Difference between revisions of "Applets:Coherent and Non-Coherent On-Off Keying"

From LNTwww
 
(17 intermediate revisions by 4 users not shown)
Line 4: Line 4:
 
==Applet Description==
 
==Applet Description==
 
<br>
 
<br>
Betrachtet wird die Symbolfehlerwahrscheinlichkeit&nbsp; $p_{\rm S}$&nbsp; von On&ndash;Off&ndash;Keying bei weißem Rauschen, gekennzeichnet durch die Streuung&nbsp; $\sigma_{\rm AWGN}$,&nbsp; und zwar sowohl bei kohärenter Demodulation als auch bei inkohärenter Demodulation.&nbsp; Dargestellt werden für beide Fälle die Wahrscheinlichkeitsdichtefunktionen des Empfangssignals für die möglichen Sendesymbole&nbsp; $s_0$&nbsp; und&nbsp; $s_1 \equiv 0$.&nbsp;
 
*Im kohärenten Fall ergeben sich zwei Gaußfunktionen um&nbsp; $s_0$&nbsp; und&nbsp; $s_1$.
 
*Im inkohärenten Fall gibt es eine Rayleigh&ndash;WDF für das Symbol&nbsp; $s_1 = 0$&nbsp; und eine Rice&ndash;WDF für&nbsp; $s_0 \ne 0$,&nbsp; deren Form auch vom Eingabeparameter&nbsp; $C_{\rm Rice}$&nbsp; abhängt.
 
  
 +
Considered is the symbol error probability&nbsp; $p_{\rm S}$&nbsp; of &nbsp; "On&ndash;off keying" &nbsp; $\rm (OOK)$&nbsp; in the presence of white noise,&nbsp; characterized by the standard deviation&nbsp; $\sigma_{\rm AWGN}$,&nbsp; both in the case of&nbsp; coherent demodulation&nbsp; and in the case of&nbsp; noncoherent demodulation. &nbsp; Plotted for both cases are the probability density functions&nbsp; $\rm (PDF)$&nbsp; of the received signal&nbsp; $r(t)$&nbsp; for the possible transmitted symbols&nbsp; $s_0$&nbsp; and&nbsp; $s_1 \equiv 0$.&nbsp;
 +
*In the coherent case, there are two Gaussian functions around&nbsp; $s_0$&nbsp; and&nbsp; $s_1$.
  
Als Zahlenwerte ausgegeben werden die Verbundwahrscheinlichkeiten&nbsp; ${\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1})$ &nbsp; &rArr; &nbsp; (ausgefüllte blaue Fläche in der WDF&ndash;Grafik)&nbsp; und&nbsp; ${\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0})$ &nbsp; &rArr; &nbsp; (rote Fläche) sowie als Endergebnis&nbsp; $p_{\rm S} = {\rm Pr}(\boldsymbol{r} \ne \boldsymbol{s})= {\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) + {\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}).$&nbsp;
+
*In the incoherent case,&nbsp; there is a Rayleigh PDF for the symbol&nbsp; $s_1 = 0$&nbsp; and a Rice PDF for&nbsp; $s_0 \ne 0$,&nbsp; whose form also depends on the input parameter&nbsp; $C_{\rm Rice}$.
*Alle diese Größen hängen auch von der Entscheiderschwelle&nbsp; $G$&nbsp; ab, dessen jeweils optimaler Wert ebenfalls ermittelt wird.
+
 
*Außerdem zeigt das Applet, welchen Fehler man macht, wenn man die im allgemeinen kompliziertere Rice&ndash;WDF durch die bestmögliche Gauß&ndash;WDF approximiert.  
+
 
 +
The applet returns the joint probabilities&nbsp; ${\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1})$ &nbsp; &rArr; &nbsp; $($filled blue area in the PDF graph$)$&nbsp; and&nbsp; ${\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0})$ &nbsp; &rArr; &nbsp; $($red area$)$&nbsp; and as a final result:&nbsp;  
 +
:$$p_{\rm S} = {\rm Pr}(\boldsymbol{r} \ne \boldsymbol{s})= {\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) + {\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}). $$
 +
*All these quantities also depend on the decision threshold&nbsp; $G$&nbsp; whose optimal value in each case is also determined.
 +
 
 +
*In addition,&nbsp; the applet shows which error one makes when approximating the generally more complicated Rice PDF by the best possible Gaussian PDF.
 +
 
 +
 
 +
  
 
==Theoretical Background==
 
==Theoretical Background==
 
<br>
 
<br>
===On&ndash;Off&ndash;Keying mit kohärenter Demodulation===
+
===On&ndash;Off&ndash;Keying with coherent demodulation===
 +
The simplest digital modulation method is&nbsp; "On&ndash;off keying"&nbsp; $\rm (OOK)$.&nbsp;  This method &ndash; also called&nbsp; "Amplitude Shift Keying"&nbsp; $\rm (2&ndash;ASK)$&nbsp; &ndash; can be characterized as follows:<br>
  
Das einfachste digitale Modulationsverfahren ist&nbsp; <i>On&ndash;Off&ndash;Keying</i>&nbsp; $\rm (OOK)$.&nbsp; Dieses Verfahren wird teilweise auch als <i>Amplitude Shift Keying</i>&nbsp; $\rm (2&ndash;ASK)$&nbsp; bezeichnet und kann im äquivalenten Tiefpassbereich wie folgt charakterisiert werden:
+
[[File:EN_Dig_T_4_4_S3.png|right|frame|Signal space constellations for on-off keying|class=fit]]
  
[[File:P ID2054 Dig T 4 4 S3 version1.png|right|frame|Signalraumkonstellationen für On–Off–Keying|class=fit]]
+
*$\rm OOK$&nbsp; is a binary and one-dimensional modulation method,&nbsp; for example with&nbsp; $s_{1} \equiv 0$&nbsp; and
 
+
:*$\boldsymbol{s}_{0} = \{s_0,\ 0\}$&nbsp; $($for cosinusoidal carrier,&nbsp; left graph$)$&nbsp; resp.
$\rm OOK$&nbsp; ist ein binäres und eindimensionales Modulationsverfahren, zum Beispiel  mit&nbsp; $s_{1} \equiv 0$&nbsp; und
+
 
*$\boldsymbol{s}_{0} = \{s_0,\   0\}$&nbsp; (bei Cosinus&ndash;Träger,&nbsp; linke Grafik)&nbsp; bzw.
+
:*$\boldsymbol{s}_{0} = \{0,\ -s_0\}$&nbsp; $($for sinusoidal carrier,&nbsp; right graph$)$.
*$\boldsymbol{s}_{0} = \{0,\ -s_0\}$&nbsp; (bei Sinus&ndash;Träger,&nbsp; rechte Grafik).
 
  
 +
*With coherent demodulation,&nbsp; the signal space constellation of the received signal is equal to that of the transmitted signal and again consists of the two points&nbsp; $\boldsymbol{r}_0=\boldsymbol{s}_0$&nbsp; and&nbsp; $\boldsymbol{r}_1=\boldsymbol{s}_1$. &nbsp;
  
Bei kohärenter Demodulation ist die Signalraumkonstellation des Empfangssignals gleich der des Sendesignals und besteht wieder aus den zwei Punkten&nbsp; $\boldsymbol{r}_0=\boldsymbol{s}_0$&nbsp; und&nbsp; $\boldsymbol{r}_1=\boldsymbol{s}_1$.&nbsp;  In diesem Fall ist das AWGN&ndash;Rauschen eindimensional mit der Varianz&nbsp; $\sigma_{\rm AWGN}^2$&nbsp; anzusetzen und man erhält&nbsp; entsprechend dem&nbsp; [[Digitalsignalübertragung/Approximation_der_Fehlerwahrscheinlichkeit#Fehlerwahrscheinlichkeit_bei_gleichwahrscheinlichen_Symbolen| Theorieteil]]&nbsp; für die&nbsp; '''Symbolfehlerwahrscheinlichkeit'''&nbsp; $p_{\rm S} = {\rm Pr}(\boldsymbol{r}\ne \boldsymbol{s})$:
+
*In this case,&nbsp;  the AWGN noise is one-dimensional with variance&nbsp; $\sigma_{\rm AWGN}^2$&nbsp; and one obtains&nbsp; corresponding to the&nbsp; &nbsp;[[Digital_Signal_Transmission/Approximation_of_the_Error_Probability#Error_probability_for_symbols_with_equal_probability|"theory section"]]&nbsp; for the&nbsp; "symbol error probability":
:$$p_{\rm S} = {\rm Q} \left ( \frac{s_0/2}{\sigma_{\rm AWGN}}\right )  
+
:$$p_{\rm S} = {\rm Pr}(\boldsymbol{r}\ne \boldsymbol{s})= {\rm Q} \left ( \frac{s_0/2}{\sigma_{\rm AWGN}}\right )  
 
  = {\rm Q} \left ( \sqrt{ {E_{\rm S}}/{N_0}}\right ) \hspace{0.05cm}. $$
 
  = {\rm Q} \left ( \sqrt{ {E_{\rm S}}/{N_0}}\right ) \hspace{0.05cm}. $$
Hierzu ist anzumerken:
 
*Die Funktion&nbsp; ${\rm Q}(x)$&nbsp; nennt man das &bdquo;Komplementäre Gaußsche Fehlerintegral&rdquo;.&nbsp; Der Link weist auf das Applet&nbsp;  [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|Komplementäre Gaußsche Fehlerfunktionen]].
 
*Obige Gleichung gilt für gleichwahrscheinliche Symbole mit der Entscheiderschwelle&nbsp; $G$&nbsp; in der Mitte zwischen&nbsp; $\boldsymbol{r}_0$&nbsp; und&nbsp; $\boldsymbol{r}_1$.<br>
 
*Der Abstand der beiden Signalpunkte von der Entscheiderschwelle&nbsp; $G$&nbsp; beträgt somit jeweils&nbsp; $\Delta G = s_0/2$&nbsp; $($Zähler im Argument der ersten&nbsp; $\rm Q$&ndash;Funktion$)$. 
 
*$E_{\rm S}=s_0^2/2 \cdot T$&nbsp; bezeichnet für diesen Fall die &bdquo;mittlere Energie pro Symbol&rdquo; und&nbsp; $N_0=2T \cdot \sigma_{\rm AWGN}^2$&nbsp; die (einseitige) AWGN&ndash;Rauschleistungsdichte.
 
  
 +
To this it should be noted:
 +
#The function&nbsp; ${\rm Q}(x)$&nbsp; is called the&nbsp; [[Applets:Complementary_Gaussian_Error_Functions|"Complementary Gaussian Error Function"]].
 +
#The above equation applies to equally probable symbols with the decision threshold&nbsp; $G$&nbsp; midway between&nbsp; $\boldsymbol{r}_0$&nbsp; and&nbsp; $\boldsymbol{r}_1$.<br>
 +
#The distance of the two signal points from the decision threshold&nbsp; $G$&nbsp; is thus respectively&nbsp; $\Delta G = s_0/2$&nbsp; $($counter in the argument of the first&nbsp; $\rm Q$&ndash;function$)$. 
 +
#$E_{\rm S}=s_0^2/2 \cdot T$&nbsp; denotes for this case the&nbsp; "average energy per symbol"&nbsp; and&nbsp; $N_0=2T \cdot \sigma_{\rm AWGN}^2$&nbsp; is the&nbsp; $($one-sided$)$&nbsp; AWGN noise power density.
  
  
[[File:Applet_Bild3.png|right|frame| $p_{\rm S}$&ndash;Berechnung für  kohärente Demodulation]]
+
[[File:Applet_Bild3.png|right|frame| BER calculation for coherent demodulation]]
{{GraueBox|TEXT=
+
{{GraueBox|TEXT=  
$\text{Beispiel 1:}$&nbsp; Es gelte &nbsp;$\sigma_{\rm AWGN}= 0.8$&nbsp; und&nbsp; $s_{0} = 2$,&nbsp; &rArr; &nbsp; $G=1$.&nbsp; Alle diese Werte seien auf den Wert&nbsp; $1\hspace{0.05cm} {\rm V}$&nbsp; normiert.
+
$\text{Example 1:}$&nbsp; Let be &nbsp;$\sigma_{\rm AWGN}= 0.8$&nbsp; and&nbsp; $s_{0} = 2$,&nbsp; &rArr; &nbsp; $G=1$&nbsp; $($these values are normalized to&nbsp; $1\hspace{0.05cm} {\rm V})$.
  
Die Grafik zeigt zwei &bdquo;halbe Gaußfunktionen&rdquo; um&nbsp; $s_1=0$&nbsp; (blaue Kurve) und&nbsp; $s_0=2$&nbsp; (rote Kurve) sowie den Schwellenwert&nbsp; $G$.&nbsp; Die schraffierten Flächen markieren die Symbolfehlerwahrscheinlichkeit.     
+
The graph shows two&nbsp; "half Gaussian functions"&nbsp; around&nbsp; $s_1=0$&nbsp; $($blue curve$)$&nbsp; and&nbsp; $s_0=2$&nbsp; $($red curve$)$.&nbsp; The threshold value&nbsp; $G$.&nbsp; The shaded areas mark the symbol error probability.     
  
