Difference between revisions of "Signal Representation/General Description"

From LNTwww
 
(16 intermediate revisions by 3 users not shown)
Line 7: Line 7:
 
== # OVERVIEW OF THE SECOND MAIN CHAPTER # ==
 
== # OVERVIEW OF THE SECOND MAIN CHAPTER # ==
 
<br>
 
<br>
In this chapter&nbsp; ''periodic signals''&nbsp; are considered and described mathematically in the time and frequency domain.  
+
In this chapter,&nbsp; &raquo;'''periodic signals'''&laquo;&nbsp; are considered and described mathematically &raquo;'''in the time and frequency domain'''&laquo;.  
  
 
This chapter contains in detail:  
 
This chapter contains in detail:  
* Some basic terms like&nbsp; <i>period duration, fundamental frequency</i>&nbsp; and&nbsp; <i>circular frequency</i>,
+
# Some basic terms like&nbsp; &raquo;period duration&laquo;,&nbsp; &raquo;basic frequency&laquo;&nbsp; and&nbsp; &raquo;circular frequency&laquo;,
* the properties of a&nbsp; <i>equal signal</i>&nbsp; as a boundary case of a periodic signal,
+
# the properties of a&nbsp; &raquo;DC signal&laquo;&nbsp; as a limiting case of a periodic signal,
* the definition and interpretation of the&nbsp; <i>Dirac function</i>,
+
# the definition and interpretation of the&nbsp; &raquo;Dirac delta function&laquo;,
* the spectral representation of a&nbsp; <i>equal signal</i>&nbsp; or a&nbsp; <i>equal signal component</i>,
+
# the&nbsp; &raquo;spectral representation&laquo;&nbsp; of a DC signal or a DC signal component,
* the time&ndash; and frequency representation of &nbsp; <i>harmonic oscillations</i>, and finally
+
# the time and frequency representation of&nbsp; &raquo;harmonic oscillations&laquo;,&nbsp; and finally
* the application of&nbsp; <i>Fourier series</i>&nbsp; for spectral analysis of periodic signals.
+
# the application of&nbsp; &raquo;Fourier series&laquo;&nbsp; for spectral analysis of periodic signals.
  
  
Further information on the topic as well as tasks, simulations and programming exercises can be found in
 
  
*Chapter 6:  ''Linear and Time Invariant Systems''&nbsp; (Program lzi)
+
==Features and applications==
 +
<br>
 +
Periodic signals are of great importance for Communications Engineering:
 +
*They belong to the class of&nbsp; [[Signal_Representation/Signal_classification#Deterministic_and_stochastic_signals|&raquo;deterministic signals&laquo;]],&nbsp; whose time function can be specified in analytical form.
  
 +
*Their signal path is thus known for all times&nbsp; $t$&nbsp; and can be clearly predicted for the future.
  
of the lab &bdquo;Simulation Methods in Communication Engineering&rdquo;. This former LNT course at the TU Munich is based on
+
*They are therefore never information-carrying signals.
*the educational software package&nbsp; [http://en.lntwww.de/downloads/Sonstiges/Programme/LNTsim.zip LNTsim]&nbsp; &nbsp; &rArr; &nbsp; Link points to the ZIP version of the program, and
 
*this &nbsp; [http://en.lntwww.de/downloads/Sonstiges/Texte/Praktikum_LNTsim_Teil_A.pdf lab instruction]&nbsp;  &nbsp; &rArr; &nbsp; Link refers to the PDF version of ;&nbsp; chapter 6:&nbsp; page 99-118.
 
  
  
==Features and Applications==
+
Nevertheless,&nbsp; periodic signals are often also required in Communications Engineering,&nbsp; for example
<br>
+
*for modulation and demodulation in carrier frequency systems,
Periodic signals are of great importance for communications engineering:
+
 
*They belong to the class of&nbsp;[[Signal_Representation/Signal_classification#Deterministische_und_stochastische_Signale|deterministic signals]], whose time function can be specified in analytical form.
+
*for synchronization and clock regeneration in digital systems,
*Ihr Signalverlauf ist damit für alle Zeiten&nbsp; $t$&nbsp; bekannt und für die Zukunft eindeutig vorhersagbar.
 
*Sie sind daher niemals informationstragende Signale.
 
  
 +
*as test and verification signals during system implementation.
  
