Difference between revisions of "Signal Representation/Analytical Signal and its Spectral Function"

From LNTwww
Line 115: Line 115:
 
==Pointer diagram representation of the harmonic oscillation==
 
==Pointer diagram representation of the harmonic oscillation==
 
<br>
 
<br>
The spectral function&nbsp; $X(f)$&nbsp; of a harmonic oscillation&nbsp; $x(t) = A \cdot \text{cos}(2\pi f_{\rm T}t - \varphi)$&nbsp; consists of two Dirac delta functions at the frequencies
+
The spectral function&nbsp; $X(f)$&nbsp; of a harmonic oscillation&nbsp; $x(t) = A \cdot \text{cos}(2\pi f_{\rm T}t - \varphi)$&nbsp; consists of two Dirac delta functions at frequencies
* $+f_{\rm T}$&nbsp; with the complex weight &nbsp; $A/2 \cdot \text{e}^{-\text{j}\hspace{0.05cm}\varphi}$,
+
* $+f_{\rm T}$&nbsp; with complex weight &nbsp; $A/2 \cdot \text{e}^{-\text{j}\hspace{0.05cm}\varphi}$,
* $-f_{\rm T}$&nbsp; with the complex weight &nbsp; $A/2 \cdot \text{e}^{+\text{j}\hspace{0.05cm}\varphi}$.
+
 
 +
* $-f_{\rm T}$&nbsp; with complex weight &nbsp; $A/2 \cdot \text{e}^{+\text{j}\hspace{0.05cm}\varphi}$.
  
  
Line 125: Line 126:
 
T}) .$$
 
T}) .$$
 
   
 
   
The corresponding time function is obtained by applying the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Shifting_Theorem|$\text{Shifting Theorem}$]]:
+
The corresponding time function is obtained by applying the&nbsp; [[Signal_Representation/Fourier_Transform_Theorems#Shifting_Theorem|&raquo;Shifting Theorem&laquo;]]:
 
   
 
   
 
:$$x_+(t) = A \cdot {\rm e}^{\hspace{0.05cm} {\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}( 2 \pi f_{\rm T} t
 
:$$x_+(t) = A \cdot {\rm e}^{\hspace{0.05cm} {\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}( 2 \pi f_{\rm T} t
Line 132: Line 133:
 
This equation describes a rotating pointer with constant angular velocity&nbsp; $\omega_{\rm T} = 2\pi f_{\rm T}$.
 
This equation describes a rotating pointer with constant angular velocity&nbsp; $\omega_{\rm T} = 2\pi f_{\rm T}$.
  
In the following, we will also refer to the time course of an analytical and frequency-discrete  signal&nbsp; $x_+(t)$&nbsp; as&nbsp; $\text{Pointer Diagram}$.
+
In the following,&nbsp; we will also refer to the time course of an analytical and frequency-discrete  signal&nbsp; $x_+(t)$&nbsp; as&nbsp; &raquo;'''pointer diagram'''&laquo;.
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Example 3:}$&nbsp; For illustrative reasons the coordinate system here is rotated (real part upwards, imaginary part to the left), contrary to the usual representation by&nbsp; $90^\circ$.
+
$\text{Example 3:}$&nbsp; For illustrative reasons the coordinate system here is rotated&nbsp; $($real part upwards,&nbsp; imaginary part to the left$)$,&nbsp; contrary to the usual representation by&nbsp; $90^\circ$.
  