*Nach der ersten Gleichung gilt mit&nbsp; $\Delta G = s_{0} -G= G-s_1 = 1$: &nbsp;  
+
*According to the first equation,&nbsp; with&nbsp; $\Delta G = s_{0} -G= G-s_1 = 1$: &nbsp;  
:$$p_{\rm S} = {\rm Q} ( 1/0.8 )= {\rm Q} ( 1.25 )\approx 10.56 \%.$$
+
:$$p_{\rm S} = {\rm Q} ( 1/0.8 )= {\rm Q} ( 1.25 )\approx 10.56 \%.$$
*Ebenso liefert die zweite Gleichung:&nbsp; $E_{\rm S}/{N_0} = 1/4 \cdot s_0^2/\sigma_{\rm AWGN}^2 = 1.5615$:
+
*Similarly,&nbsp; the second equation provides:&nbsp; $E_{\rm S}/{N_0} = 1/4 \cdot s_0^2/\sigma_{\rm AWGN}^2 = 1.5615$:
:$$p_{\rm S} = {\rm Q} (\sqrt{1.5615} )\approx 10.56 \%.$$
+
:$$p_{\rm S} = {\rm Q} (\sqrt{1.5615} )\approx 10.56 \%.$$
  
 +
Due to symmetry,&nbsp; the threshold&nbsp; $G=1$&nbsp; is optimal.&nbsp; In this case,&nbsp; the red and blue shaded areas are equal &nbsp; &rArr; &nbsp; the symbols&nbsp; $\boldsymbol{s}_{0}$&nbsp; and&nbsp; $\boldsymbol{s}_{1}$&nbsp; are falsified in the same way.   
  
Aufgrund der Symmetrie ist der Schwellenwert&nbsp; $G=1$&nbsp; optimal.&nbsp; In diesem Fall sind die rote und die blaue schraffierte Fläche gleich groß &nbsp; &rArr; &nbsp; die Symbole&nbsp; $\boldsymbol{s}_{0}$&nbsp; und&nbsp; $\boldsymbol{s}_{1}$&nbsp; werden in gleicher Weise verfälscht.   
+
With&nbsp; $G\ne 1$&nbsp; there is a larger falsification probability.&nbsp; For example,&nbsp; with&nbsp; $G=0.6$:
 +
:$$p_{\rm S} = {\rm Pr}(\boldsymbol{r}\ne \boldsymbol{s}) = {\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1})
 +
+ {\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0})= 1/2 \cdot {\rm Q} ( 0.75)+ 1/2 \cdot {\rm Q} ( 1.75)\approx 13.33\% .$$
  
Mit&nbsp; $G\ne 1$&nbsp; ergibt sich eine größere Verfälschungswahrscheinlichkeit.&nbsp; Beispielsweise ergibt sich mit&nbsp; $G=0.6$:
+
Here the falsification probability for the symbol&nbsp; $\boldsymbol{s}_{1}$ &nbsp; &rArr; &nbsp; blue filled area ${\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) \approx 11. 33\%$&nbsp; is much larger than that of the symbol&nbsp; $\boldsymbol{s}_{0}$ &nbsp; &rArr; &nbsp; red filled area ${\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}) \approx 2\%$. }}
:$$p_{\rm S} = {\rm Pr}(\boldsymbol{r}\ne \boldsymbol{s}) =    {\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1})
 
{\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0})=  1/2 \cdot {\rm Q} ( 0.75)+ 1/2 \cdot {\rm Q} ( 1.75)\approx 13.33\% .$$
 
  
Hier ist die Verfälschungswahrscheinlichkeit für das Symbol&nbsp; $\boldsymbol{s}_{1}$ &nbsp; &rArr; &nbsp; blaue gefüllte Fläche ${\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) \approx 11.33\%$&nbsp; aufgrund der ungünstig gewählten Entscheiderschwelle sehr viel größer als die des Symbols&nbsp; $\boldsymbol{s}_{0}$ &nbsp; &rArr; &nbsp; rote gefüllte Fläche ${\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}) \approx 2\%$. }}
 
  
 +
===On&ndash;Off&ndash;Keying with noncoherent demodulation===
  
===On&ndash;Off&ndash;Keying mit inkohärenter Demodulation===
+
The following diagram shows the structure&nbsp; $($in the equivalent low-pass range$)$&nbsp; of the optimal OOK receiver for incoherent demodulation.&nbsp; See&nbsp; [[Digital_Signal_Transmission/Carrier_Frequency_Systems_with_Non-Coherent_Demodulation#Non-coherent_demodulation_of_.22on.E2.80.93off_keying.22_.28OOK.29|"Detailed description"]].&nbsp; According to this graph applies:
  
Die folgende Grafik zeigt die Strukur  (im äquivalenten Tiefpassbereich) des optimalen OOK&ndash;Empfängers für inkohärente Demodulation.&nbsp; [[Digitalsignalübertragung/Trägerfrequenzsysteme_mit_nichtkohärenter_Demodulation#Nichtkoh.C3.A4rente_Demodulation_von_On.E2.80.93Off.E2.80.93Keying|Detailbeschreibung]]
+
[[File:EN_Dig_T_4_5_S2b_neu.png|right|frame|Receiver for incoherent OOK demodulation&nbsp; $($complex signals are labeled blue$)$|class=fit]]  
  
[[File:P ID3147 Dig T 4 5 S2b version1.png|right|frame|Empfänger für inkohärente OOK-Demodulation (komplexe Signale sind blau beschriftet)|class=fit]]
+
*The input signal&nbsp; $\boldsymbol{r}(t) = \boldsymbol{s}(t) \cdot {\rm e}^{\hspace{0.02cm}{\rm j}\hspace{0.03cm}\phi} + \boldsymbol{n}(t)$&nbsp; at the receiver is generally complex because of the current phase angle&nbsp; $\phi$&nbsp; and because of the complex noise term&nbsp; $\boldsymbol{n}(t)$.
  
Entsprechend dieser zweiten Grafik gilt:
+
*Now the correlation between the complex received signal&nbsp; $\boldsymbol{r}(t)$&nbsp; and a&nbsp; [[Digital_Signal_Transmission/Signals,_Basis_Functions_and_Vector_Spaces#Basis_functions_of_complex_time_signals|"complex basis function"]]&nbsp; $\boldsymbol{\xi}(t)$&nbsp; is required.<br>
*Das Eingangssignal&nbsp; $\boldsymbol{r}(t) = \boldsymbol{s}(t) \cdot {\rm e}^{\hspace{0.02cm}{\rm j}\hspace{0.03cm}\phi} + \boldsymbol{n}(t)$&nbsp; am Empfänger ist aufgrund des aktuellen Phasenwinkels&nbsp; $\phi$&nbsp; und wegen des komplexen Rauschterms&nbsp; $\boldsymbol{n}(t)$&nbsp; im allgemeinen komplex.  
+
*Erforderlich ist nun die Korrelation zwischen dem komplexen Empfangssignal&nbsp; $\boldsymbol{r}(t)$&nbsp; und einer&nbsp; [[Digitalsignalübertragung/Signale,_Basisfunktionen_und_Vektorräume#Basisfunktionen_komplexer_Zeitsignale| komplexen Basisfunktion]]&nbsp; $\boldsymbol{\xi}(t)$.<br>
+
*The result is the&nbsp; $($complex$)$&nbsp; detected value&nbsp; $\boldsymbol{r}$,&nbsp; from which the magnitude&nbsp; $y = |\boldsymbol{r}(t)|$&nbsp; is formed as a real decision input.<br>
  
*Das Ergebnis ist der (komplexe) Detektorwert&nbsp; $\boldsymbol{r}$, woraus als reelle Entscheidereingangsgröße der Betrag&nbsp; $y = |\boldsymbol{r}(t)|$&nbsp; gebildet wird.<br>
+
*If&nbsp; $y \gt G$,&nbsp; then the estimated value&nbsp; $m_0$&nbsp; for the symbol&nbsp; $\boldsymbol{s}_{0}$&nbsp; is output,&nbsp; otherwise the estimated value&nbsp; $m_1$&nbsp; for the symbol&nbsp; $\boldsymbol{s}_{1}$.
 
 
*Ist&nbsp; $y \gt G$, so wird als Schätzwert&nbsp; $m_0$&nbsp; für das Symbol&nbsp; $\boldsymbol{s}_{0}$&nbsp; ausgegeben, andernfalls der Schätzwert&nbsp; $m_1$&nbsp; für das Symbol&nbsp; $\boldsymbol{s}_{1}$.  
 
*Auch hier ist die mittlere Symbolfehlerwahrscheinlichkeit als Summe zweier Verbundwahrscheinlichkeiten darstellbar:
 
  
 +
*Once again,&nbsp; the mean symbol error probability can be represented as the sum of two joint probabilities:
 
:$$p_{\rm S} = {\rm Pr}(\boldsymbol{r}\ne \boldsymbol{s}) =    {\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1})
 
:$$p_{\rm S} = {\rm Pr}(\boldsymbol{r}\ne \boldsymbol{s}) =    {\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1})
 
  +  {\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}).$$
 
  +  {\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}).$$
  
  
===Fehlerwahrscheinlichkeitsberechnung unter Berücksichtigung von Rayleigh&ndash; und Riceverteilung===
+
===Error probability calculation considering Rayleigh and Rice distribution===
  
Zur Berechnung der Symbolfehlerwahrscheinlichkeit bei inkohärenter Demodulation gehen wir von folgender Grafik aus.&nbsp; Dargestellt ist das Empfangssignal im äquivalenten Tiefpassbereich in der komplexen Ebene.  
+
To calculate the symbol error probability for incoherent demodulation,&nbsp; we start from the following graph.&nbsp; Shown is the received signal in the equivalent low-pass region in the complex plane.  
  
[[File:Applet_Bild1.png|right|frame|??? Kohärente und Inkohärente Demodulation von On-Off-Keying|class=fit]]
+
[[File:Applet_Bild1.png|right|frame|Incoherent demodulation of On-Off-Keying|class=fit]]
  
*Der Punkt&nbsp; $\boldsymbol{s_1}=0$&nbsp; führt im Empfangsignal wieder  zu&nbsp; $\boldsymbol{r_1}=0$.&nbsp;
+
#The point&nbsp; $\boldsymbol{s_1}=0$&nbsp; leads in the received signal again to&nbsp; $\boldsymbol{r_1}=0$.
*Dagegen kann&nbsp; $\boldsymbol{r}_0 = \boldsymbol{s}_0 \cdot {\rm e}^{\hspace{0.02cm}{\rm j}\hspace{0.03cm}\phi}$&nbsp; auf jedem Punkt eines Kreises mit&nbsp; Radius&nbsp; $1$&nbsp; liegen, da die Phase&nbsp; $\phi$&nbsp; unbekannt ist.<br>
+
#In contrast,&nbsp; $\boldsymbol{r}_0 = \boldsymbol{s}_0 \cdot {\rm e}^{\hspace{0.02cm}{\rm j}\hspace{0.03cm}\phi}$&nbsp; can lie on any point of a circle with&nbsp; radius&nbsp; $1$&nbsp; since the phase&nbsp; $\phi$&nbsp; is unknown.<br>
 +
#The decision process taking into account that the AWGN noise is now to be interpreted in two dimensions,&nbsp; as indicated by the arrows in the graph.<br>
 +
#The decision region&nbsp; $I_1$&nbsp; for symbol&nbsp; $\boldsymbol{s_1}$&nbsp; is the blue filled circle with radius&nbsp; $G$,&nbsp; where the correct value of&nbsp; $G$&nbsp; remains to be determined.
 +
#If the received value&nbsp; $\boldsymbol{r}$ is outside this circle,&nbsp; i.e. in the red highlighted area&nbsp; $I_0$,&nbsp; the decision is in favor of&nbsp; $\boldsymbol{s_0}$.<br>
  
*Der Entscheidungsprozess unter Berücksichtigung des AWGN&ndash;Rauschens ist nun zweidimensional zu interpretieren, wie durch die Pfeile in der Grafik angedeutet.<br>
 
 
*Die Entscheidungsregion&nbsp; $I_1$&nbsp;  für das Symbol&nbsp; $\boldsymbol{s_1}$&nbsp; ist der blau gefüllte Kreis mit Radius&nbsp; $G$,&nbsp;  wobei der richtige Wert von&nbsp; $G$&nbsp;noch zu bestimmen ist.
 