Trotzdem werden periodische Signale oft auch in der Nachrichtentechnik benötigt, zum Beispiel
 
*für die Modulation und Demodulation bei Trägerfrequenzsystemen,
 
*für die Synchronisation und Taktregenerierung bei Digitalsystemen,
 
*als Test&ndash; und Prüfsignale bei der Systemrealisierung.
 
  
 +
{{GraueBox|TEXT=
 +
[[File:P_ID161__Sig_T_2_1_S1.png|right|frame|Oscilloscope image of cosine and triangular signals]]
 +
$\text{Example 1:}$&nbsp;
 +
The oscilloscope image shows two typical representatives of periodic signals:
 +
*above a cosine signal,
  
[[File:P_ID161__Sig_T_2_1_S1.png|right|frame|Oszilloskopbild von Cosinus- und Dreiecksignal]]
+
*below a triangular signal.
{{GraueBox|TEXT= 
 
$\text{Beispiel 1:}$&nbsp;
 
Auf dem Oszilloskopbild sehen Sie zwei typische Vertreter periodischer Signale:
 
*oben ein Cosinussignal,
 
*unten ein Dreiecksignal.
 
  
  
Wie aus den eingeblendeten Einstellungen ersichtlich ist, beträgt bei beiden Signalen die Periodendauer eine Millisekunde und die Amplitude ein Volt.}}
+
As can be seen from the displayed settings,&nbsp; the period duration of both signals is one millisecond and the amplitude one volt.}}
  
  
==Definition und Parameter==
+
==Definition and parameters==
 
<br>
 
<br>
Bevor wir uns den Signalparametern eines periodischen Signals zuwenden, soll der Begriff  &bdquo;Periodizität&rdquo; eindeutig definiert werden:
+
Before we turn to the signal parameters of a periodic signal,&nbsp; the term&nbsp; &raquo;periodicity&laquo;&nbsp; shall be clearly defined:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Definition:}$&nbsp;
 
$\text{Definition:}$&nbsp;
Ein&nbsp; '''periodisches Signal'''&nbsp; $x(t)$&nbsp; liegt dann vor, wenn für alle beliebigen Werte von&nbsp; $t$&nbsp; und alle ganzzahligen Werte von&nbsp; $i$&nbsp; mit einem geeigneten&nbsp; $T_{0}$&nbsp; gilt:  
+
A&nbsp; &raquo;'''periodic signal'''&laquo;&nbsp; $x(t)$&nbsp; is present if for all arbitrary values of&nbsp; $t$&nbsp; and all integer values of&nbsp; $i$&nbsp; with an appropriate&nbsp; $T_{0}$&nbsp; applies:  
 +
:$$x(t+i\cdot T_{0}) = x(t).$$}}
  
:$$x(t+i\cdot T_{0}) = x(t).$$}}
 
  
 +
This results in the following parameters:
 +
*The&nbsp; &raquo;'''period duration'''&laquo;&nbsp; $T_{0}$&nbsp; indicates the smallest possible value,&nbsp; which satisfies the above equation.
 +
 +
*The&nbsp; &raquo;'''basic frequency'''&laquo;&nbsp; $f_{0} = 1/T_{0}$&nbsp; describes the number of periods per time unit&nbsp; $($mostly per second$)$.
 +
 +
*The unit&nbsp; "1/s"&nbsp; is also called&nbsp; "Hz",&nbsp; named after the German physicist &nbsp; [https://en.wikipedia.org/wiki/Heinrich_Hertz $\text{Heinrich Hertz}$].
  
Daraus ergeben sich die folgenden Kenngrößen:
+
*The&nbsp; &raquo;'''basic circular frequency'''&laquo;&nbsp; $\omega_{0}$&nbsp; represents the angular rotation per second,&nbsp; usually given in radians.
*Die&nbsp; '''Periodendauer'''&nbsp; $T_{0}$&nbsp; gibt den kleinstmöglichen Wert an, der obige Gleichung erfüllt.
+
*Die&nbsp; '''Grundfrequenz'''&nbsp; $f_{0} = 1/T_{0}$&nbsp; beschreibt die Anzahl der Perioden pro Zeiteinheit (meist je Sekunde).
+
*In contrast to the basic frequency,&nbsp; the unit&nbsp; "Hz"&nbsp; is not common here, but&nbsp; "1/s".&nbsp; The following equation applies:
*Die Einheit „1/s” wird auch mit „Hz” bezeichnet, benannt nach dem deutschen Physiker&nbsp; [https://de.wikipedia.org/wiki/Heinrich_Hertz Heinrich Hertz].
 