 
[[File:P_ID712__Sig_T_4_2_S3.png|right|frame|Pointer diagram of a harmonic oscillation]]
 
[[File:P_ID712__Sig_T_4_2_S3.png|right|frame|Pointer diagram of a harmonic oscillation]]
  
 
On the basis of this diagram the following statements are possible:
 
On the basis of this diagram the following statements are possible:
*At the start time&nbsp; $t = 0$&nbsp; the pointer of length&nbsp; $A$&nbsp; (amplitude) lies with angle&nbsp; $-\varphi$&nbsp; in the complex plane.&nbsp; In the drawn example,&nbsp; $\varphi = 45^\circ$.
+
*At the start time&nbsp; $t = 0$&nbsp; the pointer of length&nbsp; $A$&nbsp; $($amplitude$)$&nbsp; lies with angle&nbsp; $-\varphi$&nbsp; in the complex plane.&nbsp; In the drawn example,&nbsp; $\varphi = 45^\circ$.
*For the times&nbsp; $t > 0$&nbsp; the pointer rotates with constant angular velocity (circular frequency)&nbsp; $\omega_{\rm T}$&nbsp; in mathematically positive direction, i.e. counterclockwise.
+
 
*The top of the pointer thus always lies on a circle with radius&nbsp; $A$&nbsp; and requires exactly the time&nbsp; $T_0$, i.e. the period duration of the harmonic oscillation&nbsp; $x(t)$&nbsp; for one rotation.
+
*For times&nbsp; $t > 0$&nbsp; the pointer rotates with constant angular velocity&nbsp; $($circular frequency$)$&nbsp; $\omega_{\rm T}$&nbsp; in mathematically positive direction,&nbsp; i.e. counterclockwise.
*The projection of the analytical signal&nbsp; $x_+(t)$&nbsp; onto the real axis, marked by red dots, provides the instantaneous values of&nbsp; $x(t)$.}}
+
 
 +
*The top of the pointer thus always lies on a circle with radius&nbsp; $A$&nbsp; and requires exactly the time&nbsp; $T_0$,&nbsp; i.e. the&nbsp; &raquo;period duration&laquo;&nbsp; of the harmonic oscillation&nbsp; $x(t)$&nbsp; for one rotation.
 +
 
 +
*The projection of the analytical signal&nbsp; $x_+(t)$&nbsp; onto the real axis,&nbsp; marked by red dots,&nbsp; provides the instantaneous values of&nbsp; $x(t)$.}}
  
  
Line 148: Line 152:
 
==Pointer diagram  of a sum of harmonic oscillations==
 
==Pointer diagram  of a sum of harmonic oscillations==
 
<br>
 
<br>
For further description we assume the following spectrum for the analytical signal:
+
For the further description we assume the following spectrum for the analytical signal:
  
 
[[File:P_ID715__Sig_T_4_2_S4.png|right|frame|Pointer diagram  of a sum of three oscillations]]
 
[[File:P_ID715__Sig_T_4_2_S4.png|right|frame|Pointer diagram  of a sum of three oscillations]]
Line 155: Line 159:
 
\varphi_i}\cdot\delta (f - f_{i}) .$$
 
\varphi_i}\cdot\delta (f - f_{i}) .$$
  
The left graphic shows such a spectrum for the example&nbsp; $I = 3$.&nbsp; If one chooses&nbsp; $I$&nbsp; relatively large and the distance between adjacent spectral lines correspondingly small, then (frequency&ndash;) continuous spectral functions&nbsp; $X_+(f)$&nbsp; can also be approximated with the above equation.
+
#The left graphic shows such a spectrum for the example&nbsp; $I = 3$.&nbsp;  
 +
#If one chooses&nbsp; $I$&nbsp; relatively large and the distance between adjacent spectral lines correspondingly small,&nbsp; then with this equation frequency&ndash;continuous spectral functions&nbsp; $X_+(f)$&nbsp; can also be approximated.
 +
 
  
 
In the right graphic the corresponding time function is indicated.&nbsp; This is in general:
 
In the right graphic the corresponding time function is indicated.&nbsp; This is in general:
Line 163: Line 169:
  
 
To note about this graphic:
 
To note about this graphic:
*The sketch shows the initial position of the pointers at the start time&nbsp; $t = 0$&nbsp; corresponding to the amplitudes&nbsp; $A_i$&nbsp; and the phase positions&nbsp; $\varphi_i$.
+
*The sketch shows the initial position of the pointers at start time&nbsp; $t = 0$&nbsp; corresponding to the amplitudes&nbsp; $A_i$&nbsp; and the phase positions&nbsp; $\varphi_i$.
 +
 