  
*Liegt der Empfangswert&nbsp; $\boldsymbol{r}$ außerhalb dieses Kreises also im rot hinterlegten Gebiet&nbsp; $I_0$, so fällt die Entscheidung zugunsten von&nbsp; $\boldsymbol{s_0}$.<br>
+
$\rm Rayleigh\ portion$<br>
  
 +
Considering the AWGN&ndash;noise,&nbsp; $\boldsymbol{r_1}=\boldsymbol{s_1} + \boldsymbol{n_1}$.&nbsp; The noise component&nbsp; $\boldsymbol{n_1}$&nbsp; has a&nbsp; [[Theory_of_Stochastic_Signals/Further_Distributions#Rayleigh_PDF|"Rayleigh distribution"]]&nbsp; $($amount of the two mean-free Gaussian components for&nbsp; $I$&nbsp; and&nbsp; $Q)$.
  
 
+
*Their conditional PDF is with the rotationally symmetric noise component&nbsp; $\eta$&nbsp; with&nbsp; $\sigma=\sigma_{\rm AWGN}$ :
$\rm Rayleigh&ndash;Anteil$<br>
+
:$$f_{y\hspace{0.05cm}\vert \hspace{0.05cm}\boldsymbol{s_1}} (\eta \hspace{0.05cm}\vert \hspace{0.05cm} \boldsymbol{s_1})=\frac{\eta}{\sigma^2}\cdot {\rm e}^{-\eta^2 / ( 2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sigma^2) } = f_{\rm Rayleigh}(\eta) .$$
Unter Berücksichtigung des AWGN&ndash;Rauschens gilt&nbsp; $\boldsymbol{r_1}=\boldsymbol{s_1} + \boldsymbol{n_1}$.&nbsp; Die Rauschkomponente&nbsp; $\boldsymbol{n_1}$&nbsp; besitzt eine&nbsp; [[Stochastische_Signaltheorie/Weitere_Verteilungen#Rayleighverteilung|Rayleighverteilung]]&nbsp; $($Betrag der beiden mittelwertfreien Gaußkomponenten für&nbsp; $I$&nbsp; und&nbsp; $Q)$.&nbsp;
+
*Thus one obtains for the conditional probability
 
+
:$${\rm Pr}(\boldsymbol{r_0}|\boldsymbol{s_1}) = \int_{G}^{\infty}f_{\rm Rayleigh}(\eta) \,{\rm d} \eta   
Deren bedingte WDF lautet mit der rotationssymmetrischen Rauschkomponente&nbsp; $\eta$&nbsp; mit&nbsp; $\sigma=\sigma_{\rm AWGN}$ :
 
:$$f_{y\hspace{0.05cm}\vert \hspace{0.05cm}\boldsymbol{s_1}} (\eta \hspace{0.05cm}\vert \hspace{0.05cm} \boldsymbol{s_1})=\frac{\eta}{\sigma^2}\cdot {\rm e}^{-\eta^2 / ( 2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sigma^2) } = f_{\rm Rayleigh}(\eta) .$$  
 
Damit erhält man für die bedingte Wahrscheinlichkeit
 
:$${\rm Pr}(\boldsymbol{r_0}|\boldsymbol{s_1}) =   \int_{G}^{\infty}f_{\rm Rayleigh}(\eta) \,{\rm d} \eta   
 
 
  \hspace{0.05cm},$$
 
  \hspace{0.05cm},$$
und mit dem Faktor&nbsp; $1/2$&nbsp; wegen der gleichwahrscheinlichen Sendesymbole die Verbundwahrscheinlichkeit:
+
:and with the factor&nbsp; $1/2$&nbsp; because of the equally probable transmitted symbols, the joint probability:  
 
:$${\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) = 1/2 \cdot {\rm Pr}(\boldsymbol{r_0}|\boldsymbol{s_1})= 1/2 \cdot  \int_{G}^{\infty}f_{\rm Rayleigh}(\eta) \,{\rm d} \eta   
 
:$${\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) = 1/2 \cdot {\rm Pr}(\boldsymbol{r_0}|\boldsymbol{s_1})= 1/2 \cdot  \int_{G}^{\infty}f_{\rm Rayleigh}(\eta) \,{\rm d} \eta   
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
$\rm Rice&ndash;Anteil$<br>  
+
$\rm Rice\ portion$<br>  
Die Rauschkomponente&nbsp; $\boldsymbol{n_0}$&nbsp; besitzt eine&nbsp; [[Stochastische_Signaltheorie/Weitere_Verteilungen#Riceverteilung|Riceverteilung]]&nbsp; $($Betrag der Gaußkomponenten  mit Mittelwerten&nbsp; $m_x$&nbsp; und&nbsp; $m_y)$ &nbsp; &rArr; &nbsp; Konstante $C=\sqrt{m_x^2 + m_y^2}$<br>$($''Anmerkung'':&nbsp; Im Applet wird die Konstante&nbsp; $C$&nbsp; mit&nbsp; $C_{\rm Rice}$&nbsp; bezeichnet$)$.
+
 
 +
The noise component&nbsp; $\boldsymbol{n_0}$&nbsp; has a&nbsp; [[Theory_of_Stochastic_Signals/Further_Distributions#Rice_PDF|"Rice distribution"]]&nbsp;
 +
$($magnitude of Gaussian components with mean values&nbsp; $m_x$&nbsp; and&nbsp; $m_y)$ &nbsp; &rArr; &nbsp; constant&nbsp; $C=\sqrt{m_x^2 + m_y^2}$<br>$($Note: &nbsp; In the applet, the constant&nbsp; $C$&nbsp; is denoted by&nbsp; $C_{\rm Rice}$&nbsp;$)$.  
 
   
 
   
:$$f_{y\hspace{0.05cm}\vert \hspace{0.05cm}\boldsymbol{s_0}} (\eta \hspace{0.05cm}\vert \hspace{0.05cm} \boldsymbol{s_0})=\frac{\eta}{\sigma^2}\cdot{\rm e}^{-({C^2+\it \eta^{\rm 2} })/ ({\rm 2 \it \sigma^{\rm 2} })}\cdot {\rm I_0}(\frac{\it \eta\cdot C}{\sigma^{\rm 2} }) = f_{\rm Rice}(\eta) \hspace{1.4cm}{\rm mit} \hspace{1.4cm} {\rm I_0}(\eta) = \sum_{k=0}^{\infty}\frac{(\eta/2)^{2k} }{k! \cdot {\rm \Gamma ({\it k}+1)} }.$$
+
:$$f_{y\hspace{0.05cm}\vert \hspace{0.05cm}\boldsymbol{s_0}} (\eta \hspace{0.05cm}\vert \hspace{0.05cm} \boldsymbol{s_0})=\frac{\eta}{\sigma^2}\cdot{\rm e}^{-({C^2+\it \eta^{\rm 2} })/ ({\rm 2 \it \sigma^{\rm 2} })}\cdot {\rm I_0}(\frac{\it \eta\cdot C}{\sigma^{\rm 2} }) = f_{\rm Rice}(\eta) \hspace{1.4cm}{\rm with} \hspace{1.4cm} {\rm I_0}(\eta) = \sum_{k=0}^{\infty}\frac{(\eta/2)^{2k} }{k! \cdot {\rm \Gamma ({\it k}+1)} }.$$
  
Damit ergibt sich für die zweite Verbundwahrscheinlichkeit:
+
This gives the second joint probability:
 
    
 
    
 
:$${\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}) = 1/2 \cdot  \int_{0}^{G}f_{\rm Rice}(\eta) \,{\rm d} \eta   
 
:$${\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}) = 1/2 \cdot  \int_{0}^{G}f_{\rm Rice}(\eta) \,{\rm d} \eta   
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
[[File:Applet_Bild2.png|right|frame|Dichtefunktionen für „OOK, nichtkohärent”]]
+
[[File:P ID3148 Dig T 4 5 S2c version1.png|right|frame|Density functions for "OOK, non-coherent"]]
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 2:}$&nbsp; Die Grafik zeigt das Ergebnis dieser Gleichung für&nbsp; $\sigma_{\rm AWGN} = 0.5$&nbsp; und&nbsp; $C_{\rm Rice} = 2$.&nbsp; Die Entscheidungsgrenze liegt bei&nbsp; $G \approx 1.25$.&nbsp; Man erkennt aus dieser Darstellung:
+
$\text{Example 2:}$&nbsp; The graph shows the result of this equation for&nbsp; $\sigma_{\rm AWGN} = 0.5$&nbsp; and&nbsp; $C_{\rm Rice} = 2$.&nbsp; The decision threshold is at&nbsp; $G \approx 1.25$.&nbsp; One can see from this plot:
*Die Symbolfehlerwahrscheinlichkeit&nbsp; $p_{\rm S}$&nbsp; ist die Summe der beiden farblich hinterlegten Flächen.&nbsp; Wie im Beispiel 1 für den kohärenten Fall gilt auch hier:  
+
 
 +
*The symbol error probability&nbsp; $p_{\rm S}$&nbsp; is the sum of the two colored areas.&nbsp; As in Example 1 for the coherent case:
 
:$$p_{\rm S} = {\rm Pr}(\boldsymbol{r}\ne \boldsymbol{s}) =    {\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1})
 
:$$p_{\rm S} = {\rm Pr}(\boldsymbol{r}\ne \boldsymbol{s}) =    {\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1})
 
  +  {\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}).$$
 
  +  {\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}).$$
*Die blau markierte Fläche gibt die Verbundwahrscheinlichkeit&nbsp; ${\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) \approx 2.2\%$&nbsp; an.&nbsp; Diese berechnet sich als das Integral über die halbe Rayleigh&ndash;WDF im Bereich von&nbsp; $G$&nbsp; bis&nbsp; $\infty$.
+
*The area marked in blue gives the joint probability&nbsp; ${\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) \approx 2.2\%$&nbsp; This is calculated as the integral over half the Rayleigh PDF in the range from&nbsp; $G$&nbsp; to&nbsp; $\infty$.
*Die rot markierte Fläche gibt die Verbundwahrscheinlichkeit&nbsp; ${\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}) \approx 2.4\%$&nbsp; an.&nbsp; Diese berechnet sich als das Integral über die halbe Rice&ndash;WDF im Bereich von&nbsp; $0$&nbsp; bis&nbsp; $G$.
+
 
*Somit erhält man&nbsp; $p_{\rm S} \approx 4.6\%$.&nbsp; Anzumerken ist, dass die roten und blauen Flächen nicht gleich sind und dass sich die optimale Entscheidungsgrenze &nbsp;$G_{\rm opt}$&nbsp; sich aus dem Schnittpunkt der beiden Kurven ergibt.
+
*The red highlighted area gives the joint probability&nbsp; ${\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}) \approx 2.4\%$&nbsp; This is calculated as the integral over half the Rice PDF in the range from&nbsp; $0$&nbsp; to&nbsp; $G$.
*Die optimale Entscheidungsgrenze&nbsp; $G_{\rm opt}$&nbsp; ergibt sich als der Schnittpunkt von blauer und roter Kurve.}}
+
 
 +
*Thus obtaining&nbsp; $p_{\rm S} \approx 4.6\%$.&nbsp; Note that the red and blue areas are not equal and that the optimal decision boundary &nbsp;$G_{\rm opt}$&nbsp; is obtained from the intersection of the two curves.
 +
 
 +
*The optimal decision threshold&nbsp; $G_{\rm opt}$&nbsp; is obtained as the intersection of the blue and red curves.}}
  
  
Line 132: Line 142:
 
<br>
 
<br>
  
*Select the number&nbsp; $(1,\ 2$, ... $)$&nbsp; of the task to be processed.&nbsp; The number&nbsp; $0$&nbsp; corresponds to a &bdquo;Reset&rdquo;:&nbsp; Setting as at the program start.
+
*Select the number&nbsp; $(1,\ 2$, ... $)$&nbsp; of the task to be processed.&nbsp; The number "0" corresponds to a "Reset":&nbsp; Setting as at the program start.
*A task description is displayed.&nbsp; Parameter values are adjusted.&nbsp; Solution after pressing &bdquo;Sample solution&rdquo;.&nbsp;  
+
*A task description is displayed.&nbsp; Parameter values are adjusted.&nbsp; Solution after pressing "Sample solution".&nbsp;  
*Always interpret the graphs and numerical results.&nbsp; The symbols&nbsp; $s_0$&nbsp; (adjustable) and&nbsp; ${s}_{1}\equiv 0$&nbsp; are equal probability.
+
*Always interpret the graphics and the numerical results.&nbsp; The symbols&nbsp; $s_0$&nbsp; (adjustable) and&nbsp; ${s}_{1}\equiv 0$&nbsp; are equal probability.
 
*For space reasons, in some of the following questions and sample solutions we also use&nbsp; $\sigma = \sigma_{\rm AWGN}$&nbsp; and&nbsp; $C = C_{\rm Rice}$.<br>
 
*For space reasons, in some of the following questions and sample solutions we also use&nbsp; $\sigma = \sigma_{\rm AWGN}$&nbsp; and&nbsp; $C = C_{\rm Rice}$.<br>
 
'''Deutsch'''
 
*Wählen Sie die Nummer&nbsp; $(1,\ 2$, ... $)$&nbsp; der zu bearbeitenden Aufgabe.&nbsp; Die Nummer&nbsp; $0$&nbsp; entspricht einem &bdquo;Reset&rdquo;:&nbsp; Einstellung wie beim Programmstart.
 