*Die&nbsp; '''Grundkreisfrequenz'''&nbsp; $\omega_{0}$&nbsp; stellt die Winkeldrehung pro Sekunde dar, die meistens im Bogenmaß angegeben wird.
 
*Im Gegensatz zur Grundfrequenz ist hier nicht die Einheit „Hz”, sondern „1/s” üblich. Es gilt folgende Gleichung:
 
 
:$$\omega_{0}=2\pi f_{0} = {2\pi}/{T_{0}}.$$
 
:$$\omega_{0}=2\pi f_{0} = {2\pi}/{T_{0}}.$$
  
  
[[File:P_ID211__Sig_T_2_1_S2_neu.png|right|frame|Zur Definition von Periodendauer, Grundfrequenz und Kreisfrequenz]]
+
{{GraueBox|TEXT=
{{GraueBox|TEXT=  
+
[[File:P_ID211__Sig_T_2_1_S2_neu.png|right|frame|Given signal and period duration]]   
$\text{Beispiel 2:}$&nbsp;
+
$\text{Example 2:}$&nbsp;
Dargestellt ist hier ein periodisches Zeitsignal:
+
Here, a periodic time signal is shown:
*Die Periodendauer  beträgt&nbsp; $T_{0} = 2.5 \ \rm ms$.
+
*The period duration is&nbsp; $T_{0} = 2.5 \ \rm ms$.
*Daraus berechnet sich die Grundfrequenz&nbsp; $f_0 =  400  \ \rm  Hz$.  
+
 
*Die Grundkreisfrequenz ergibt sich zu&nbsp; $\omega_{0}=2513 \ \rm  1/s.$}}
+
*From this the basic frequency &nbsp; $f_0 =  400  \ \rm  Hz$&nbsp; is calculated.
 +
 +
*The basic circular frequency results to &nbsp;$\omega_{0}=2513 \ \rm  1/s.$}}
 
   
 
   
  
  
 +
==Resulting period duration==
 +
<br>
 +
If a signal&nbsp; $x(t)$&nbsp; consists of the sum of two periodic signals&nbsp; $x_{1}(t)$&nbsp; and&nbsp; $x_{2}(t)$&nbsp; with period durations&nbsp; $T_{1}$&nbsp; or &nbsp; $T_{2}$,&nbsp; the resulting period duration of the sum signal is the smallest common multiple of&nbsp; $T_{1}$&nbsp; and&nbsp; $T_{2}$.
 +
*This statement applies independently of the amplitude and phase relations.
  
==Resultierende Periodendauer==
+
*On the other hand,&nbsp; if &nbsp; $T_{1}$&nbsp; and&nbsp; $T_{2}$&nbsp; don't  have a  rational common multiple&nbsp; $($Example: &nbsp; $T_{2} = \pi \cdot T_{1})$,&nbsp; then the sum signal&nbsp; $x(t)$&nbsp; is in contrast to its two components&nbsp; $x_{1}(t)$&nbsp; and&nbsp; $x_{2}(t)$&nbsp; not periodic.
<br>
 
Besteht ein Signal&nbsp; $x(t)$&nbsp; aus der Summe zweier periodischer Signale&nbsp; $x_{1}(t)$&nbsp; und&nbsp; $x_{2}(t)$&nbsp; mit den Periodendauern&nbsp; $T_{1}$&nbsp; bzw.&nbsp; $T_{2}$, so ist die resultierende Periodendauer des Summensignals das kleinste gemeinsame Vielfache von&nbsp; $T_{1}$&nbsp; und&nbsp; $T_{2}$.
 
*Diese Aussage gilt unabhängig von den Amplituden– und Phasenverhältnissen.
 
*Besitzen&nbsp; $T_{1}$&nbsp; und&nbsp; $T_{2}$&nbsp; dagegen kein rationales gemeinsames Vielfaches&nbsp; $($Beispiel:&nbsp; $T_{2} = \pi \cdot T_{1})$, so ist das Summensignal&nbsp; $x(t)$&nbsp; im Gegensatz zu seinen beiden Komponenten&nbsp; $x_{1}(t)$&nbsp; und&nbsp; $x_{2}(t)$&nbsp; nicht periodisch.
 