 
*The tip of the resulting pointer compound is marked by the violet cross.&nbsp; One obtains by vectorial addition of the three individual pointers for the time&nbsp; $t = 0$:
 
*The tip of the resulting pointer compound is marked by the violet cross.&nbsp; One obtains by vectorial addition of the three individual pointers for the time&nbsp; $t = 0$:
 
:$$x_+(t= 0) = \big [1 \cdot \cos(60^\circ) - 1  \cdot {\rm j} \cdot \sin(60^\circ) \big ]+ 2 \cdot \cos(0^\circ)+1 \cdot \cos(180^\circ) = 1.500 - {\rm j} \cdot 0.866.$$
 
:$$x_+(t= 0) = \big [1 \cdot \cos(60^\circ) - 1  \cdot {\rm j} \cdot \sin(60^\circ) \big ]+ 2 \cdot \cos(0^\circ)+1 \cdot \cos(180^\circ) = 1.500 - {\rm j} \cdot 0.866.$$
*For times&nbsp; $t > 0$&nbsp; the three pointers rotate at different angular velocities&nbsp; $\omega_i = 2\pi f_i$.&nbsp; The red pointer rotates faster than the green one, but slower than the blue one.
+
*For times&nbsp; $t > 0$&nbsp; the three pointers rotate at different angular velocities&nbsp; $\omega_i = 2\pi f_i$.&nbsp; The red pointer rotates faster than the green one,&nbsp; but slower than the blue one.
*Since all pointers rotate counterclockwise, the resulting pointer&nbsp; $x_+(t)$&nbsp; will also tend to move in this direction.&nbsp;  
+
 
 +
*Since all pointers rotate counterclockwise, the resulting pointer&nbsp; $x_+(t)$&nbsp; will also tend to move in this direction.&nbsp;
 +
 
*At time&nbsp; $t = 1\,&micro;\text {s}$&nbsp; the tip of the resulting pointer for the given parameter values is
 
*At time&nbsp; $t = 1\,&micro;\text {s}$&nbsp; the tip of the resulting pointer for the given parameter values is
  
Line 186: Line 195:
  
  
The interactive applet&nbsp; [[Applets:Physical_Signal_%26_Analytic_Signal|"Physical Signal and Analytical Signal"]]&nbsp; illustrates&nbsp; $x_+(t)$&nbsp; for the sum of three harmonic oscillations.
+
The interactive applet&nbsp; [[Applets:Physical_Signal_%26_Analytic_Signal|&raquo;Physical Signal and Analytical Signal&laquo;]]&nbsp; illustrates&nbsp; $x_+(t)$&nbsp; for the sum of three harmonic oscillations.
  
 
==Exercises for the chapter==
 
==Exercises for the chapter==

Revision as of 16:41, 19 June 2023

Definition in the frequency domain


We consider a real band-pass signal  $x(t)$  with the corresponding band-pass spectrum  $X(f)$,  which has an even real and an odd imaginary part with respect to the frequency zero point.  It is assumed that the carrier frequency  $f_{\rm T}$  is much larger than the bandwidth of the band-pass signal  $x(t)$.

$\text{Definition:}$  The  »analytical signal«  $x_+(t)$  belonging to the physical signal  $x(t)$  is that time function, whose spectrum fulfills the following property:

Analytical signal in the frequency domain
$$X_+(f)=\big[1+{\rm sign}(f)\big] \cdot X(f) = \left\{ {2 \cdot X(f) \; \hspace{0.2cm}\rm for\hspace{0.2cm} {\it f} > 0, \atop {\,\,\,\, \rm 0 \; \hspace{0.9cm}\rm for\hspace{0.2cm} {\it f} < 0.} }\right.$$

The  »sign function«  is equal to  $+1$  for positive $f$–values and for negative  $f$-values equal to  $-1$.