*Eine Aufgabenbeschreibung wird angezeigt.&nbsp; Die Parameterwerte sind angepasst.&nbsp; Lösung nach Drücken von &bdquo;Musterlösung&rdquo;.&nbsp;
 
*Interpretieren Sie stets die Grafiken und die numerischen Ergebnisse.&nbsp; Die Symbole&nbsp; $s_0$&nbsp; (einstellbar) und&nbsp; ${s}_{1}\equiv 0$&nbsp; seien gleichwahrscheinlich.
 
*Aus Platzgründen verwenden wir bei den folgenden Fragen und Musterlösungen teilweise auch&nbsp; $\sigma = \sigma_{\rm AWGN}$&nbsp; und&nbsp; $C = C_{\rm Rice}$.<br>
 
  
  
 
{{BlueBox|TEXT=   
 
{{BlueBox|TEXT=   
'''(1)''' &nbsp; We consider&nbsp; $\text{coherent demodulation}$&nbsp; with&nbsp; $\sigma_{\rm AWGN} = 0.5$&nbsp; and&nbsp; $s_0 = 2$.&nbsp; What is the smallest possible value for the symbol error probability&nbsp; $p_{\rm S}$? }}
+
'''(1)''' &nbsp; We consider&nbsp; $\text{coherent}$&nbsp; demodulation with&nbsp; $\sigma_{\rm AWGN} = 0.5$&nbsp; and&nbsp; $s_0 = 2$.&nbsp; What is the smallest possible value for the symbol error probability&nbsp; $p_{\rm S}$? }}
  
*For coherent demodulation, the PDF of the reception signal is composed of two &bdquo;half&rdquo; Gaussian functions around&nbsp; $s_0 = 2$&nbsp; $($red$)$ and&nbsp; $s_1 = 0$&nbsp; $($blue$)$.     
+
*For coherent demodulation, the PDF of the reception signal is composed of two "half" Gaussian functions around&nbsp; $s_0 = 2$&nbsp; $($red$)$ and&nbsp; $s_1 = 0$&nbsp; $($blue$)$.     
 
*Here the minimum&nbsp; $p_{\rm S}$ value results with&nbsp; $G=1$&nbsp; and&nbsp; $\Delta G = s_{0} -G= G-s_1 = 1$&nbsp; to&nbsp; $p_{\rm S}= {\rm Q} ( \Delta G/\sigma )={\rm Q} ( 1/0.5 )= {\rm Q} ( 2 )\approx 2.28 \%.$
 
*Here the minimum&nbsp; $p_{\rm S}$ value results with&nbsp; $G=1$&nbsp; and&nbsp; $\Delta G = s_{0} -G= G-s_1 = 1$&nbsp; to&nbsp; $p_{\rm S}= {\rm Q} ( \Delta G/\sigma )={\rm Q} ( 1/0.5 )= {\rm Q} ( 2 )\approx 2.28 \%.$
 
*With&nbsp; $G=1$&nbsp; both symbols are falsified equally. &nbsp; The blue area ${\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1})$&nbsp; is equal to the red area&nbsp; ${\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0})$.&nbsp; Their sum gives&nbsp; $p_{\rm S}$.   
 
*With&nbsp; $G=1$&nbsp; both symbols are falsified equally. &nbsp; The blue area ${\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1})$&nbsp; is equal to the red area&nbsp; ${\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0})$.&nbsp; Their sum gives&nbsp; $p_{\rm S}$.   
 
*With&nbsp; $G=0.5$&nbsp; the red area is almost zero.&nbsp; Nevertheless &nbsp; $p_{\rm S}\approx 8\%$&nbsp; (sum of both areas)&nbsp; is more than twice as large as with&nbsp; $G_{\rm opt}=1$.  
 
*With&nbsp; $G=0.5$&nbsp; the red area is almost zero.&nbsp; Nevertheless &nbsp; $p_{\rm S}\approx 8\%$&nbsp; (sum of both areas)&nbsp; is more than twice as large as with&nbsp; $G_{\rm opt}=1$.  
 
{{BlaueBox|TEXT= 
 
'''(1)''' &nbsp; Wir betrachten die '''kohärente Demodulation''' mit&nbsp; $\sigma_{\rm AWGN} = 0.5$&nbsp; und&nbsp; $s_0 = 2$.&nbsp; Was ist der kleinstmögliche Wert für die Symbolfehlerwahrscheinlichkeit&nbsp; $p_{\rm S}$? }}
 
 
*Bei kohärenter Demodulation setzt sich die WDF des Empfangssignals aus zwei &bdquo;halben&rdquo; Gaußfunktionen um&nbsp; $s_0 = 2$&nbsp; $($rot$)$ und&nbsp; $s_1 = 0$&nbsp; $($blau$)$ zusammen.   
 
*Der minimale&nbsp; $p_{\rm S}$&ndash;Wert ergibt sich hier mit&nbsp; $G=1$&nbsp; sowie&nbsp; $\Delta G = s_{0} -G= G-s_1 = 1$&nbsp; zu&nbsp; $p_{\rm S}=  {\rm Q} ( \Delta G/\sigma )={\rm Q} ( 1/0.5 )=  {\rm Q} ( 2 )\approx 2.28 \%.$
 
*Mit&nbsp; $G=1$&nbsp;  werden beide Symbole gleich verfälscht.&nbsp; Die blaue Fläche ${\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1})$&nbsp; ist gleich der roten Fläche&nbsp; ${\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0})$.&nbsp; Deren Summe ergibt&nbsp; $p_{\rm S}$. 
 
*Mit&nbsp; $G=0.5$&nbsp; ist zwar die rote Fläche nahezu Null.&nbsp; Trotzdem ist &nbsp; $p_{\rm S}\approx 8\%$&nbsp; (Summe beider Flächen)&nbsp; mehr als doppelt so groß als mit&nbsp; $G_{\rm opt}=1$.
 
  
  
Line 164: Line 160:
 
'''(2)''' &nbsp; Now let&nbsp; $\sigma = 0.75$.&nbsp; With what&nbsp; $s_0$&nbsp; value does optimal $G$ give the same symbol error probability as in&nbsp;$(1)$?&nbsp; Then what is the quotient&nbsp; $E_{\rm S}/N_0$?}}
 
'''(2)''' &nbsp; Now let&nbsp; $\sigma = 0.75$.&nbsp; With what&nbsp; $s_0$&nbsp; value does optimal $G$ give the same symbol error probability as in&nbsp;$(1)$?&nbsp; Then what is the quotient&nbsp; $E_{\rm S}/N_0$?}}
  
*In general&nbsp; $p_{\rm S}= {\rm Q}\big ( (s_0/2) / \sigma \big )$.&nbsp; If one increases&nbsp; $\sigma$&nbsp; from&nbsp; $0. 5$&nbsp; to &nbsp; $0.75$, then also&nbsp; $s_0$&nbsp; must be increased &nbsp; &rArr; &nbsp; $s_0 = 3$ &nbsp; &rArr; &nbsp; $p_{\rm S}= {\rm Q} ( 1.5/ 0.75 )= {\rm Q} ( 2 )$.
+
*In general&nbsp; $p_{\rm S}= {\rm Q}\big ( (s_0/2) / \sigma \big )$.&nbsp; If one increases&nbsp; $\sigma$&nbsp; from&nbsp; $0. 5$&nbsp; to &nbsp; $0.75$, then&nbsp; $s_0$&nbsp; must also be increased &nbsp; &rArr; &nbsp; $s_0 = 3$ &nbsp; &rArr; &nbsp; $p_{\rm S}= {\rm Q} ( 1.5/ 0.75 )= {\rm Q} ( 2 )$.
 
*Except&nbsp; $p_{\rm S}= {\rm Q}\big ( (s_0/2) / \sigma \big )$&nbsp; but also holds:&nbsp; $p_{\rm S}= {\rm Q} ( \sqrt{E_{\rm S}/N_0} )$.&nbsp; It follows:&nbsp; $p_{\rm S}= {\rm Q}(2) ={\rm Q} ( \sqrt{E_{\rm S}/N_0})$ &nbsp; &rArr; &nbsp; $\sqrt{E_{\rm S}/N_0}= 2$ &nbsp; &rArr; &nbsp; $E_{\rm S}/N_0= 4$.
 
*Except&nbsp; $p_{\rm S}= {\rm Q}\big ( (s_0/2) / \sigma \big )$&nbsp; but also holds:&nbsp; $p_{\rm S}= {\rm Q} ( \sqrt{E_{\rm S}/N_0} )$.&nbsp; It follows:&nbsp; $p_{\rm S}= {\rm Q}(2) ={\rm Q} ( \sqrt{E_{\rm S}/N_0})$ &nbsp; &rArr; &nbsp; $\sqrt{E_{\rm S}/N_0}= 2$ &nbsp; &rArr; &nbsp; $E_{\rm S}/N_0= 4$.
*For control:&nbsp; $E_{\rm S}=s_0^2/2 \cdot T, \ N_0=2T \cdot \sigma^2$ &nbsp; &rArr; &nbsp; $E_{\rm S}/N_0 =s_0^2/(4 \cdot \sigma^2)= 3^2/(4 \cdot 0. 75^2)=4$.&nbsp; The same&nbsp; $E_{\rm S}/N_0 =4$&nbsp; results for the problem '''(1)'''.
+
*For control:&nbsp; $E_{\rm S}=s_0^2/2 \cdot T, \ N_0=2T \cdot \sigma^2$ &nbsp; &rArr; &nbsp; $E_{\rm S}/N_0 =s_0^2/(4 \cdot \sigma^2)= 3^2/(4 \cdot 0. 75^2)=4$.&nbsp; The same&nbsp; $E_{\rm S}/N_0 =4$&nbsp; results for the problem&nbsp; $(1)$.
 
{{BlaueBox|TEXT= 
 
'''(2)''' &nbsp; Nun gelte&nbsp; $\sigma = 0.75$.&nbsp; Mit welchem&nbsp; $s_0$&ndash;Wert ergibt sich bei optimalem $G$ die gleiche Fehlerwahrscheinlichkeit wie in&nbsp;$(1)$?&nbsp;  Wie groß ist dann der Quotient&nbsp; $E_{\rm S}/N_0$?}}
 
 
 
*Allgemein gilt&nbsp; $p_{\rm S}=  {\rm Q}\big ( (s_0/2) / \sigma \big )$.&nbsp; Erhöht man&nbsp; $\sigma$&nbsp; von&nbsp; $0.5$&nbsp; auf &nbsp; $0.75$, dann muss auch&nbsp; $s_0$&nbsp; erhöht werden &nbsp; &rArr;  &nbsp; $s_0 = 3$ &nbsp; &rArr;  &nbsp; $p_{\rm S}=  {\rm Q} ( 1.5/ 0.75 )=  {\rm Q} ( 2 )$.
 
*Außer&nbsp; $p_{\rm S}=  {\rm Q}\big ( (s_0/2) / \sigma \big )$&nbsp; gilt aber auch:&nbsp; $p_{\rm S}=  {\rm Q} ( \sqrt{E_{\rm S}/N_0}  )$.&nbsp; Daraus folgt:&nbsp; $p_{\rm S}=  {\rm Q}(2) ={\rm Q} ( \sqrt{E_{\rm S}/N_0})$ &nbsp; &rArr;  &nbsp; $\sqrt{E_{\rm S}/N_0}= 2$ &nbsp; &rArr;  &nbsp; $E_{\rm S}/N_0= 4$.
 
*Zur Kontrolle:&nbsp; $E_{\rm S}=s_0^2/2 \cdot T, \ N_0=2T \cdot \sigma^2$ &nbsp; &rArr;  &nbsp; $E_{\rm S}/N_0 =s_0^2/(4 \cdot \sigma^2)= 3^2/(4 \cdot 0.75^2)=4$.&nbsp; Das gleiche&nbsp; $E_{\rm S}/N_0 =4$&nbsp; ergibt sich für die Aufgabe '''(1)'''.
 
  
  
 
{{BlueBox|TEXT=   
 
{{BlueBox|TEXT=   
'''(3)''' &nbsp; Now consider&nbsp; $\text{non&ndash;coherent demodulation}$&nbsp; with&nbsp; $\sigma_{\rm AWGN} = 0.75$,&nbsp; $C_{\rm Rice} = 2.25$&nbsp; and&nbsp; $G=2$.&nbsp; What is the symbol error probability&nbsp; $p_{\rm S}$? }}
+
'''(3)''' &nbsp; Now consider&nbsp; $\text{non&ndash;coherent}$&nbsp; demodulation with&nbsp; $\sigma_{\rm AWGN} = 0.75$,&nbsp; $C_{\rm Rice} = 2.25$&nbsp; and&nbsp; $G=2$.&nbsp; What is the symbol error probability&nbsp; $p_{\rm S}$? }}
  
*For non&ndash;coherent demodulation, the PDF of the reception signal is composed of a "half" Rayleigh function $($blue$)$ and a "half" Rice function $($red$)$.
+
*For non&ndash;coherent demodulation, the PDF of the reception signal is composed of "half" a Rayleigh function $($blue$)$ and "half" a Rice function $($red$)$.
*${\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) \approx 1.43\%$&nbsp; gives the proportions of the blue curve above $G =2$, and ${\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}) \approx 15. 18\%$&nbsp; the portions of the red curve below&nbsp; $G =2$.     
+
*${\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) \approx 1.43\%$&nbsp; gives the proportions of the blue curve above&nbsp; $G =2$, and ${\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}) \approx 15. 18\%$&nbsp; the proportions of the red curve below&nbsp; $G =2$.     
 