  
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 3:}$&nbsp;
+
$\text{Example 3:}$&nbsp;
Addiert werden ein cosinusförmiges Signal&nbsp; $x_{1}(t)$&nbsp; mit der Periodendauer&nbsp; $T_{1} = 2\; {\rm ms}$&nbsp; (blauer Signalverlauf)&nbsp; und ein Sinussignal&nbsp; $x_{2}(t)$&nbsp; mit der Periodendauer&nbsp; $T_{2} = 5\; {\rm ms}$&nbsp; und doppelt so großer Amplitude (grüner Verlauf).
+
Here,&nbsp; a cosinusoidal signal&nbsp; $x_{1}(t)$&nbsp; with period duration&nbsp; $T_{1} = 2\; {\rm ms}$&nbsp; $($blue signal course$)$&nbsp;is added with  a sinusoidal signal&nbsp; $x_{2}(t)$&nbsp; with period duration&nbsp; $T_{2} = 5\; {\rm ms}$&nbsp; and twice the amplitude&nbsp; $($green curve).
 +
 
 +
[[File:P_ID247__Sig_T_2_1_S3_neu.png|frame|Resulting period duration of the sum of cosine and sine signal]]
 +
 
 +
*The&nbsp; $($red$)$&nbsp; sum signal&nbsp; $x(t) = x_{1}(t) + x_{2}(t)$&nbsp; then shows the resulting period duration&nbsp; $T_{0} = 10\; {\rm ms}$ &nbsp; &rArr; &nbsp; basic frequency&nbsp; $f_{0} = 100\; {\rm Hz}$.
 +
 
 +
*The frequency&nbsp; $f_{0}$&nbsp; itself is not contained in&nbsp; $x(t)$&nbsp; only integer multiples of it,&nbsp; namely&nbsp;
 +
::$f_{1} = 500\; {\rm Hz}$&nbsp; and&nbsp; $f_{2} = 200\; {\rm Hz}$.  
 +
 
  
[[File:P_ID247__Sig_T_2_1_S3_neu.png|frame|Resultierende Periodendauer der Summe aus Cosinus&ndash; und Sinussignal]]
 
  
*Das (rote) Summensignal&nbsp; $x(t) = x_{1}(t) + x_{2}(t)$&nbsp; weist dann die resultierende Periodendauer&nbsp; $T_{0} = 10\; {\rm ms}$&nbsp;  auf &nbsp; &rArr; &nbsp; Grundfrequenz&nbsp;  $f_{0} = 100\; {\rm Hz}$.
 
*Die Frequenz&nbsp; $f_{0}$&nbsp; selbst ist in&nbsp; $x(t)$&nbsp; nicht enthalten, lediglich ganzzahlige Vielfache davon, nämlich&nbsp; $f_{1} = 500\; {\rm Hz}$&nbsp;  und&nbsp; $f_{2} = 200\; {\rm Hz}$. }}
 
  
  
Mit dem interaktiven Applet&nbsp; [[Applets:Periodendauer_periodischer_Signale|Periodendauer periodischer Signale]]&nbsp; lässt sich die resultierende Periodendauer zweier harmonischer Schwingungen ermitteln.
+
&rArr; &nbsp; With the interactive applet&nbsp; [[Applets:Period_Duration_of_Periodic_Signals|&raquo;Period Duration of Periodic Signals&laquo;]]&nbsp; the resulting period of two harmonic oscillations can be determined.}}
  
  
==Aufgaben zum Kapitel==
+
==Exercises for the chapter==
 
<br>
 
<br>
[[Aufgaben: 2.1 Gleichrichtung|Aufgabe 2.1: Gleichrichtung]]
+
[[Aufgaben:Exercise_2.1:_Rectifying|Exercise 2.1: Rectification]]
  
[[Aufgaben:Aufgabe_2.1Z:_Summensignal|Aufgabe 2.1Z: Summensignal]]
+
[[Aufgaben:Exercise_2.1Z:_Sum_Signal|Exercise 2.1Z: Sum Signal]]
  
  

Latest revision as of 15:13, 8 June 2023

# OVERVIEW OF THE SECOND MAIN CHAPTER #


In this chapter,  »periodic signals«  are considered and described mathematically »in the time and frequency domain«.