  • The  $($double sided$)$  limit value returns  $\sign(0) = 0$.
  • The index  "+"  should make clear that  $X_+(f)$  has only parts at positive frequencies.


From the graphic you can see the calculation rule for  $X_+(f)$:  The actual band-pass spectrum  $X(f)$  will

  • be doubled at the positive frequencies, and
  • set to zero at the negative frequencies.


$\text{Example 1:}$  The graph

Spectrum  $X(f)$  and Spectrum  $X_{+}(f)$  of the analytical signal
  • on the left shows the  $($discrete and complex$)$  spectrum  $X(f)$  of the  "physical band-pass signal"
$$x(t) = 4\hspace{0.05cm}{\rm V} \cdot {\cos} ( 2 \pi f_{\rm u} \hspace{0.03cm}t) + 6\hspace{0.05cm}{\rm V} \cdot {\sin} ( 2 \pi f_{\rm o} \hspace{0.03cm}t),$$
  • on the right the  $($also discrete and complex$)$  spectrum  $X_{+}(f)$  of the corresponding  "analytical signal"  $x_{+}(t)$.


General calculation rule in the time domain


Now we will take a closer look at the spectrum  $X_+(f)$  of the analytical signal and divide it with respect to  $f = 0$  into

For a clear explanation of the analytical signal
  • an even  $($German:  "gerade"   ⇒   "$\rm g"$)  part  $X_{\rm +g}(f)$,  and
  • an odd   $($German:  "ungerade"   ⇒   "$\rm u$")  part  $X_{\rm +u}(f)$:
$$X_+(f) = X_{\rm +g}(f) + X_{\rm +u}(f).$$

All these spectra are generally complex.

If one considers the  »Assignment Theorem«  of the Fourier transform,  then the following statements are possible on basis of the graph:

  • The even part  $X_{\rm +g}(f)$  of  $X_{+}(f)$  leads after the Fourier transform to a real time signal,  and the odd part  $X_{\rm +u}(f)$  to an imaginary one.


  • It is obvious that  $X_{\rm +g}(f)$  is equal to the physical Fourier spectrum  $X(f)$  and thus the real part of  $x_{\rm +g}(t)$  is equal to the given physical signal  $x(t)$  with band-pass properties.


  • If we denote the imaginary part with  $y(t)$,  the analytical signal is:
$$x_+(t)= x(t) + {\rm j} \cdot y(t) .$$
  • According to the generally valid laws of Fourier transform corresponding to the  »Assignment Theorem«,  the following applies to the spectral function of the imaginary part:
$${\rm j} \cdot Y(f) = X_{\rm +u}(f)= {\rm sign}(f) \cdot X(f) \hspace{0.3cm}\Rightarrow\hspace{0.3cm}Y(f) = \frac{{\rm sign}(f)}{ {\rm j}}\cdot X(f).$$
  • After transforming this equation into the time domain,  the multiplication becomes the  »convolution«,  and one gets:
$$y(t) = \frac{1}{ {\rm \pi} t} \hspace{0.05cm}\star \hspace{0.05cm}x(t) = \frac{1}{ {\rm \pi}} \cdot \hspace{0.03cm}\int_{-\infty}^{+\infty}\frac{x(\tau)}{ {t - \tau}}\hspace{0.15cm} {\rm d}\tau.$$

Representation with Hilbert transform


At this point it is necessary to briefly discuss a further spectral transformation,  which is dealt thoroughly in the book  »Linear and Time-invariant Systems« .