*With&nbsp; $G=2$&nbsp; the sum for the symbol error probability is&nbsp; $p_{\rm S}\approx 16.61\%$&nbsp;, and with&nbsp; $G_{\rm opt}=1.58$&nbsp; a slightly better value:&nbsp; $p_{\rm S}\approx 12.25\%$.
 
*With&nbsp; $G=2$&nbsp; the sum for the symbol error probability is&nbsp; $p_{\rm S}\approx 16.61\%$&nbsp;, and with&nbsp; $G_{\rm opt}=1.58$&nbsp; a slightly better value:&nbsp; $p_{\rm S}\approx 12.25\%$.
 
{{BlaueBox|TEXT= 
 
'''(3)''' &nbsp; Nun betrachten wir die '''inkohärente Demodulation''' mit&nbsp; $\sigma_{\rm AWGN} = 0.75$,&nbsp; $C_{\rm Rice} = 2.25$&nbsp; und&nbsp; $G=2$.&nbsp; Wie groß ist die Symbolfehlerwahrscheinlichkeit&nbsp; $p_{\rm S}$? }}
 
 
*Bei inkohärenter Demodulation setzt sich die WDF des Empfangssignals aus einer &bdquo;halben&rdquo; Rayleighfunktion $($blau$)$ und einer &bdquo;halben&rdquo; Ricefunktion  $($rot$)$  zusammen.
 
*${\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) \approx 1.43\%$&nbsp; gibt die Anteile der blauen Kurve oberhalb von $G =2$ an, und ${\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}) \approx 15.18\%$&nbsp; die Anteile der roten Kurve unterhalb von&nbsp; $G =2$.   
 
*Mit&nbsp; $G=2$&nbsp;  ergibt sich für die Symbolfehlerwahrscheinlichkeit  die Summe&nbsp; $p_{\rm S}\approx 16.61\%$&nbsp;, und  mit&nbsp; $G_{\rm opt}=1.58$&nbsp;  ein geringfügig besserer Wert:&nbsp; $p_{\rm S}\approx 12.25\%$.
 
  
  
Line 194: Line 176:
 
'''(4)''' &nbsp; Let&nbsp; $X$&nbsp; be a Rayleigh random variable in general and&nbsp; $Y$&nbsp; be a Rice random variable, each with above parameters.&nbsp; How large are&nbsp; ${\rm Pr}(X\le 2)$&nbsp; and&nbsp; ${\rm Pr}(Y\le 2)$ ?}}
 
'''(4)''' &nbsp; Let&nbsp; $X$&nbsp; be a Rayleigh random variable in general and&nbsp; $Y$&nbsp; be a Rice random variable, each with above parameters.&nbsp; How large are&nbsp; ${\rm Pr}(X\le 2)$&nbsp; and&nbsp; ${\rm Pr}(Y\le 2)$ ?}}
  
* It holds&nbsp; ${\rm Pr}(Y\le 2) = 2 \cdot {\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}) \approx 30.36\%$,&nbsp; since in the program the Rice PDF is represented by the factor&nbsp; $1/2$.
+
* It holds&nbsp; ${\rm Pr}(Y\le 2) = 2 \cdot {\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}) \approx 30.36\%$,&nbsp; since in the applet the Rice PDF is represented by the factor&nbsp; $1/2$.
 
*In the same way&nbsp; ${\rm Pr}(X> 2) = 2 \cdot {\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) \approx 2.86\%$ &nbsp; &rArr; &nbsp; ${\rm Pr}(X \le 2)= 1-0.0286 = 97.14\%$.
 
*In the same way&nbsp; ${\rm Pr}(X> 2) = 2 \cdot {\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) \approx 2.86\%$ &nbsp; &rArr; &nbsp; ${\rm Pr}(X \le 2)= 1-0.0286 = 97.14\%$.
 
{{BlaueBox|TEXT= 
 
'''(4)''' &nbsp; Es sei&nbsp; $X$&nbsp; allgemein eine Rayleigh&ndash;Zufallsgröße und&nbsp; $Y$&nbsp; eine Rice&ndash;Zufallsgröße, jeweils mit obigen Parametern.&nbsp; Wie groß sind&nbsp; ${\rm Pr}(X\le 2)$&nbsp; und&nbsp; ${\rm Pr}(Y\le 2)$ ?}}
 
 
* Es gilt&nbsp; ${\rm Pr}(Y\le 2) = 2 \cdot {\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}) \approx 30.36\%$,&nbsp; da im Programm die Rice&ndash;WDF mit dem Faktor&nbsp; $1/2$&nbsp; dargestellt ist.
 
*In gleicher Weise gilt&nbsp; ${\rm Pr}(X> 2) = 2 \cdot {\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) \approx 2.86\%$ &nbsp; &rArr; &nbsp; ${\rm Pr}(X \le 2)= 1-0.0286 = 97.14\%$.
 
  
  
 
{{BlueBox|TEXT=   
 
{{BlueBox|TEXT=   
'''(5)''' &nbsp; We consider the values&nbsp; $\sigma_{\rm AWGN} = 0.75$,&nbsp; $C_{\rm Rice} = 2.25$&nbsp; and&nbsp; $G=G_{\rm opt}=1. 58$.&nbsp; How does&nbsp; $p_{\rm S}$ change when &bdquo;Rice&rdquo; is replaced by &bdquo;Gauss&rdquo; as best as possible? }}
+
'''(5)''' &nbsp; We consider the values&nbsp; $\sigma_{\rm AWGN} = 0.75$,&nbsp; $C_{\rm Rice} = 2.25$&nbsp; and&nbsp; $G=G_{\rm opt}=1. 58$.&nbsp; How does&nbsp; $p_{\rm S}$ change when "Rice" is replaced by "Gauss" as best as possible? }}
  
 
*After the exact calculation, using the optimal threshold&nbsp; $G_{\rm opt}=1.58$: &nbsp; &nbsp; ${\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) \approx 5. 44\%$,&nbsp; ${\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}) \approx 6.81\%$ &nbsp; &rArr; &nbsp; $p_{\rm S}\approx 12.25\%$.
 
*After the exact calculation, using the optimal threshold&nbsp; $G_{\rm opt}=1.58$: &nbsp; &nbsp; ${\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) \approx 5. 44\%$,&nbsp; ${\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}) \approx 6.81\%$ &nbsp; &rArr; &nbsp; $p_{\rm S}\approx 12.25\%$.
Line 211: Line 187:
 
*The new optimization of the threshold&nbsp; $G$&nbsp; considering the Gaussian approximation leads to&nbsp; $G_{\rm opt}=1.53$&nbsp; and&nbsp; $p_{\rm S}\approx 14.67\%$.   
 
*The new optimization of the threshold&nbsp; $G$&nbsp; considering the Gaussian approximation leads to&nbsp; $G_{\rm opt}=1.53$&nbsp; and&nbsp; $p_{\rm S}\approx 14.67\%$.   
 
*The parameters of the Gaussian distribution are set as follows:&nbsp; mean&nbsp; $m_{\rm Gaussian}= C_{\rm Rice}=2.25$,&nbsp; standard deviation&nbsp; $\sigma_{\rm Gaussian}= \sigma_{\rm AWGN}=0.75$.
 
*The parameters of the Gaussian distribution are set as follows:&nbsp; mean&nbsp; $m_{\rm Gaussian}= C_{\rm Rice}=2.25$,&nbsp; standard deviation&nbsp; $\sigma_{\rm Gaussian}= \sigma_{\rm AWGN}=0.75$.
 
{{BlaueBox|TEXT= 
 
'''(5)''' &nbsp; Wir betrachten die Werte&nbsp; $\sigma_{\rm AWGN} = 0.75$,&nbsp; $C_{\rm Rice} = 2.25$&nbsp; und&nbsp; $G=G_{\rm opt}=1.58$.&nbsp; Wie ändert sich&nbsp; $p_{\rm S}$, wenn man &bdquo;Rice&rdquo; bestmöglich durch &bdquo;Gauß&rdquo; ersetzt? }}
 
 
*Nach der exakten Berechnung ergibt sich mit der optimalen Schwelle&nbsp; $G_{\rm opt}=1.58$: &nbsp; &nbsp; &nbsp; ${\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) \approx 5.44\%$,&nbsp; ${\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}) \approx 6.81\%$ &nbsp; &rArr; &nbsp; $p_{\rm S}\approx 12.25\%$.
 
*Mit der Gaußnäherung wird bei gleichem&nbsp; $G$&nbsp; der erste Term nicht verändert.&nbsp; Der zweite Term erhöht sich auf&nbsp; ${\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}) \approx 9.29\%$ &nbsp; &rArr; &nbsp; $p_{\rm S}\approx 14.73\%$.
 
*Die neue Optimierung des Schwellenwerts&nbsp; $G$&nbsp; unter Berücksichtigung der Gaußnäherung führt auf&nbsp; $G_{\rm opt}=1.53$&nbsp; und&nbsp; $p_{\rm S}\approx 14.67\%$. 
 
*Die Parameter der Gaußverteilung sind dabei wie folgt einzustellen:&nbsp; Mittelwert&nbsp; $m_{\rm Gauß}= C_{\rm Rice}=2.25$,&nbsp; Streuung&nbsp; $\sigma_{\rm Gauß}= \sigma_{\rm AWGN}=0.75$.
 
  
  
Line 227: Line 195:
 
*For all three parameter sets,&nbsp; $E_{\rm S}/N_0= 2.25$.&nbsp; This suggests:&nbsp; The results with non&ndash;coherent demodulation depend on this characteristic value alone.
 
*For all three parameter sets,&nbsp; $E_{\rm S}/N_0= 2.25$.&nbsp; This suggests:&nbsp; The results with non&ndash;coherent demodulation depend on this characteristic value alone.
  
{{BlaueBox|TEXT= 
 
'''(6)''' &nbsp; Wie ändern sich die Ergebnisse gegenüber&nbsp; $(5)$&nbsp; mit&nbsp; $\sigma_{\rm AWGN} = 0.5$,&nbsp; $C_{\rm Rice} = 1.5$&nbsp; bzw. mit&nbsp; $\sigma_{\rm AWGN} = 1$,&nbsp; $C_{\rm Rice} = 3$, jeweils mit &nbsp; $G=G_{\rm opt}$? }}
 
 
*Bei optimaler Entscheidungsgrenze ergeben sich stets gleiche Wahrscheinlichkeiten, sowohl für die exakte Riceverteilung als auch mit der Gaußnäherung.
 
*Bei allen drei Parametersätzen gilt&nbsp; $E_{\rm S}/N_0= 2.25$.&nbsp; Dies lässt vermuten: die Ergebnisse bei inkohärenter  Demodulation hängen allein von dieser Kenngröße ab.
 
  
===X===
 
 
{{BlueBox|TEXT=  
 
{{BlueBox|TEXT=  
'''(7)''' &nbsp; Let the setting continue to be&nbsp; $\text{non&ndash;coherent/approximation}$&nbsp;  with&nbsp; $C_{\rm Rice} = 3$,&nbsp; $G=G_{\rm opt}$.&nbsp; Vary the AWGN standard deviation in the range&nbsp; $0.5 \le \sigma \le 1$. <br> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Interpret the relative error &nbsp; &rArr; &nbsp; $\rm (False - Correct)/Correct$&nbsp; as a function of the quotient&nbsp; $E_{\rm S}/N_0$.}}
+
'''(7)''' &nbsp; Let the setting continue to be&nbsp; $\text{non&ndash;coherent/approximation}$&nbsp;  with&nbsp; $C_{\rm Rice} = 3$,&nbsp; $G=G_{\rm opt}$.&nbsp; Vary the AWGN standard deviation in the range&nbsp; $0.5 \le \sigma \le 1$. <br> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Interpret the relative error &nbsp; &rArr; &nbsp; $\rm (False - Correct)/Correct$&nbsp; as a function of the quotient&nbsp; $E_{\rm S}/N_0$.}}
  
 
*With&nbsp; $\sigma =0.5$ &nbsp; &rArr; &nbsp; $E_{\rm S}/N_0 = 9$&nbsp; one obtains&nbsp; $p_{\rm S}^{\ \rm (exact)}\approx 0. 32\%$&nbsp; and&nbsp; $p_{\rm S}^{\ \rm (approximate)}\approx 0.38\%$.&nbsp; The absolute error is&nbsp; $0.06\%$&nbsp; and the relative error&nbsp; $18.75\%$.
 
