amplitude is equal to 2 \cdot \sqrt{2} =2.828 and the phase is \phi_0 = 45^\circ \ (π/4).
  • Thus, for the continuous-time signal, we can write  (with f_{0} = 1/T):
s(t) = 2 \cdot \sqrt{2}\cdot \cos(2\pi f_0 t + \pi /4) \hspace{0.05cm}.
  • With the given trigonometric transformation and {\rm cos} \ (π/4) \ = \ {\rm sin} \ (π/4) \ = \ \sqrt{2} still holds:
s(t) = 2 \cdot \cos(2\pi f_0 t ) - 2 \cdot \sin(2\pi f_0 t ) \hspace{0.05cm}.
  • A coefficient comparison with the further equation.
s(t) = \sum_{k = 1}^{K} \left [ 2 \cdot {\rm Re}[D_k] \cdot \cos(2\pi \cdot k f_0 \cdot t ) - 2 \cdot {\rm Im}[D_k] \cdot \sin(2\pi \cdot k f_0 \cdot t )\right ] \hspace{0.05cm}
returns the result:
2 \cdot {\rm Re}[D_1] = 2 \hspace{0.3cm} \ \Rightarrow \ \hspace{0.3cm} {\rm Re}[D_1] = 1\hspace{0.05cm},
2 \cdot {\rm Im}[D_1] = 2 \hspace{0.3cm} \ \Rightarrow \ \hspace{0.3cm} {\rm Im}[D_1] = 1\hspace{0.05cm}.
  • Further note that the coefficient D_{15} is to be allocated the conjugate complex value:
D_{15} = D_{1}^{\star} = 1 - {\rm j}\hspace{0.05cm}.


The same result would have been obtained by evaluating the (continuous-time) Fourier transform of s(t):

S(f) = (1 + {\rm j}) \cdot \delta (f - f_0) + (1 - {\rm j}) \cdot \delta (f + f_0)\hspace{0.05cm}.

The coefficient D_1 describes the weight at the first Dirac function (i.e., at f = f_0), and the coefficient D_{15} = D_{-1} describes the weight of the Dirac function at f = -f_0. Here, the implicit periodic continuation in the DFT (or IDFT) should be noted.


(4)  Correct is the proposed solution 3, where now D_{13} = D_{3}^∗ has to be considered.

  • If one plots the samples s_l, one now recognizes the 3-fold frequency. For example, comparing s_2 and s_{10} gives:
8 \cdot \Delta t ={T}/{2} = 1.5 \cdot T_0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} T_0 = {T}/{3}\hspace{0.05cm}.
  • The amplitude is unchanged compared to the allocation \boldsymbol{\rm A}. The phase \phi_0 can be recognized from the first maximum at l = 2:
s(t) \ = \ 2 \cdot \sqrt{2}\cdot \cos(2\pi \cdot 3 f_0 \cdot ( t - 2 \cdot \delta t)) = \ 2 \cdot \sqrt{2}\cdot \cos(2\pi \cdot 3 f_0 \cdot t + \phi_0), \hspace{0.3cm} \phi_0 = 12 \pi \cdot \frac{\delta t}{T} = \frac{3 \pi}{4} \hspace{0.05cm}.
  • Following the same procedure as in exercise (3), we now obtain {\rm cos}(3π/4) \ = \sin(3π/4) = -\sqrt{2}/2:
{\rm Re}\{D_3\} = -1, \hspace{0.2cm} {\rm Im}\{D_3\} = -1\hspace{0.05cm}.


(5)  The correct solution here is the first proposed solution:

  • Due to the linearity of the IDFT, the coefficients D_1, D_3, D_{13} and D_{15} are obtained according to the results of the subtasks (4) and (5).



(6)  The allocation \boldsymbol{\rm C} leads to the sum of two harmonic oscillations (with f_0 and 3f_0, respectively), each with the same amplitude A. Thus, the average signal power is given by:

P_{\rm S} = 2 \cdot \frac{A^2}{2} = A^2 = 8\hspace{0.05cm}.

The rms value is equal to the square root of the transmitted power P_{\rm S}:

s_{\rm eff} = \sqrt{P_{\rm S}} = A = 2.828\hspace{0.05cm}.

The maximum value can be read from the table:

s_{\rm max} = 5.226\hspace{0.3cm} \Rightarrow \hspace{0.3cm} s_{\rm max}/s_{\rm eff} = \frac{5.226}{2.828} \hspace{0.15cm} \underline{\approx 1.85 \hspace{0.05cm}}.

In contrast, s_{\rm max}/s_{\rm eff}= \sqrt{2} = 1.414 would hold for both \boldsymbol{\rm A} and \boldsymbol{\rm B} allocations.