$\text{Definition:}$  For the  »Hilbert transform«  $ {\rm H}\left\{x(t)\right\}$  of a time function  $x(t)$  applies:

$$y(t) = {\rm H}\left\{x(t)\right\} = \frac{1}{ {\rm \pi} } \cdot \hspace{0.03cm}\int_{-\infty}^{+\infty}\frac{x(\tau)}{ {t - \tau} }\hspace{0.15cm} {\rm d}\tau.$$
  • This particular integral cannot be solved in a simple,  conventional way,  but must be evaluated using the  »Cauchy principal value«.
  • Correspondingly valid in the frequency domain:
$$Y(f) = - {\rm j} \cdot {\rm sign}(f) \cdot X(f) \hspace{0.05cm} .$$


Thus,  the result of the last section can be summarized with this definition as follows:

  • You get from the real,  physical band-pass signal  $x(t)$  the analytic signal  $x_+(t)$  by adding to  $x(t)$  an imaginary part according to the Hilbert transform:
$$x_+(t) = x(t)+{\rm j} \cdot {\rm H}\left\{x(t)\right\} .$$
  • The Hilbert transform  $\text{H}\{x(t)\}$  disappears only in the case of  $x(t) = \rm const.$   ⇒   DC signal.  With all other signal forms the analytic signal  $x_+(t)$  is always complex.
  • From the analytical signal  $x_+(t)$  the real band-pass signal can be easily determined by real part formation:
$$x(t) = {\rm Re}\left\{x_+(t)\right\} .$$

$\text{Example 2:}$  The principle of the Hilbert transformation is illustrated here by the following diagram:

  • According to the left representation  $\rm (A)$,  one gets the analytical signal  $x_+(t)$  from the physical signal  $x(t)$  by adding an imaginary part   ${\rm j} \cdot y(t)$.
  • Here,  $y(t) = {\rm H}\left\{x(t)\right\}$  is a real time function,  which can be calculated easily in the spectral domain by multiplying the spectrum  $X(f)$  with  $- {\rm j} \cdot \sign(f)$.
Illustration of the Hilbert transform


The right representation  $\rm (B)$  is equivalent to  $\rm (A)$:

  • With the imaginary function  $z(t)$  one obtains:
$$x_+(t) = x(t) + z(t).$$
  • A comparison of both models shows that it is indeed true:
$$z(t) = {\rm j} \cdot y(t).$$


Pointer diagram representation of the harmonic oscillation


The spectral function  $X(f)$  of a harmonic oscillation  $x(t) = A \cdot \text{cos}(2\pi f_{\rm T}t - \varphi)$  consists of two Dirac delta functions at frequencies

  • $+f_{\rm T}$  with complex weight   $A/2 \cdot \text{e}^{-\text{j}\hspace{0.05cm}\varphi}$,
  • $-f_{\rm T}$  with complex weight   $A/2 \cdot \text{e}^{+\text{j}\hspace{0.05cm}\varphi}$.


Thus, the spectrum of the analytical signal is  $($without the Dirac delta function at the frequency  $f =-f_{\rm T})$:

$$X_+(f) = A \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\varphi}\cdot\delta (f - f_{\rm T}) .$$

The corresponding time function is obtained by applying the  »Shifting Theorem«:

$$x_+(t) = A \cdot {\rm e}^{\hspace{0.05cm} {\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}( 2 \pi f_{\rm T} t \hspace{0.05cm}-\hspace{0.05cm} \varphi)}.$$

This equation describes a rotating pointer with constant angular velocity  $\omega_{\rm T} = 2\pi f_{\rm T}$.

In the following,  we will also refer to the time course of an analytical and frequency-discrete signal  $x_+(t)$  as  »pointer diagram«.

$\text{Example 3:}$  For illustrative reasons the coordinate system here is rotated  $($real part upwards,  imaginary part to the left$)$,  contrary to the usual representation by  $90^\circ$.