*With&nbsp; $\sigma =0.5$ &nbsp; &rArr; &nbsp; $E_{\rm S}/N_0 = 9$&nbsp; one obtains&nbsp; $p_{\rm S}^{\ \rm (exact)}\approx 0. 32\%$&nbsp; and&nbsp; $p_{\rm S}^{\ \rm (approximate)}\approx 0.38\%$.&nbsp; The absolute error is&nbsp; $0.06\%$&nbsp; and the relative error&nbsp; $18.75\%$.
 
*With&nbsp; $\sigma =1$ &nbsp; &rArr; &nbsp; $E_{\rm S}/N_0 = 2.25$&nbsp; one obtains&nbsp; $p_{\rm S}^{\ \rm (exact)}\approx 12. 25\%$&nbsp; and&nbsp; $p_{\rm S}^{\ \rm (approximate)}\approx 14.67\%$.&nbsp; The absolute error is&nbsp; $2.42\%$&nbsp; and the relative error&nbsp; $19.75\%$.
 
*With&nbsp; $\sigma =1$ &nbsp; &rArr; &nbsp; $E_{\rm S}/N_0 = 2.25$&nbsp; one obtains&nbsp; $p_{\rm S}^{\ \rm (exact)}\approx 12. 25\%$&nbsp; and&nbsp; $p_{\rm S}^{\ \rm (approximate)}\approx 14.67\%$.&nbsp; The absolute error is&nbsp; $2.42\%$&nbsp; and the relative error&nbsp; $19.75\%$.
* &rArr; &nbsp; The Gaussian approximation becomes better with larger&nbsp; $E_{\rm S}/N_0$.&nbsp; This statement can be seen more clearly from the absolute error than from the relative error.
+
* &rArr; &nbsp; The Gaussian approximation becomes better with larger&nbsp; $E_{\rm S}/N_0$.&nbsp; This statement can be seen more clearly from the absolute than from the relative error.
 
 
{{BlaueBox|TEXT= 
 
'''(7)''' &nbsp; Die Einstellung sei weiterhin &bdquo;inkohärent mit Näherung&rdquo;. Es gelte stets&nbsp;  $C_{\rm Rice} = 3$,&nbsp; $G=G_{\rm opt}$.&nbsp; Variierern Sie die AWGN&ndash;Streuung im Bereich&nbsp; $0.5 \le \sigma \le 1$.<br> &nbsp; &nbsp; &nbsp; &nbsp;  &nbsp;Interpretieren Sie den relativen Fehler &bdquo;Falsch minus Richtig/Richtig&rdquo; in Abhängigkeit der Kenngröße&nbsp; $E_{\rm S}/N_0$.}}
 
 
 
*Mit&nbsp; $\sigma =0.5$ &nbsp; &rArr; &nbsp; $E_{\rm S}/N_0 = 9$&nbsp; erhält man&nbsp; $p_{\rm S}^{\ \rm exakt}\approx 0.32\%$&nbsp; und&nbsp; $p_{\rm S}^{\ \rm Näherung}\approx 0.38\%$.&nbsp; Der absolute Fehler beträgt&nbsp; $0.06\%$&nbsp; und der relative Fehler&nbsp; $18.75\%$.
 
*Mit&nbsp; $\sigma =1$ &nbsp; &rArr; &nbsp; $E_{\rm S}/N_0 = 2.25$&nbsp; erhält man&nbsp; $p_{\rm S}^{\ \rm exakt}\approx 12.25\%$&nbsp; und&nbsp; $p_{\rm S}^{\ \rm Näherung}\approx 14.67\%$.&nbsp; Der absolute Fehler beträgt&nbsp; $2.42\%$&nbsp; und der relative Fehler&nbsp; $19.75\%$.
 
* '''Fazit''':&nbsp; Die Gaußnäherung wird mit größerem&nbsp; $E_{\rm S}/N_0$&nbsp; immer besser.&nbsp; Diese Aussage erkennt man am absoluten Fehler deutlicher als am relativen Fehler.  
 
  
  
 
{{BlueBox|TEXT=   
 
{{BlueBox|TEXT=   
'''(8)''' &nbsp; Now repeat the last experiment with the setting&nbsp; $\text{coherent}$&nbsp;  and&nbsp; $s_0 = 3$,&nbsp; $G=G_{\rm opt}$.&nbsp; What conclusion does the comparison with&nbsp; $(7)$ allow?  }}  
+
'''(8)''' &nbsp; Now repeat the last experiment with&nbsp; $\text{coherent}$&nbsp; demodulation and&nbsp; $s_0 = 3$,&nbsp; $G=G_{\rm opt}$.&nbsp; What conclusion does the comparison with&nbsp; $(7)$ allow?  }}  
 
   
 
   
 
*The comparison of&nbsp; $(7)$&nbsp; and&nbsp; $(8)$&nbsp; shows: &nbsp; &nbsp; For each&nbsp; $E_{\rm S}/N_0$&nbsp; there is a greater (worse)  symbol error probability with non&ndash;coherent demodulation.
 
*The comparison of&nbsp; $(7)$&nbsp; and&nbsp; $(8)$&nbsp; shows: &nbsp; &nbsp; For each&nbsp; $E_{\rm S}/N_0$&nbsp; there is a greater (worse)  symbol error probability with non&ndash;coherent demodulation.
 
*For&nbsp; $E_{\rm S}/N_0= 9$: &nbsp; &nbsp; $p_{\rm S}^{\ \rm (coherent)}\approx 0.13\%$&nbsp; and&nbsp; $p_{\rm S}^{\ \rm (non&ndash;coherent)}\approx 0.32\%$. &nbsp; And for&nbsp; $E_{\rm S}/N_0= 2.25$: &nbsp; &nbsp; $p_{\rm S}^{\ \rm (coherent)}\approx 6.68\%$&nbsp; and&nbsp; $p_{\rm S}^{\ \rm (non&ndash;coherent)}\approx 12.25\%$.&nbsp;  
 
*For&nbsp; $E_{\rm S}/N_0= 9$: &nbsp; &nbsp; $p_{\rm S}^{\ \rm (coherent)}\approx 0.13\%$&nbsp; and&nbsp; $p_{\rm S}^{\ \rm (non&ndash;coherent)}\approx 0.32\%$. &nbsp; And for&nbsp; $E_{\rm S}/N_0= 2.25$: &nbsp; &nbsp; $p_{\rm S}^{\ \rm (coherent)}\approx 6.68\%$&nbsp; and&nbsp; $p_{\rm S}^{\ \rm (non&ndash;coherent)}\approx 12.25\%$.&nbsp;  
 
*The simpler realization of the incoherent demodulator (no clock synchronization) causes a loss of quality &nbsp; &rArr; &nbsp; greater error probability.   
 
*The simpler realization of the incoherent demodulator (no clock synchronization) causes a loss of quality &nbsp; &rArr; &nbsp; greater error probability.   
 
{{BlaueBox|TEXT= 
 
'''(8)''' &nbsp; Wiederholen Sie den letzten Versuch nun mit der Einstellung &bdquo;kohärent&rdquo; sowie&nbsp;  $s_0 = 3$,&nbsp; $G=G_{\rm opt}$.&nbsp; Welches Fazit erlaubt der Vergleich  mit&nbsp; '''(7)'''?  }}
 
 
*Der Vergleich von&nbsp; $(7)$&nbsp; und&nbsp; $(8)$&nbsp; zeigt:&nbsp; Für jedes&nbsp; $E_{\rm S}/N_0$&nbsp; ergibt sich bei inkohärenter Demodulation eine größere Symbolfehlerwahrscheinlichkeit.
 
*Für&nbsp; $E_{\rm S}/N_0= 9$&nbsp; ergibt sich&nbsp; $p_{\rm S}^{\ \rm kohärent}\approx 0.13\%$&nbsp; und&nbsp; $p_{\rm S}^{\ \rm inkohärent}\approx 0.32\%$.&nbsp; Und für&nbsp; $E_{\rm S}/N_0= 2.25$&nbsp; erhält man&nbsp; $p_{\rm S}^{\ \rm kohärent}\approx 6.68\%$&nbsp; und&nbsp; $p_{\rm S}^{\ \rm inkohärent}\approx 12.25\%$.&nbsp;
 
*Die einfachere Realisierung des inkohärenten Demodulators  (keine Taktsynchronisierung) bewirkt einen Qualitätsverlust &nbsp; &rArr; &nbsp; größere Fehlerwahrscheinlichkeit. 
 
<br>
 
  
 
==Applet Manual==
 
==Applet Manual==
<br>
 
[[File:Exercise_impuls.png |right|frame|Bildschirmabzug (englische Version, heller Hintergrund)]]
 
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Theme (veränderbare grafische Oberflächengestaltung)
 
:* Dark: &nbsp; schwarzer Hintergrund&nbsp; (wird von den Autoren empfohlen)
 
:*  Bright: &nbsp; weißer Hintergrund&nbsp; (empfohlen für Beamer und Ausdrucke)
 
:*  Deuteranopia: &nbsp; für Nutzer mit ausgeprägter Grün&ndash;Sehschwäche
 
:*  Protanopia: &nbsp; für Nutzer mit ausgeprägter Rot&ndash;Sehschwäche
 
 
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Vorauswahl für die Impulsform&nbsp; $x_1(t)$&nbsp; (rote Kurve)
 
 
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Parameterfestlegung für&nbsp; $x_1(t)$&nbsp;
 
 
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Numerikausgabe für&nbsp; $x_1(t_*)$&nbsp; und&nbsp; $X_1(f_*)$
 
 
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Vorauswahl für die Impulsform&nbsp; $x_2(t)$&nbsp; (blaue Kurve)
 
 
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Parameterfestlegung für&nbsp; $x_2(t)$&nbsp;
 
  
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Numerikausgabe für&nbsp; $x_2(t_*)$&nbsp; und&nbsp; $X_2(f_*)$
+
[[File:Exercise_OnOff.png |right|frame|Screenshot $($English version,&nbsp; light background$)$ ]]
  
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Einstellung der Zeit&nbsp; $t_*$&nbsp;  für die Numerikausgabe
 
  
&nbsp; &nbsp; '''(I)''' &nbsp; &nbsp; Einstellung der Frequenz&nbsp; $f_*$&nbsp; für die Numerikausgabe
+
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Selection:
 +
::*coherent,
 +
::*Incoherent,
 +
::*Incoherent with approximation.
  
&nbsp; &nbsp; '''(J)''' &nbsp; &nbsp; Bereich der graphischen Darstellung im Zeitbereich
+
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Parameter input:&nbsp;
 +
::*$\sigma_{\rm AWGN}$,&nbsp;
 +
::*$s_0$,&nbsp;
 +
::*$E_{\rm S}/N_0$,&nbsp;
 +
::*$G_{\rm opt}$ 
  
&nbsp; &nbsp; '''(K)''' &nbsp; &nbsp; Bereich der graphischen Darstellung im Frequenzbereich
+
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Numerical output area of probabilities.
  
&nbsp; &nbsp; '''(L)''' &nbsp; &nbsp; Auswahl der Aufgabe entsprechend der Aufgabennummer
+
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Graphical output area of PDF proportions.  
 
 
&nbsp; &nbsp; '''(M)''' &nbsp; &nbsp; Aufgabenbeschreibung und Fragestellung
 
 
 
&nbsp; &nbsp; '''(N)''' &nbsp; &nbsp; Musterlösung anzeigen und verbergen
 
 
 
 
 
'''Details zu den obigen Punkten&nbsp; (J&nbsp;) und&nbsp; (K)'''
 
 
<u>Zoom&ndash;Funktionen:</u><br>&nbsp; &nbsp; &nbsp; &nbsp;&bdquo;$+$&rdquo; (Vergrößern),&nbsp; &nbsp; &nbsp; &bdquo;$-$&rdquo; (Verkleinern),&nbsp; &nbsp; &nbsp; &bdquo;$\rm o$&rdquo; (Zurücksetzen)
 
 
 
<u>Verschiebe&ndash;Funktionen:</u> &nbsp; &nbsp; &bdquo;$\leftarrow$&rdquo; &nbsp; &nbsp; &bdquo;$\uparrow$&rdquo; &nbsp; &nbsp; &bdquo;$\downarrow$&rdquo; &nbsp; &nbsp; &bdquo;$\rightarrow$&rdquo;<br>&nbsp; &nbsp; &nbsp; &nbsp; &bdquo;$\leftarrow$&rdquo; &nbsp;bedeutet: &nbsp; &nbsp; Bildausschnitt nach links, Ordinate nach rechts
 
 
 
<b>Andere Möglichkeiten:</b>
 
 
 
*Bei gedrückter Shifttaste und Scrollen kann im Koordinatensystem gezoomt werden.
 
*Bei gedrückter Shifttaste und gedrückter linker Maustaste kann das Koordinatensystem verschoben werden.
 