This chapter contains in detail:

  1. Some basic terms like  »period duration«,  »basic frequency«  and  »circular frequency«,
  2. the properties of a  »DC signal«  as a limiting case of a periodic signal,
  3. the definition and interpretation of the  »Dirac delta function«,
  4. the  »spectral representation«  of a DC signal or a DC signal component,
  5. the time and frequency representation of  »harmonic oscillations«,  and finally
  6. the application of  »Fourier series«  for spectral analysis of periodic signals.


Features and applications


Periodic signals are of great importance for Communications Engineering:

  • Their signal path is thus known for all times  $t$  and can be clearly predicted for the future.
  • They are therefore never information-carrying signals.


Nevertheless,  periodic signals are often also required in Communications Engineering,  for example

  • for modulation and demodulation in carrier frequency systems,
  • for synchronization and clock regeneration in digital systems,
  • as test and verification signals during system implementation.


Oscilloscope image of cosine and triangular signals

$\text{Example 1:}$  The oscilloscope image shows two typical representatives of periodic signals:

  • above a cosine signal,
  • below a triangular signal.


As can be seen from the displayed settings,  the period duration of both signals is one millisecond and the amplitude one volt.


Definition and parameters


Before we turn to the signal parameters of a periodic signal,  the term  »periodicity«  shall be clearly defined:

$\text{Definition:}$  A  »periodic signal«  $x(t)$  is present if for all arbitrary values of  $t$  and all integer values of  $i$  with an appropriate  $T_{0}$  applies:

$$x(t+i\cdot T_{0}) = x(t).$$


This results in the following parameters:

  • The  »period duration«  $T_{0}$  indicates the smallest possible value,  which satisfies the above equation.
  • The  »basic frequency«  $f_{0} = 1/T_{0}$  describes the number of periods per time unit  $($mostly per second$)$.
  • The  »basic circular frequency«  $\omega_{0}$  represents the angular rotation per second,  usually given in radians.
  • In contrast to the basic frequency,  the unit  "Hz"  is not common here, but  "1/s".  The following equation applies:
$$\omega_{0}=2\pi f_{0} = {2\pi}/{T_{0}}.$$


Given signal and period duration

$\text{Example 2:}$  Here, a periodic time signal is shown:

  • The period duration is  $T_{0} = 2.5 \ \rm ms$.
  • From this the basic frequency   $f_0 = 400 \ \rm Hz$  is calculated.
  • The basic circular frequency results to  $\omega_{0}=2513 \ \rm 1/s.$


Resulting period duration


If a signal  $x(t)$  consists of the sum of two periodic signals  $x_{1}(t)$  and  $x_{2}(t)$  with period durations  $T_{1}$  or   $T_{2}$,  the resulting period duration of the sum signal is the smallest common multiple of  $T_{1}$  and  $T_{2}$.

  • This statement applies independently of the amplitude and phase relations.
  • On the other hand,  if   $T_{1}$  and  $T_{2}$  don't have a rational common multiple  $($Example:   $T_{2} = \pi \cdot T_{1})$,  then the sum signal  $x(t)$  is in contrast to its two components  $x_{1}(t)$  and  $x_{2}(t)$  not periodic.


$\text{Example 3:}$  Here,  a cosinusoidal signal  $x_{1}(t)$  with period duration  $T_{1} = 2\; {\rm ms}$  $($blue signal course$)$ is added with a sinusoidal signal  $x_{2}(t)$  with period duration  $T_{2} = 5\; {\rm ms}$  and twice the amplitude  $($green curve).

Resulting period duration of the sum of cosine and sine signal
  • The  $($red$)$  sum signal  $x(t) = x_{1}(t) + x_{2}(t)$  then shows the resulting period duration  $T_{0} = 10\; {\rm ms}$   ⇒   basic frequency  $f_{0} = 100\; {\rm Hz}$.
  • The frequency  $f_{0}$  itself is not contained in  $x(t)$  only integer multiples of it,  namely 
$f_{1} = 500\; {\rm Hz}$  and  $f_{2} = 200\; {\rm Hz}$.



⇒   With the interactive applet  »Period Duration of Periodic Signals«  the resulting period of two harmonic oscillations can be determined.


Exercises for the chapter


Exercise 2.1: Rectification

Exercise 2.1Z: Sum Signal