Pointer diagram of a harmonic oscillation

On the basis of this diagram the following statements are possible:

  • At the start time  $t = 0$  the pointer of length  $A$  $($amplitude$)$  lies with angle  $-\varphi$  in the complex plane.  In the drawn example,  $\varphi = 45^\circ$.
  • For times  $t > 0$  the pointer rotates with constant angular velocity  $($circular frequency$)$  $\omega_{\rm T}$  in mathematically positive direction,  i.e. counterclockwise.
  • The top of the pointer thus always lies on a circle with radius  $A$  and requires exactly the time  $T_0$,  i.e. the  »period duration«  of the harmonic oscillation  $x(t)$  for one rotation.
  • The projection of the analytical signal  $x_+(t)$  onto the real axis,  marked by red dots,  provides the instantaneous values of  $x(t)$.


Pointer diagram of a sum of harmonic oscillations


For the further description we assume the following spectrum for the analytical signal:

Pointer diagram of a sum of three oscillations
$$X_+(f) = \sum_{i=1}^{I}A_i \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm} \varphi_i}\cdot\delta (f - f_{i}) .$$
  1. The left graphic shows such a spectrum for the example  $I = 3$. 
  2. If one chooses  $I$  relatively large and the distance between adjacent spectral lines correspondingly small,  then with this equation frequency–continuous spectral functions  $X_+(f)$  can also be approximated.


In the right graphic the corresponding time function is indicated.  This is in general:

$$x_+(t) = \sum_{i=1}^{I}A_i \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot\hspace{0.05cm}(\omega_i \hspace{0.05cm}\cdot\hspace{0.05cm} t \hspace{0.05cm}-\hspace{0.05cm} \varphi_i)}.$$

To note about this graphic:

  • The sketch shows the initial position of the pointers at start time  $t = 0$  corresponding to the amplitudes  $A_i$  and the phase positions  $\varphi_i$.
  • The tip of the resulting pointer compound is marked by the violet cross.  One obtains by vectorial addition of the three individual pointers for the time  $t = 0$:
$$x_+(t= 0) = \big [1 \cdot \cos(60^\circ) - 1 \cdot {\rm j} \cdot \sin(60^\circ) \big ]+ 2 \cdot \cos(0^\circ)+1 \cdot \cos(180^\circ) = 1.500 - {\rm j} \cdot 0.866.$$
  • For times  $t > 0$  the three pointers rotate at different angular velocities  $\omega_i = 2\pi f_i$.  The red pointer rotates faster than the green one,  but slower than the blue one.
  • Since all pointers rotate counterclockwise, the resulting pointer  $x_+(t)$  will also tend to move in this direction. 
  • At time  $t = 1\,µ\text {s}$  the tip of the resulting pointer for the given parameter values is
$$ \begin{align*}x_+(t = 1 {\rm \hspace{0.05cm}µ s}) & = 1 \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}60^\circ}\cdot {\rm e}^{{\rm j}\hspace{0.05cm}2 \pi \hspace{0.05cm}\cdot \hspace{0.1cm}40 \hspace{0.05cm} \cdot \hspace{0.1cm} 0.001} + 2\cdot {\rm e}^{{\rm j}\hspace{0.05cm}2 \pi \hspace{0.05cm}\cdot \hspace{0.1cm}50 \hspace{0.05cm} \cdot \hspace{0.1cm} 0.001}- 1\cdot {\rm e}^{{\rm j}\hspace{0.05cm}2 \pi \hspace{0.05cm}\cdot \hspace{0.1cm}60 \hspace{0.05cm} \cdot \hspace{0.1cm} 0.001} = \\ & = 1 \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}45.6^\circ} + 2\cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}18^\circ}- 1\cdot {\rm e}^{{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}21.6^\circ} \approx 1.673- {\rm j} \cdot 0.464.\end{align*}$$
  • The resulting pointer tip does not lie on a circle like a single oscillation, but a complicated geometric figure is created.


The interactive applet  »Physical Signal and Analytical Signal«  illustrates  $x_+(t)$  for the sum of three harmonic oscillations.

Exercises for the chapter


Exercise 4.3: Vector Diagram Representation

Exercise 4.3Z: Hilbert Transformator

Exercise 4.4: Vector Diagram for DSB-AM

Exercise 4.4Z: Vector Diagram for DSB-AM