<br clear = all>
 
  
 +
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Exercise selection
  
 +
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Questions and solutions
 +
<br clear=all>
 
==About the Authors==
 
==About the Authors==
 
<br>
 
<br>
 
This interactive calculation tool was designed and implemented at the&nbsp; [https://www.ei.tum.de/en/lnt/home/ Institute for Communications Engineering]&nbsp; at the&nbsp; [https://www.tum.de/en Technical University of Munich].  
 
This interactive calculation tool was designed and implemented at the&nbsp; [https://www.ei.tum.de/en/lnt/home/ Institute for Communications Engineering]&nbsp; at the&nbsp; [https://www.tum.de/en Technical University of Munich].  
*The first version was created in 2007 by&nbsp; [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Thomas_Gro.C3.9Fer_.28Diplomarbeit_LB_2006.2C_danach_freie_Mitarbeit_bis_2010.29|Thomas Großer]]&nbsp; as part of his diploma thesis with “FlashMX – Actionscript” (Supervisor: [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).  
+
*The first version was created in 2011 by&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Martin_V.C3.B6lkl_.28Diplomarbeit_LB_2010.29|Martin Völkl]]&nbsp; as part of his diploma thesis with “FlashMX – Actionscript”&nbsp; (Supervisor:&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]&nbsp; and&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Dr.-Ing._Klaus_Eichin_.28am_LNT_von_1972-2011.29|Klaus Eichin]]).
*In 2018 the program was redesigned by&nbsp; [[Biographies_and_Bibliographies/An_LNTwww_beteiligte_Studierende#Xiaohan_Liu_.28Bachelorarbeit_2018.29|Xiaohan Liu]]&nbsp; as part of her bachelor thesis&nbsp; (Supervisor: [[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]] ) via &bdquo;HTML5&rdquo;.
+
*Last revision and English version 2021 by&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|Carolin Mirschina]]&nbsp; in the context of a working student activity.&nbsp; Translation using DEEPL.com.
+
*In 2020 the program was redesigned via HTML5/JavaScript by&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|Carolin Mirschina]]&nbsp; in the context of a working student activity&nbsp; (Supervisor: [[Biographies_and_Bibliographies/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]] ).
 
 
  
The conversion of this applet to HTML 5 was financially supported by&nbsp; [https://www.ei.tum.de/studium/studienzuschuesse/ "Studienzuschüsse"]&nbsp; (Faculty EI of the TU Munich).&nbsp; We thank.
+
*Last revision and English version 2021 by Carolin Mirschina.&nbsp;  
  
==Über die Autoren==
+
*The conversion of this applet was financially supported by&nbsp; [https://www.ei.tum.de/studium/studienzuschuesse/ "Studienzuschüsse"]&nbsp; (TUM Department of Electrical and Computer Engineering).&nbsp; We thank.
Dieses interaktive Berechnungstool  wurde am [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik] der [https://www.tum.de/ Technischen Universität München] konzipiert und realisiert.
 
*Die erste Version wurde 2011 von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Martin_V.C3.B6lkl_.28Diplomarbeit_LB_2010.29|Martin Völkl]] im Rahmen seiner Diplomarbeit mit &bdquo;FlashMX&ndash;Actionscript&rdquo; erstellt (Betreuer: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]] und [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Dr.-Ing._Klaus_Eichin_.28am_LNT_von_1972-2011.29|Klaus Eichin]]).
 
*2017 wurde &bdquo;Impulse & Spektren&rdquo; von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#David_Jobst_.28Ingenieurspraxis_Math_2017.29|David Jobst]] im Rahmen seiner Ingenieurspraxis (Betreuer: [[Biografien_und_Bibliografien/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]]) auf  &bdquo;HTML5&rdquo; umgesetzt und neu gestaltet.
 
*Letztmalige Überarbeitung 2020 durch&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|Carolin Mirschina]]&nbsp; im Rahmen einer Werkstudententätigkeit.
 
  
 
==Once again: Open Applet in new Tab==
 
==Once again: Open Applet in new Tab==
  
{{LntAppletLinkDeEn|on-off-keying|on-off-keying_en}}
+
{{LntAppletLinkEnDe|on-off-keying_en|on-off-keying}}
 
<br><br>
 
<br><br>

Latest revision as of 17:56, 26 April 2023

Open Applet in new Tab   Deutsche Version Öffnen


Applet Description


Considered is the symbol error probability  $p_{\rm S}$  of   "On–off keying"   $\rm (OOK)$  in the presence of white noise,  characterized by the standard deviation  $\sigma_{\rm AWGN}$,  both in the case of  coherent demodulation  and in the case of  noncoherent demodulation.   Plotted for both cases are the probability density functions  $\rm (PDF)$  of the received signal  $r(t)$  for the possible transmitted symbols  $s_0$  and  $s_1 \equiv 0$. 

  • In the coherent case, there are two Gaussian functions around  $s_0$  and  $s_1$.
  • In the incoherent case,  there is a Rayleigh PDF for the symbol  $s_1 = 0$  and a Rice PDF for  $s_0 \ne 0$,  whose form also depends on the input parameter  $C_{\rm Rice}$.


The applet returns the joint probabilities  ${\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1})$   ⇒   $($filled blue area in the PDF graph$)$  and  ${\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0})$   ⇒   $($red area$)$  and as a final result: 

$$p_{\rm S} = {\rm Pr}(\boldsymbol{r} \ne \boldsymbol{s})= {\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) + {\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}). $$
  • All these quantities also depend on the decision threshold  $G$  whose optimal value in each case is also determined.
  • In addition,  the applet shows which error one makes when approximating the generally more complicated Rice PDF by the best possible Gaussian PDF.



Theoretical Background


On–Off–Keying with coherent demodulation

The simplest digital modulation method is  "On–off keying"  $\rm (OOK)$.  This method – also called  "Amplitude Shift Keying"  $\rm (2–ASK)$  – can be characterized as follows:

Signal space constellations for on-off keying
  • $\rm OOK$  is a binary and one-dimensional modulation method,  for example with  $s_{1} \equiv 0$  and
  • $\boldsymbol{s}_{0} = \{s_0,\ 0\}$  $($for cosinusoidal carrier,  left graph$)$  resp.
  • $\boldsymbol{s}_{0} = \{0,\ -s_0\}$  $($for sinusoidal carrier,  right graph$)$.
  • With coherent demodulation,  the signal space constellation of the received signal is equal to that of the transmitted signal and again consists of the two points  $\boldsymbol{r}_0=\boldsymbol{s}_0$  and  $\boldsymbol{r}_1=\boldsymbol{s}_1$.  
  • In this case,  the AWGN noise is one-dimensional with variance  $\sigma_{\rm AWGN}^2$  and one obtains  corresponding to the   "theory section"  for the  "symbol error probability":
$$p_{\rm S} = {\rm Pr}(\boldsymbol{r}\ne \boldsymbol{s})= {\rm Q} \left ( \frac{s_0/2}{\sigma_{\rm AWGN}}\right ) = {\rm Q} \left ( \sqrt{ {E_{\rm S}}/{N_0}}\right ) \hspace{0.05cm}. $$

To this it should be noted:

  1. The function  ${\rm Q}(x)$  is called the  "Complementary Gaussian Error Function".
  2. The above equation applies to equally probable symbols with the decision threshold  $G$  midway between  $\boldsymbol{r}_0$  and  $\boldsymbol{r}_1$.
  3. The distance of the two signal points from the decision threshold  $G$  is thus respectively  $\Delta G = s_0/2$  $($counter in the argument of the first  $\rm Q$–function$)$.
  4. $E_{\rm S}=s_0^2/2 \cdot T$  denotes for this case the  "average energy per symbol"  and  $N_0=2T \cdot \sigma_{\rm AWGN}^2$  is the  $($one-sided$)$  AWGN noise power density.


BER calculation for coherent demodulation

$\text{Example 1:}$  Let be  $\sigma_{\rm AWGN}= 0.8$  and  $s_{0} = 2$,  ⇒   $G=1$  $($these values are normalized to  $1\hspace{0.05cm} {\rm V})$.

The graph shows two  "half Gaussian functions"  around  $s_1=0$  $($blue curve$)$  and  $s_0=2$  $($red curve$)$.  The threshold value  $G$.  The shaded areas mark the symbol error probability.

  • According to the first equation,  with  $\Delta G = s_{0} -G= G-s_1 = 1$:  
$$p_{\rm S} = {\rm Q} ( 1/0.8 )= {\rm Q} ( 1.25 )\approx 10.56 \%.$$
  • Similarly,  the second equation provides:  $E_{\rm S}/{N_0} = 1/4 \cdot s_0^2/\sigma_{\rm AWGN}^2 = 1.5615$:
$$p_{\rm S} = {\rm Q} (\sqrt{1.5615} )\approx 10.56 \%.$$

Due to symmetry,  the threshold  $G=1$  is optimal.  In this case,  the red and blue shaded areas are equal   ⇒   the symbols  $\boldsymbol{s}_{0}$  and  $\boldsymbol{s}_{1}$  are falsified in the same way.

With  $G\ne 1$  there is a larger falsification probability.  For example,  with  $G=0.6$:

$$p_{\rm S} = {\rm Pr}(\boldsymbol{r}\ne \boldsymbol{s}) = {\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) + {\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0})= 1/2 \cdot {\rm Q} ( 0.75)+ 1/2 \cdot {\rm Q} ( 1.75)\approx 13.33\% .$$

Here the falsification probability for the symbol  $\boldsymbol{s}_{1}$   ⇒   blue filled area ${\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) \approx 11. 33\%$  is much larger than that of the symbol  $\boldsymbol{s}_{0}$   ⇒   red filled area ${\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}) \approx 2\%$.


On–Off–Keying with noncoherent demodulation

The following diagram shows the structure  $($in the equivalent low-pass range$)$  of the optimal OOK receiver for incoherent demodulation.  See  "Detailed description".  According to this graph applies:

Receiver for incoherent OOK demodulation  $($complex signals are labeled blue$)$
  • The input signal  $\boldsymbol{r}(t) = \boldsymbol{s}(t) \cdot {\rm e}^{\hspace{0.02cm}{\rm j}\hspace{0.03cm}\phi} + \boldsymbol{n}(t)$  at the receiver is generally complex because of the current phase angle  $\phi$  and because of the complex noise term  $\boldsymbol{n}(t)$.
  • Now the correlation between the complex received signal  $\boldsymbol{r}(t)$  and a  "complex basis function"  $\boldsymbol{\xi}(t)$  is required.
  • The result is the  $($complex$)$  detected value  $\boldsymbol{r}$,  from which the magnitude  $y = |\boldsymbol{r}(t)|$  is formed as a real decision input.
  • If  $y \gt G$,  then the estimated value  $m_0$  for the symbol  $\boldsymbol{s}_{0}$  is output,  otherwise the estimated value  $m_1$  for the symbol  $\boldsymbol{s}_{1}$.
  • Once again,  the mean symbol error probability can be represented as the sum of two joint probabilities:
$$p_{\rm S} = {\rm Pr}(\boldsymbol{r}\ne \boldsymbol{s}) = {\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) + {\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}).$$


Error probability calculation considering Rayleigh and Rice distribution

To calculate the symbol error probability for incoherent demodulation,  we start from the following graph.  Shown is the received signal in the equivalent low-pass region in the complex plane.

Incoherent demodulation of On-Off-Keying
  1. The point  $\boldsymbol{s_1}=0$  leads in the received signal again to  $\boldsymbol{r_1}=0$.
  2. In contrast,  $\boldsymbol{r}_0 = \boldsymbol{s}_0 \cdot {\rm e}^{\hspace{0.02cm}{\rm j}\hspace{0.03cm}\phi}$  can lie on any point of a circle with  radius  $1$  since the phase  $\phi$  is unknown.
  3. The decision process taking into account that the AWGN noise is now to be interpreted in two dimensions,  as indicated by the arrows in the graph.
  4. The decision region  $I_1$  for symbol  $\boldsymbol{s_1}$  is the blue filled circle with radius  $G$,  where the correct value of  $G$  remains to be determined.
  5. If the received value  $\boldsymbol{r}$ is outside this circle,  i.e. in the red highlighted area  $I_0$,  the decision is in favor of  $\boldsymbol{s_0}$.


$\rm Rayleigh\ portion$

Considering the AWGN–noise,  $\boldsymbol{r_1}=\boldsymbol{s_1} + \boldsymbol{n_1}$.  The noise component  $\boldsymbol{n_1}$  has a  "Rayleigh distribution"  $($amount of the two mean-free Gaussian components for  $I$  and  $Q)$.

  • Their conditional PDF is with the rotationally symmetric noise component  $\eta$  with  $\sigma=\sigma_{\rm AWGN}$ :
$$f_{y\hspace{0.05cm}\vert \hspace{0.05cm}\boldsymbol{s_1}} (\eta \hspace{0.05cm}\vert \hspace{0.05cm} \boldsymbol{s_1})=\frac{\eta}{\sigma^2}\cdot {\rm e}^{-\eta^2 / ( 2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sigma^2) } = f_{\rm Rayleigh}(\eta) .$$
  • Thus one obtains for the conditional probability
$${\rm Pr}(\boldsymbol{r_0}|\boldsymbol{s_1}) = \int_{G}^{\infty}f_{\rm Rayleigh}(\eta) \,{\rm d} \eta \hspace{0.05cm},$$
and with the factor  $1/2$  because of the equally probable transmitted symbols, the joint probability:
$${\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) = 1/2 \cdot {\rm Pr}(\boldsymbol{r_0}|\boldsymbol{s_1})= 1/2 \cdot \int_{G}^{\infty}f_{\rm Rayleigh}(\eta) \,{\rm d} \eta \hspace{0.05cm}.$$

$\rm Rice\ portion$

The noise component  $\boldsymbol{n_0}$  has a  "Rice distribution"  $($magnitude of Gaussian components with mean values  $m_x$  and  $m_y)$   ⇒   constant  $C=\sqrt{m_x^2 + m_y^2}$
$($Note:   In the applet, the constant  $C$  is denoted by  $C_{\rm Rice}$ $)$.

$$f_{y\hspace{0.05cm}\vert \hspace{0.05cm}\boldsymbol{s_0}} (\eta \hspace{0.05cm}\vert \hspace{0.05cm} \boldsymbol{s_0})=\frac{\eta}{\sigma^2}\cdot{\rm e}^{-({C^2+\it \eta^{\rm 2} })/ ({\rm 2 \it \sigma^{\rm 2} })}\cdot {\rm I_0}(\frac{\it \eta\cdot C}{\sigma^{\rm 2} }) = f_{\rm Rice}(\eta) \hspace{1.4cm}{\rm with} \hspace{1.4cm} {\rm I_0}(\eta) = \sum_{k=0}^{\infty}\frac{(\eta/2)^{2k} }{k! \cdot {\rm \Gamma ({\it k}+1)} }.$$

This gives the second joint probability:

$${\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}) = 1/2 \cdot \int_{0}^{G}f_{\rm Rice}(\eta) \,{\rm d} \eta \hspace{0.05cm}.$$
Density functions for "OOK, non-coherent"

$\text{Example 2:}$  The graph shows the result of this equation for  $\sigma_{\rm AWGN} = 0.5$  and  $C_{\rm Rice} = 2$.  The decision threshold is at  $G \approx 1.25$.  One can see from this plot:

  • The symbol error probability  $p_{\rm S}$  is the sum of the two colored areas.  As in Example 1 for the coherent case:
$$p_{\rm S} = {\rm Pr}(\boldsymbol{r}\ne \boldsymbol{s}) = {\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) + {\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}).$$
  • The area marked in blue gives the joint probability  ${\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) \approx 2.2\%$  This is calculated as the integral over half the Rayleigh PDF in the range from  $G$  to  $\infty$.
  • The red highlighted area gives the joint probability  ${\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}) \approx 2.4\%$  This is calculated as the integral over half the Rice PDF in the range from  $0$  to  $G$.
  • Thus obtaining  $p_{\rm S} \approx 4.6\%$.  Note that the red and blue areas are not equal and that the optimal decision boundary  $G_{\rm opt}$  is obtained from the intersection of the two curves.
  • The optimal decision threshold  $G_{\rm opt}$  is obtained as the intersection of the blue and red curves.


Exercises


  • Select the number  $(1,\ 2$, ... $)$  of the task to be processed.  The number "0" corresponds to a "Reset":  Setting as at the program start.
  • A task description is displayed.  Parameter values are adjusted.  Solution after pressing "Sample solution". 
  • Always interpret the graphics and the numerical results.  The symbols  $s_0$  (adjustable) and  ${s}_{1}\equiv 0$  are equal probability.
  • For space reasons, in some of the following questions and sample solutions we also use  $\sigma = \sigma_{\rm AWGN}$  and  $C = C_{\rm Rice}$.


(1)   We consider  $\text{coherent}$  demodulation with  $\sigma_{\rm AWGN} = 0.5$  and  $s_0 = 2$.  What is the smallest possible value for the symbol error probability  $p_{\rm S}$?

  • For coherent demodulation, the PDF of the reception signal is composed of two "half" Gaussian functions around  $s_0 = 2$  $($red$)$ and  $s_1 = 0$  $($blue$)$.
  • Here the minimum  $p_{\rm S}$ value results with  $G=1$  and  $\Delta G = s_{0} -G= G-s_1 = 1$  to  $p_{\rm S}= {\rm Q} ( \Delta G/\sigma )={\rm Q} ( 1/0.5 )= {\rm Q} ( 2 )\approx 2.28 \%.$
  • With  $G=1$  both symbols are falsified equally.   The blue area ${\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1})$  is equal to the red area  ${\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0})$.  Their sum gives  $p_{\rm S}$.
  • With  $G=0.5$  the red area is almost zero.  Nevertheless   $p_{\rm S}\approx 8\%$  (sum of both areas)  is more than twice as large as with  $G_{\rm opt}=1$.


(2)   Now let  $\sigma = 0.75$.  With what  $s_0$  value does optimal $G$ give the same symbol error probability as in $(1)$?  Then what is the quotient  $E_{\rm S}/N_0$?

  • In general  $p_{\rm S}= {\rm Q}\big ( (s_0/2) / \sigma \big )$.  If one increases  $\sigma$  from  $0. 5$  to   $0.75$, then  $s_0$  must also be increased   ⇒   $s_0 = 3$   ⇒   $p_{\rm S}= {\rm Q} ( 1.5/ 0.75 )= {\rm Q} ( 2 )$.
  • Except  $p_{\rm S}= {\rm Q}\big ( (s_0/2) / \sigma \big )$  but also holds:  $p_{\rm S}= {\rm Q} ( \sqrt{E_{\rm S}/N_0} )$.  It follows:  $p_{\rm S}= {\rm Q}(2) ={\rm Q} ( \sqrt{E_{\rm S}/N_0})$   ⇒   $\sqrt{E_{\rm S}/N_0}= 2$   ⇒   $E_{\rm S}/N_0= 4$.
  • For control:  $E_{\rm S}=s_0^2/2 \cdot T, \ N_0=2T \cdot \sigma^2$   ⇒   $E_{\rm S}/N_0 =s_0^2/(4 \cdot \sigma^2)= 3^2/(4 \cdot 0. 75^2)=4$.  The same  $E_{\rm S}/N_0 =4$  results for the problem  $(1)$.


(3)   Now consider  $\text{non–coherent}$  demodulation with  $\sigma_{\rm AWGN} = 0.75$,  $C_{\rm Rice} = 2.25$  and  $G=2$.  What is the symbol error probability  $p_{\rm S}$?

  • For non–coherent demodulation, the PDF of the reception signal is composed of "half" a Rayleigh function $($blue$)$ and "half" a Rice function $($red$)$.
  • ${\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) \approx 1.43\%$  gives the proportions of the blue curve above  $G =2$, and ${\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}) \approx 15. 18\%$  the proportions of the red curve below  $G =2$.
  • With  $G=2$  the sum for the symbol error probability is  $p_{\rm S}\approx 16.61\%$ , and with  $G_{\rm opt}=1.58$  a slightly better value:  $p_{\rm S}\approx 12.25\%$.


(4)   Let  $X$  be a Rayleigh random variable in general and  $Y$  be a Rice random variable, each with above parameters.  How large are  ${\rm Pr}(X\le 2)$  and  ${\rm Pr}(Y\le 2)$ ?

  • It holds  ${\rm Pr}(Y\le 2) = 2 \cdot {\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}) \approx 30.36\%$,  since in the applet the Rice PDF is represented by the factor  $1/2$.
  • In the same way  ${\rm Pr}(X> 2) = 2 \cdot {\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) \approx 2.86\%$   ⇒   ${\rm Pr}(X \le 2)= 1-0.0286 = 97.14\%$.


(5)   We consider the values  $\sigma_{\rm AWGN} = 0.75$,  $C_{\rm Rice} = 2.25$  and  $G=G_{\rm opt}=1. 58$.  How does  $p_{\rm S}$ change when "Rice" is replaced by "Gauss" as best as possible?

  • After the exact calculation, using the optimal threshold  $G_{\rm opt}=1.58$:     ${\rm Pr}(\boldsymbol{r_0} \cap \boldsymbol{s_1}) \approx 5. 44\%$,  ${\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}) \approx 6.81\%$   ⇒   $p_{\rm S}\approx 12.25\%$.
  • With the Gaussian approximation, for the same  $G$  the first term is not changed.  The second term increases to  ${\rm Pr}(\boldsymbol{r_1} \cap \boldsymbol{s_0}) \approx 9.29\%$   ⇒   $p_{\rm S}\approx 14.73\%$.
  • The new optimization of the threshold  $G$  considering the Gaussian approximation leads to  $G_{\rm opt}=1.53$  and  $p_{\rm S}\approx 14.67\%$.
  • The parameters of the Gaussian distribution are set as follows:  mean  $m_{\rm Gaussian}= C_{\rm Rice}=2.25$,  standard deviation  $\sigma_{\rm Gaussian}= \sigma_{\rm AWGN}=0.75$.


(6)   How do the results change from  $(5)$  with  $\sigma_{\rm AWGN} = 0. 5$,  $C_{\rm Rice} = 1.5$  and with  $\sigma_{\rm AWGN} = 1$,  $C_{\rm Rice} = 3$  respectively,  each with   $G=G_{\rm opt}$?

  • With the optimal decision threshold  $G_{\rm opt}$, the probabilities are the same, both for the exact Rice distribution and with the Gaussian approximation.
  • For all three parameter sets,  $E_{\rm S}/N_0= 2.25$.  This suggests:  The results with non–coherent demodulation depend on this characteristic value alone.


(7)   Let the setting continue to be  $\text{non–coherent/approximation}$  with  $C_{\rm Rice} = 3$,  $G=G_{\rm opt}$.  Vary the AWGN standard deviation in the range  $0.5 \le \sigma \le 1$.
         Interpret the relative error   ⇒   $\rm (False - Correct)/Correct$  as a function of the quotient  $E_{\rm S}/N_0$.

  • With  $\sigma =0.5$   ⇒   $E_{\rm S}/N_0 = 9$  one obtains  $p_{\rm S}^{\ \rm (exact)}\approx 0. 32\%$  and  $p_{\rm S}^{\ \rm (approximate)}\approx 0.38\%$.  The absolute error is  $0.06\%$  and the relative error  $18.75\%$.
  • With  $\sigma =1$   ⇒   $E_{\rm S}/N_0 = 2.25$  one obtains  $p_{\rm S}^{\ \rm (exact)}\approx 12. 25\%$  and  $p_{\rm S}^{\ \rm (approximate)}\approx 14.67\%$.  The absolute error is  $2.42\%$  and the relative error  $19.75\%$.
  • ⇒   The Gaussian approximation becomes better with larger  $E_{\rm S}/N_0$.  This statement can be seen more clearly from the absolute than from the relative error.


(8)   Now repeat the last experiment with  $\text{coherent}$  demodulation and  $s_0 = 3$,  $G=G_{\rm opt}$.  What conclusion does the comparison with  $(7)$ allow?

  • The comparison of  $(7)$  and  $(8)$  shows:     For each  $E_{\rm S}/N_0$  there is a greater (worse) symbol error probability with non–coherent demodulation.
  • For  $E_{\rm S}/N_0= 9$:     $p_{\rm S}^{\ \rm (coherent)}\approx 0.13\%$  and  $p_{\rm S}^{\ \rm (non–coherent)}\approx 0.32\%$.   And for  $E_{\rm S}/N_0= 2.25$:     $p_{\rm S}^{\ \rm (coherent)}\approx 6.68\%$  and  $p_{\rm S}^{\ \rm (non–coherent)}\approx 12.25\%$. 
  • The simpler realization of the incoherent demodulator (no clock synchronization) causes a loss of quality   ⇒   greater error probability.

Applet Manual

Screenshot $($English version,  light background$)$


    (A)     Selection:

  • coherent,
  • Incoherent,
  • Incoherent with approximation.

    (B)     Parameter input: 

  • $\sigma_{\rm AWGN}$, 
  • $s_0$, 
  • $E_{\rm S}/N_0$, 
  • $G_{\rm opt}$

    (C)     Numerical output area of probabilities.

    (D)     Graphical output area of PDF proportions.

    (E)     Exercise selection

    (F)     Questions and solutions

About the Authors


This interactive calculation tool was designed and implemented at the  Institute for Communications Engineering  at the  Technical University of Munich.

  • Last revision and English version 2021 by Carolin Mirschina. 
  • The conversion of this applet was financially supported by  "Studienzuschüsse"  (TUM Department of Electrical and Computer Engineering).  We thank.

Once again: Open Applet in new Tab

Open Applet in new Tab   Deutsche Version Öffnen